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MAPS ON 3-MANIFOLDS GIVEN BY SURGERY

BOLDIZSÁR KALMÁR AND ANDRÁS I. STIPSICZ

Abstract. Suppose that the 3-manifold M is given by integral surgery along a link L ⊂ S3 .
In the following we construct a stable map from M to the plane, whose singular set is
canonically oriented. We obtain upper bounds for the minimal numbers of crossings and
non-simple singularities and of connected components of fibers of stable maps from M to the
plane in terms of properties of L .

1. Introduction

It is well-known that a continuous map between smooth manifolds can be approximated
by a smooth map and any smooth map on a 3-manifold can be approximated by a generic
stable map. This line of argument, however, gives no concrete map on a given 3-manifold M
even if it is given by some explicit construction. Recall that by [Li62, Wa60] a closed oriented
3-manifold M can be given by integral surgery along some link L in S3 . In the present work
we construct an explicit stable map F : M → R

2 based on such a surgery presentation of M .
Results in [Gr09, Gr10] give lower bounds on the topological complexity of the set of

critical values of generic smooth maps and on the complexity of the fibers in terms of the
topology of the source and target manifolds. In a slightly different direction, [CT08] gives a
lower bound for the number of crossing singularities of stable maps from a 3-manifold to R

2

in terms of the Gromov norm of the 3-manifold. Recently [Ba08, Ba09] and [GK07] studied
the topology of 4-manifolds through the singularities of their maps into surfaces.

In the present paper we give upper bounds on the minimal numbers of the crossings and
non-simple singularities and of the connected components of the fibers of stable maps on the
3-manifold M in terms of properties of diagrams of L (e.g. the number of crossings or the
number of critical points when projected to R). As an additional result, these constructions
lead to upper bounds on a version of the Thurston-Bennequin number of negative Legendrian
knots.

Before stating our main results, we need a little preparation. First of all, a stable map of
a 3-manifold into the plane can be easily described by its Stein factorization.

Definition 1.1. Let F be a map of the 3-manifold M into R
2 . Let us call two points

p1, p2 ∈ M equivalent if and only if p1 and p2 lie on the same component of an F -fiber. Let WF

denote the quotient space of M with respect to this equivalence relation and qF : M → WF

the quotient map. Then there exists a unique continuous map F̄ : WF → R
2 such that

F = F̄ ◦ qF . The space WF or the factorization of the map F into the composition of qF and
F̄ is called the Stein factorization of the map F . (Sometimes the map F̄ is also called the
Stein factorization of F .)

In other words, the Stein factorization WF is the space of connected components of fibers
of F . Its structure is strongly related to the topology of the 3-manifold M . For example,
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an immediate observation is that the quotient map qF : M → WF induces an epimorphism
between the fundamental groups since every loop in WF can be lifted to M . If F : M → R

2

is a stable map, then its Stein factorization WF is a 2-dimensional CW complex. The local
forms of Stein factorizations of proper stable maps of orientable 3-manifolds into surfaces
are described in [KLP84, Le85], see Figure 1. Indeed, let F be a stable map of the closed
orientable 3-manifold M into R

2 . We say that a singular point p ∈ M of F is of type (a),
. . . , (e), respectively, if the Stein factorization F̄ at qF (p) looks locally like (a), . . . , (e) of
Figure 1, respectively. We will call a point w ∈ WF a singular point of type (a), . . . , (e),
respectively, if w = qF (p) for a singular point p ∈ M of type (a), . . . , (e), respectively.
According to [KLP84, Le85] we give the following characterization of the singularities of F :
The singular point p is a cusp point if and only if it is of type (c), the singular point p is a
definite fold point if and only if it is of type (a) and p is an indefinite fold point if and only if
it is of type (b), (d) or (e). Singular points of types (d) and (e) are called non-simple, while
the others are called simple. A double point in R

2 of two crossing images of singular curves
which is not an image of a non-simple singularity is called a simple singularity crossing. A
simple singularity crossing or an image in R

2 of a non-simple singularity is called a crossing
singularity. A stable map is called a fold map if it has no cusp singularities.

a b c

(a) (b)

(d) (e)

(c)

Figure 1. The local forms of Stein factorizations of stable maps from

orientable 3-manifolds to surfaces. The map (symbolized by an arrow)
maps from the CW complex WF to R

2 .
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Let L ⊂ R
3 ⊂ S3 be a given link, and let L denote a generic projection of it to the plane.

Let n(L) and cr(L) denote the number of components of L and the number of crossings of
L , respectively.

