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Abstract— The steadily growing amount of medical image
data requires automatic segmentation algorithms and decision
support, because at a certain time, there will not be enough
human experts to establish the diagnosis for every patient. It
would be a good question to establish whether this day has
already arrived or not. Computerized screening and diagnosis
of brain tumor is an intensively investigated domain, especially
since the first Brain Tumor Segmentation Challenge (BraTS)
organized seven years ago. Several ensemble learning solutions
have been proposed lately to the brain tumor segmentation
problem. This paper presents an evaluation framework de-
signed to test the accuracy and efficiency of ensemble learning
algorithms deployed for brain tumor segmentation using the
BraTS 2016 train data set. Within this category of machine
learning algorithms, random forest was found the most appro-
priate, both in terms of precision and runtime.

Index Terms— magnetic resonance imaging, brain tumor,
tumor detection, image segmentation, machine learning.

I. INTRODUCTION

Multi-spectral magnetic resonance imaging (MRI) is the
medical imaging modality usually employed in brain tu-
mor detection and segmentation [1]. The automatic brain
tumor detection algorithms have intensively evolved as a
consequence of the BraTS Challenges organized jointly with
the MICCAI conference since year 2012 [2], [3]. A wide
variety of algorithms were published that cover the whole
methodology arsenal of pattern recognition. Most solutions
employed supervised and semi-supervised machine learning
techniques and/or advanced image segmentation tools like:
ensemble of random forests [4], AdaBoost classifier [5],
random forests [6], [7], [8], extremely random trees [9],
support vector machines [10], convolutional neural network
[11], [12], deep neural networks [13], [14], [15], Gaussian
mixture models [16], [17], fuzzy c-means clustering in semi-
supervised context [18], [19], tumor growth model [20], and
various advanced image segmentation techniques like cellu-
lar automata combined with level sets [21], active contour
models combined with texture features [22], and graph cut
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algorithm [23]. Earlier solutions given for the brain tumor
segmentation problem were summarized by Gordillo et al.
in [24].

This paper presents an evaluation framework designed to
test machine learning algorithms in localizing brain tumors
in MRI data provided by the BraTS challenges. In this study
we compare the accuracy and efficiency of several ensemble
learning techniques, placed into the same scenario, working
with the same pre-processed data. The rest of the paper is
structured as follows: section II presents the framework with
its technical details (II-A) and the algorithms included in the
evaluation (II-B). Section III provides a detailed analysis of
the obtained results. Section IV concludes the study.

II. MATERIALS AND METHODS

A. Framework

1) Data: All fifty-four low-grade (LG) tumor volumes of
the BraTS 2016 train dataset [2] were involved in this study.
The multi-spectral MRI data contains four data channels
(T1, T2, T1C, FLAIR). All volumes consist of 155 slices of
240×240 pixels. Pixels are isovolumetric, each representing
one cubic millimeter of brain tissue. Each volume contains
approximately 1.5 million pixels. Human expert made anno-
tation is available for each volume, making it possible to use
these volumes as train and test data. All data channels were
registered to T1 using an automatic procedure.

2) Processing steps: The block diagram of the application
is presented in Figure 1. All data volumes went through a
preprocessing step, which included histogram normalization
and feature generation. After dividing the volumes into train
and test data, train data is sampled for the ensemble learning,
which is fed to the training algorithm. The trained ensembles
are evaluated using the test data. The prediction provided
by the ensemble is post-processed to give the tumor a
regularized shape of improved quality. Finally, the accuracy
of the algorithm is evaluated using statistical measures.

3) Pre-processing: Pre-processing theoretically has the
main goal to deal with: (1) the intensity non-uniformity of
the MR image volumes [25], [26], [27]; (2) the great variety
of MR image histograms; (3) generating further features.
We have chosen to work with data that contain no visible
inhomogeneity, the LG volumes of the BraTS 2016 train
dataset [2], so no compensation is required. On the other
hand, we produce uniform histograms to each data channel of
the volumes using a context dependent linear transform that
assigns the 25 and 75 percentile to intensity levels 600 and
800, respectively, and cuts the two tails of the transformed
histogram at 200 and 1200. Details of this technique can
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Fig. 1. Block diagram of the evaluation framework.

be found in our previous paper [28]. Besides the four
observed data channels, 13 further features are generated,
which were selected in a previous study [29] out of 100
generated morphological, gradient, and Gabor features. The
13 computed features used in this study include:

• nine features computed in 3 × 3 × 3 sized volumetric
neighborhood: minimum of T1; minimum, average and
maximum of T2; average and maximum of T1C; mini-
mum, average and maximum of FLAIR intensity;

• three features extracted from 11 × 11 planar neighbor-
hood: average of T2, T1C, and FLAIR intensities;

• and the average of FLAIR intensity obtained from 3×3
planar neighborhood.

