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Abstract: Although several methods have been already developed for solving thermo elasto-

hydrodynamic (TEHD) problems, the solution of the highly nonlinear problem is still quite 

challenging. So the development of a P-version FEM model for calculating the film shape, 

the pressure and temperature distribution and its implementation to commercial software 

seems to be timely to study the sliding-rolling materials during operation. Since the general 

3D flow problem can be reduced to a quasi 2D case based on the hydrodynamic lubrication 

theory developed by Reynolds, special lubricant film element can be developed for finite-

element modelling of such problems.  

Keywords: Elasto-hydrodynamic lubrication, Finite Element Method, Lubricant film element 
 

 

1. INTRODUCTION 

The generalized case of surface pairs contacting along a spot in the status of liquid 

friction is illustrated in Figure 1. In the solution of a differential equation by variation 

method, the equation is put into an equivalent weighted-integral form and then the 

approximate solution over the domain is assumed to be linear combination (  j jjc  ) 

of appropriately chosen approximation function j and undetermined coefficient, cj. 

The coefficient cj are determined such that the integral statement equivalent to the 

original differential equation is satisfied. Weak solution of the weighted integral forms 

of the governing Reynold and energy equations has been presented by Szávai [3] for 

TEHD problems. In this paper is enough to assume that the weighted-integral forms 

of the Reynold and energy equations look like: 
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The film shape can be calculated as a superposition of the initial geometry, the dis-

placement of a rigid surface and the deformation of a half-space under pressure. Af-

ter deformation, the film shape:  
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where hg is the initial gap size,  rigid is the relative rigid normal displacement be-

tween the contact bodies, δ is the total deformation of the surfaces. 

 

 
Figure 1. Contacting bodies 

 

 

The calculation of displacements occurring under the effect of the distributed load 

acting on the surface is already a routine task in the range of numerical methods by 

now thus the equations needed for this will not be detailed either. The classical ap-

proach is to find the stresses and displacement in an elastic half-space due to surface 

traction [2]. Let us assume for the solution of this problem that the equation below 

is in existence: 
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For calculating the temperature of the contact surfaces range of numerical methods 

are available or the solution for moving heat source on semi-infinite half space [1] 

can be used as the substructure model when the analytical expression can be joined 

to the FEM solution by least squares approximation. 

The integral of the pressure over the contact area should be equal with the external 

load. 
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FW is the normal load of the surfaces. It can be satisfied if the rigid is a variable. 
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2. DIMENSIONLESS GAP COORDINATE AND DIMENSION REDUCTION 

The equations (1) and (2) consists several integration through the thickness like 
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 in case of non-Newtonian lubricants or TEHD case. These 

integrals make the problems to be full 3D case. In order to reduce it to a quasi 2D 

case the integral domain has to be unified by transformation of the z coordinate. 

As usual, it can be assumed that h1 = 0 and h2 = h. In this case let us introduce the 

dimensionless coordinate  along the gap as defined below and let the coordinate z 

is the linear function of : 
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And consequently the integrals through the lubricant film thickness are: 
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So the weighted-integral forms of the energy equation looks like: 
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In this way the integration for the energy equation has to be carry out on a uniformed 

thickness domain and it makes possible to handle the problem as a quasi thick shell 

problem where the thickness of the shell is variable. 

 

3. INTEGRATION TROUGH THE THICKNESS BY GAUSS QUADRATURE 

In FEM based solutions the integrations are carried out in most cases numerically by 

means of Gaussian quadrature [4]. If the integral domain is defined through the full 

thickness (–1..1), the integration above the dimensionless thickness is: 
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Where G  are n specified “Gauss” points within the domain of integration and Gw  

are weights at specified points [4]. The more applied Gauss point, the higher inte-

gration accuracy reached but the more computation time needed as well.  
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Determination of xyu


 and some of the viscosity functions for generalized Reyn-

old equation requires integration above a semi undefined region (–1..) that has to 

be managed as well. Since the function ( )


f  can be determined at any point above 

the gap, let us take the Lagrange interpolation of the integrand above the ( )1..1−
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where  
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are the (n + 1) order Lagrange interpolation polynomials those can be integrated 

analytically:   
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So the integral with its interpolation:  
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4. QUASI 2D ELEMENT AND NUMERICAL INTEGRATION 

Since the coordinate “z” has been transferred to a dimensionless “” coordinate, and 

the (0..h) range to (–1..1), futhermore and the h(x,y) gap size independent from z, 

only the contact area has to be divided into shapes characteristic of a particular 2D 

element type and then derived into a unified shape by means of conform transfor-

mation for numerical integration [4] in order to carry out the integrations.  
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Conform geometry transformation by Legendre shape functions (N) according to [4] 

looks like: 
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Figure 2. Mesh transformation 

 
This integration is carried out in most cases numerically by means of Gaussian quad-

rature [4]: 
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Where 
G

  and 
G  specified points within the domain of integration and Gw  are 

weights at specified points [4]. 