Choose a direction in R
2 , which we represent by a vector v ∈ R

2 . We can assume that
v satisfies the condition that the projection of the diagram L to Rv⊥ along v yields only
non-degenerate critical points. Let t(L) = tv(L) denote the number of times L is tangent to
v . Suppose at each v -tangency p the half line emanating from p in the direction of v avoids
the crossings of L and intersects L transversally (at the points different from p). Denote
the number of transversal intersections by ℓ(L, v, p). Let ℓ(L, v) denote the maximum of the
values ℓ(L, v, p), where p runs over the v -tangencies. With these definitions in place now we
can state the main result of the paper.

Theorem 1.2. Suppose that the 3-manifold M is obtained by integral surgery on the link
L ⊂ S3 . Then there is a stable map F : M → R

2 such that

(1) the Stein factorization WF is homotopy equivalent to the bouquet
∨n(L)

i=1 S2 ,

(2) the number of cusps of F is equal to tv(L),
(3) all the non-simple singularities of F are of type (d), and their number is equal to cr(L)+

3
2tv(L)− n(L),

(4) the number of non-simple singularities which are not connected by any singular arc of type
(b) to any cusp is equal to cr(L) + 1

2tv(L)− n(L),

(5) the number of simple singularity crossings of F in R
2 is no more than

8cr(L) + 6ℓ(L, v)tv(L) + tv(L)
2,

(6) the number of connected components of the singular set of F is no more than n(L) +
3
2tv(L) + 1, and

(7) the maximal number of the connected components of any fiber of F is no more than
tv(L) + 3.

(8) Suppose we got M by cutting out and gluing back the regular neighborhood NL of L from
S3 . Then the indefinite fold singular set of F contains a link in S3−NL , which is isotopic
to L in S3 and whose F -image coincides with L.

Remark 1.3.

(1) Let Y be a closed orientable 3-manifold, f a given smooth map of Y into R
2 and

L ⊂ Y a link disjoint from the singular set of f . Suppose furthermore that f |L is an
immersion. Let M denote the 3-manifold obtained by some integral surgery along L .
Then the method developed in the proof of Theorem 1.2 provides a stable map of M
into R

2 (relative to f ).
(2) In constructing the map F , the proof of Theorem 1.2 provides a sequence of stable maps

f0, f1, . . . , f6 of S3 into R
2 , where each fi is obtained from fi−1 by some deformation,

i = 1, . . . , 6. Finally, the map F is obtained from f6 . Suppose that X is a compact
4-manifold which admits a handle decomposition with only 0- and 2-handles, i.e. X
can be given by attaching 4-dimensional 2-handles to D4 along S3 . Using our method
we can construct a stable map G of X into R

2 × [0, 1].

Recall that according to [BR74] a closed orientable 3-manifold M has a stable map into
R
2 without singularities of types (b), (c), (d) and (e) if and only if M is a connected sum

of finitely many copies of S1 ×S2 . According to [Sa96] a closed orientable 3-manifold M has
a stable map into R

2 without singular points of types (c), (d) and (e) if and only if M is
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a graph manifold. By [Le65] a 3-manifold always has a stable map into R
2 without singular

points of type (c). Our arguments imply a constructive proof for

Theorem 1.4. Every closed orientable 3-manifold has a stable map into R
2 without singular

points of types (c) and (e).

Remark 1.5.

(1) One cannot expect to eliminate the singular points of types (a), (b) or (d) of stable
maps from arbitrary closed orientable 3-manifolds to R

2 . In this sense our Theorem 1.4
gives the best possible elimination on 3-manifolds.

(2) By taking an embedding R
2 ⊂ S2 we get for every closed orientable 3-manifold a

stable map into S2 as well without singular points of types (c) and (e). Then by
using the method of [Sa06], for example, for eliminating the singular points of type
(a), we get a stable map, which is a direct analogue of the indefinite generic maps
appearing in [Ba08, Ba09, GK07].

The construction also implies certain relations between quantities one can naturally as-
sociate to stable maps and to surgery diagrams.

Definition 1.6. Suppose that M is a fixed closed, oriented 3-manifold and F : M → R
2 is

a stable map with singular set Σ.

• Let s(F ) denote the number of simple singularity crossings of F .
• Let ns(F ) denote the number of non-simple singularities of F .
• Let d(F ) denote the number of crossing singularities of F . Clearly s(F ) + ns(F ) =
d(F ).

• Let nsnc(F ) denote the number of non-simple singularities of F which are not con-
nected by any singular arc of type (b) to any cusp.

• Let c(F ) denote the number of cusps of F . Clearly nsnc(F ) + c(F ) ≥ ns(F ).
• Let cc(F ) denote the number of connected components of F (Σ). Clearly it is no more
than the number of connected components of Σ.

• Let cf(F ) denote the maximum number of connected components of the fibers of F .