The final feature vector consists of 13 features, as the four
observed features were finally excluded [29].

4) Decision making: The total number of 54 MRI vol-
umes were divided arbitrarily into two equal groups. These
groups served as train and test data in a two-round cross
validation. This way we obtain a segmentation accuracy for
each MRI volume using ensembles trained with volumes
from the other group. Each unit in an ensemble was trained
using the feature vectors of 10000 randomly selected pixels
from the train volumes, out of which 92% were negative
and 8% were positives. These percentages were decided
based on previous studies [28]. All classifiers were trained
to perform two-class separation, to distinguish normal tissues
from tumor lesions.

5) Post-processing: The post processing step reclassifies
each pixel based on the number of predicted positives
situated within a cubic neighborhood. LG tumor volumes
of the BraTS data set give best results using 11 × 11 × 11
sized neighborhood and threshold around 35% [28].

6) Evaluation criteria: Statistical evaluation is performed,
which is based on the number of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).
Accuracy indicators derived from these numbers, namely the
Dice score (DS), sensitivity (true positive rate, TPR), speci-
ficity (true negative rate, TNR), and accuracy (ACC), are
exhibited in Table I. Each of these are extracted for individual
volumes, while overall accuracy is expressed by the average
and median values obtained for the 54 volumes. Further on,
the average runtime of a single-volume segmentation is the
main evaluation criterion of the speed.

TABLE I
CRITERIA TO EVALUATE SEGMENTATION QUALITY

Indicator Values
Name Formula Possible Ideal

Dice score DS = 2×TP
2×TP+FP+FN

0 ≤ DS ≤ 1 1
Sensitivity TPR = TP

TP+FN
0 ≤ TPR ≤ 1 1

Specificity TNR = TN
TN+FP

0 ≤ TNR ≤ 1 1
Accuracy ACC = TP+TN

TP+FP+TN+FN
0 ≤ ACC ≤ 1 1

B. Algorithms

Ensemble learning methods use sets of weak classifiers
to produce improved accuracy via majority voting. The
algorithms involved in this study are:

• Random forest (RF) classifier, using the implementation
given in OpenCV ver. 3.4.0. RF represents an ensem-
ble of decision trees. The main parameter, beside the
number of trees, is the maximum depth of each tree.
Experiments showed that train data sets of 10000 items
were best learned using the maximum depth set to 7.

• Ensemble of real Adaboost classifiers, using the imple-
mentation given in OpenCV ver. 3.4.0.

• Ensemble of artificial neural networks (ANN), using
the implementation given in OpenCV ver. 3.4.0. Each
ANN had the same architecture: input layer of size
that corresponds to the number of features, two hid-
den layers of 7 and 5 neurons, respectively, and one
neuron in the output layer. ANNs were trained using
the backpropagation rule implemented in OpenCV.

• Ensemble of binary decision trees (BDT), using an own
implementation presented in [28]. BDTs can learn to
perfectly separate negative from positive train samples
unless there are two coincident vectors with different
ground truth. Training sets of randomly chosen 10000
samples are usually learned by BDTs of maximum
depth 19.3 ± 3.6 (AVG±SD). Decisions are made at
average depth of 7.29± 2.67.

III. RESULTS AND DISCUSSION

All the above mentioned algorithms underwent a thorough
evaluation process involving the 54 low-grade tumor volumes
of the BraTS 2016 database. The size of the ensemble varied
in four steps, using values of 5, 25, 125, and 255. The
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TABLE II
STATISTICAL ACCURACY INDICATOR VALUES OBTAINED FOR VARIOUS CLASSIFIERS AND ENSEMBLE SIZES. THE BEST ACHIEVED PERFORMANCE IS

HIGHLIGHTED IN EACH COLUMN.