Legendre shape functions (N) according to [4] have been used for the polynomial 

approximation of the un-known variables. Only 2D approximation needed for the 

gap size, deformation and the pressure.  
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The variation of the temperature through the thickness has been taken into consider-

ation: 
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Let us note that only the shape functions for the surface nodes, edges and sides of 

the elements of N on surfaces Si assume values. Thus the shape functions may be 

divided into three groups: those related to surfaces S1 and S2 plus the shape function 

operating inside the lubricant. 
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Accordingly, T may also be grouped similarly: 
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No shape function is required for the displacement like a rigid body rigid(t), as it is 

a parameter associated with the body. For the discretisation of the week integral form 

of the Reynods equations, the wR weight functions are Np in case of direct solution. 

If invers solution is chosen the wR weight function should be Ng. However it has to 

be considered that the pressure and deformation field are dependent from each other. 

The two fields are connected by the solid mechanical description of the surfaces. 

Furthermore the pressure distribution has to satisfy the load case as well. For the 

discretization of the energy equation wQ weight functions are N.  
 

5. VERIFICATION OF DEVELOPED METHOD 

The solution of the problem by the p-version finite element method is presented by 

means of the examples found in the article published by Wolff at all [5] in 1992 as 

the basis for which the applicability of the solution method constructed here to the 

problem has been verified. The gap was divided along its length into 15 elements 

also here. The degree of approximations is given in Table 1. 

 

Table 1  
Mesh parameter 
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Figure 3. Pressure distribution  

for pure rolling 
Figure 4. Temperature distribution  

for pure rolling 
 

 

 
 

Figure 5. Pressure distribution  
with S = 1.9 

Figure 6. Temperature distribution 
with S = 1.9 

 

 

The calculations were carried out for the state of pure rolling contact and with 1.9 

sliding ratio. The elasto-hydrodynamic problem was solved with the use of the opti-

mized Newton-Rapshon method [3] and the thermodynamical problem by the atten-

uated direct algorithm in iterative manner. The pressure distribution obtained is 

shown in Figure 3 and Figure 5. The gap size formed as well as the temperature 

distribution in Figure 4 and Figure 6. 

 

6. IMPLEMENTATION OF EHD PROBLEM TO FEM SOFTWARE 

The Comsol Multiphysics software was used for calculating EHD problems. The 

Comsol Multiphysics uses the finite element formulation with Lagrange test func-

tions to solve numerical problems. The weak formulation of the hydrodynamic prob-

lem can be created in the Mathematics module and model can be freely modified. 

The elastic deformation of the surface and the rigid displacement of the surfaces can 
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be calculated in the Structural Mechanics module which uses the common structural 

finite element methods. Since optimized Newton-Rapshon method [3] cannot be 

adopt to Comsol Multiphysics the solution has been stabilized be Streamline-up-

wind/Petrov-Galjorkin and isotropic diffusion method. The results can be seen in 

Figure 7 and Figure 8.  

 

  

Figure 7. Pressure distribution of point contact 
 

  

Figure 8. Surface deformation and subsurface stress distribution 
 

 

7. CONCLUSION 

For the three-dimensional contact problem of lubrication, a two-dimensional lubri-

cation fluid film finite element was developed. A remarkable property of this element 

is that only a two-dimensional mesh has to be maintained. Furthermore, pressure and 

film thickness can be handled as independent element variables. Integration through 

the thickness is carried out by making use of dimensionless thickness coordinate. 

Three dimensional behaviour of the fluid film temperature can be modelled using 

higher order approximations through the thickness direction. The method has been 

verified by line contact and the EHD part has been already implemented to commer-

cial FEM software. Implementation of the thermal part is under development. 
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