Classifiers Ensemble Dice score Sensitivity Specificity Accuracy
in ensemble size average median average median average median average median

ANN

5 79.60% 83.57% 83.36% 86.77% 98.39% 98.78% 97.37% 97.61%
25 80.53% 84.39% 82.39% 85.75% 98.60% 98.92% 97.51% 97.79%

125 80.52% 84.07% 81.47% 85.20% 98.70% 98.92% 97.54% 97.84%
255 80.55% 83.99% 81.54% 84.93% 98.69% 98.94% 97.53% 97.78%

Adaboost

5 80.20% 84.28% 80.63% 85.46% 98.85% 99.03% 97.63% 97.74%
25 80.55% 84.13% 80.96% 86.68% 98.86% 99.12% 97.65% 97.76%

125 80.76% 84.11% 81.38% 86.96% 98.84% 99.11% 97.66% 97.87%
255 80.78% 84.13% 81.44% 87.00% 98.83% 99.10% 97.66% 97.85%

5 80.02% 82.94% 80.39% 83.38% 98.79% 99.03% 97.57% 97.90%
Random 25 81.10% 84.44% 81.90% 86.63% 98.78% 98.98% 97.67% 98.01%

forest 125 81.33% 84.36% 82.84% 87.31% 98.73% 98.93% 97.69% 97.71%
255 81.29% 84.32% 82.72% 87.35% 98.74% 98.93% 97.68% 97.72%

5 78.83% 83.59% 81.50% 85.80% 98.51% 98.86% 97.37% 97.53%
Binary 25 80.13% 83.83% 81.17% 84.72% 98.75% 98.95% 97.57% 97.59%

decision trees 125 80.21% 84.25% 81.41% 87.30% 98.75% 98.93% 97.56% 97.70%
255 80.22% 84.21% 81.44% 87.20% 98.75% 98.92% 97.57% 97.69%

TABLE III
COMPARISON OF CLASSIFIER ALGORITHMS USING THE DICE SCORES OBTAINED FOR THE 54 INDIVIDUAL LG TUMOR VOLUMES. THE BEST

ACHIEVED PERFORMANCE IS HIGHLIGHTED IN EACH ROW.

Classifier ANN Adaboost Random forest Binary decision trees
Ensemble size 5 25 125 255 5 25 125 255 5 25 125 255 5 25 125 255
DS > 50% 52 52 52 52 52 51 51 51 51 51 53 52 51 52 52 52
DS > 60% 50 50 50 50 50 50 51 51 50 51 51 51 48 48 49 49
DS > 70% 45 45 47 47 45 44 45 45 44 47 48 48 42 46 45 46
DS > 75% 41 43 43 43 41 42 42 42 43 41 41 41 40 42 41 41
DS > 80% 38 37 37 37 39 40 40 40 39 40 40 40 34 36 37 37
DS > 85% 19 24 24 22 24 22 24 24 20 25 24 25 22 22 23 24
DS > 90% 5 8 8 7 7 10 10 10 12 10 10 10 8 8 7 7
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Fig. 2. Dice score and Sensitivity values obtained for each of the 54
LG tumor volumes using the random forest algorithm in ensemble of 125,
plotted in increasing order of the quality indicators.

quality indicators exhibited in Table I were extracted for each
scenario and each individual MRI record. The average and
median value for each indicator was established for overall
quality characterization. The algorithms were compared in
group and one against one, through tests performed with
individual data volumes and extracted overall quality bench-
marks. Results are exhibited in the following.

Table II presents the global average and median values for
all four quality indicators, obtained using the four evaluated
classification algorithms and the above mentioned four en-
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Fig. 3. Specificity and Accuracy values obtained for each of the 54 LG
tumor volumes using the random forest algorithm in ensemble of 125,
plotted in increasing order of the quality indicators.

semble sizes. The median values are always greater then the
average, since there are a few data records of reduced quality
that are usually segmented much worse than all others. The
best values, which are highlighted in each column, suggest
that the random forest performed slightly better than any
other tested algorithm. Segmentation quality rises together
with the size of the ensemble up to 125 units, and seems to
saturate above this value. Best achieved average Dices scores
are slightly above 81%, while median values approach 85%.
The accuracy of all algorithms is around 97.5%, meaning that
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TABLE IV
DICE SCORE TOURNAMENT USING THE 54 LG VOLUMES: ALGORITHMS

AGAINST EACH OTHER, EACH USING ENSEMBLES OF SIZE 125. HERE

ANN PROVED TO BE THE WEAKEST.

Algorithm ANN Adaboost RF BDT Won:Lost
ANN N/A 23:31 24:30 26:28 0:3 (73:89)
Adaboost 31:23 N/A 22:32 30:24 2:1 (83:79)
RF 30:24 32:22 N/A 25:29 2:1 (87:75)
BDT 28:26 24:30 29:25 N/A 2:1 (81:81)

about one pixel out of 40 is misclassified by these algorithms.
Figures 2 and 3 present the Dice score and Sensitivity,

respectively the Specificity and Accuracy indicator values
obtained by the most accurately performing ensemble of
125 random forests, evaluated on the 54 individual LG
volumes. Apparently there are approximately 10% of the
records that lead to mediocre result. In these cases the
classification algorithm did not succeed to capture the main
specific features of the data, probably due to the reduced
quality of the recorded images.

Table III presents for each algorithm the number of records
that led to Dice scores over predefined threshold values
between 50% and 90%. The best values highlighted in each
row of the table indicate again that random forest achieved
the best segmentation quality, followed by Adaboost and
ANN.

Figure 4 exhibits in a different format the Dice scores
obtained by each algorithm using ensembles size of 125
units, tested on each individual LG tumor volume. Each
graph presents the Dice scores obtained by two algorithms,
plotted one against the other. Each cross (×) in these graph
shows the Dice score of the two algorithms achieved on
the very same data. Most crosses on each graph are close
to the diagonal, indicating that the Dice score achieved by
both algorithms were pretty much the same, but there are
also crosses far from the diagonal, showing cases when one
of the algorithms produced significantly better segmentation
quality.

Table IV exhibits the same data as Fig. 4, but in a
tournament format. Surprisingly, this table suggests that
ANN is the worst performing algorithm in term of accuracy,
because all other three classification methods achieved better
Dice score in case of the majority of the data records. Again
in this case, random forest proved the most accurate one,
despite losing the direct comparison to BDT.

Figure 5 presents 32 subsequent slices from a segmented
volume, obtained by the random forest composed of 125
trees. The algorithm finds the tumors pixels and also the
boundary of the tumor with a good accuracy. True positives
are drawn in green, false negatives in red, and false positives
in blue color.

Figure 6 exhibits the efficiency benchmarks of the four
algorithms. When we get a new data record of average
size, we need to extract the 13 features for each pixel from
its neighborhood, feed the obtained data to ensemble of
classification algorithms of the chosen size, and finally apply
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Fig. 4. Dice scores obtained for individual volumes by the four algorithms
using ensembles of size 125, plotted one algorithms vs. another, in all
possible six combinations.

the post-processing that leads to final segmentation. The
total necessary processing time, needed by each algorithm is
shown in the figure. All tests were executed on a notebook
computer with quad-core i7 processor running at 3.4GHz,
using a single core of the microprocessor. Ensembles of RF
and BDT performed quickly, in virtually same time. ANN
and Adaboost required 2 to 5 times longer execution time,
especially in larger ensembles.

IV. CONCLUSIONS

This paper presented a testing framework for ensemble
learning algorithms, which were employed in brain tumor
segmentation based on multispectral MR image data. The
accuracy indicators showed, that all four tested algorithms
are suitable to serve the decision making part of a segmen-
tation procedure. The small differences in accuracy, and the
runtime benchmarks suggest that the best solution from the
tested ensemble learning algorithms is the random forest.
Further works will aim at including more machine learning
algorithms into the framework.
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Fig. 5. Thirty-two consecutive slices of a LG tumor volume, indicating true positive (green), false positive (blue) and false negative (red) pixels.
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Fig. 6. Efficiency benchmarks of the four classification algorithms: the
average value of the total processing time in a single record testing problem.
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[29] Á. Győrfi, L. Kovács, and L. Szilágyi, “A feature ranking and selection
algorithm for brain tumor segmentation in multi-spectral magnetic
resonance image data”, Proc. 41st Annual International Conference
of IEEE EMBS, Berlin, Germany, 2019, accepted paper.

[30] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on
Computers, vol. C-27, pp. 509–516, 1978.

914