The inequality

rankH∗(M) ≤ 2d(F ) + c(F ) + 2cc(F )

has been shown to hold in [Gr09, Section 2.1].1 In addition, by [CT08, Theorem 3.38] we have
d(F ) ≥ ||M ||/10, where ||M || is the Gromov norm of M , cf. also [Gr09, Section 3].

Theorem 1.2 provides several estimates for upper bounds on the topological complexity
of smooth maps of a 3-manifold given by surgery. For example, by summing quantities in
Definiton 1.6 and their estimates in Theorem 1.2, we immediately obtain

Corollary 1.7. Suppose that the 3-manifold M is obtained by integral surgery on the link
L ⊂ S3 . Let L be any diagram of L and v a general position vector in R

2 . Then

• min d(F ) ≤ 9cr(L) + (6ℓ(L, v) + 3
2 )tv(L) + tv(L)

2 − n(L),

• min cf(F ) ≤ tv(L) + 3,
• min{2d(F ) + c(F ) + 2cc(F )} ≤ 18cr(L) + (12ℓ(L, v) + 7)tv(L) + 2tv(L)

2 + 2,

where the minima are taken for all the stable maps F of M into R
2 . Evidently, we can

estimate other properties in Definiton 1.6 of stable maps on M as well.

1The paper [MPS95] is also closely related.
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These expressions can be simplified by estimating ℓ(L, v) as

(1.1) ℓ(L, v) ≤ tv(L)− 1

cf. Lemma 3.7.
The number of tangencies of a projection of a knot in a fixed direction is reminiscent to

the number of cusp singularities of a front projection of a Legendrian knot in the standard
contact 3-space. Based on this analogy, our previous results imply an estimate on a quantity
attached to a Legendrian knot in the following way.

Recall first that the standard contact structure ξst on R
3 is the 2-plane field given by the

kernel of the 1-form α = dz + xdy . A knot L is Legendrian if the tangent vectors of L are
in ξst . (To indicate the Legendrian structure on the knot, we will denote it by L and reserve
the notation L for smooth knots and links.) If L is chosen generically within its Legendrian
isotopy class, its projection to the (y, z) plane will have no vertical tangencies, and at any
crossing the strand with smaller slope will be over the one with higher slope. Consider now
a Legendrian knot L and let L denote such a projection (called a front projection) of L .
The Thurston-Bennequin number tb(L) of L is given by the formula w(L)− 1

2(#cusps(L)),
where w(L) stands for the writhe (i.e. the signed sum of the double points) of the projection.
Although the definition of tb(L) uses a projection of the Legendrian knot L , it is not hard to
show that the resulting number is an invariant of the Legendrian isotopy class of L .

In case the projection has only negative crossings, we have that w(L) = −cr(L), hence the
resulting Thurston-Bennequin number can be identified with −cr(L)− 1

2tv(L) after choosing

v appropriately, cf. [Ge08, OS04]. (In this case the generic projection L used in the definitions
of tv(L) and cr(L) is derived from the front projection L by rounding the cusps.)

As it is customary, we define TB(L) as the maximum of all Thurston-Bennequin numbers
of Legendrian knots smoothly isotopic to L . (It is a nontrivial fact, and follows from the
tightness of ξst that this maximum exists.) A modification of this definition for negative knots
(i.e. for knots admitting projections with only negative crossings) provides

Definition 1.8. For a negative knot L ⊂ R
3 let TB−(L) denote the value max{tb(L)} where

L runs over those Legendrian knots smoothly isotopic to L which admit front diagrams with
only negative crossings.

It is rather easy to see that if the knot L admits a projection with only negative crossings,
then it also has a front projection with the same property. Clearly TB−(L) ≤ TB(L).

Theorem 1.9. For a negative knot L ⊂ R
3 and any 3-manifold M obtained by an integral

surgery along L we have

• TB−(L) ≤ −min

√
s(F )

2
√
7

,

• TB−(L) ≤ −min

√
d(F )

2
√
7

,

• TB−(L) ≤ −minnsnc(F )− 1,

where the minima are taken for all the stable maps F of M into R
2 .

By Theorem 1.9 and [CT08, Theorem 3.38] we obtain

Corollary 1.10. For a negative knot L ⊂ R
3 and any 3-manifold M obtained by an integral

surgery along L, we have TB−(L) ≤ −
√

||M ||
2
√
70

.
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2. Preliminaries

In this section, we recall and summarize some technical tools. First, we show that a cusp
can be pushed through an indefinite fold arc as in Figure 2:

Lemma 2.1 (Moving cusps). Suppose that in a neighborhood U of a point p ∈ M the Stein
factorization of a map f : M → R

2 is given by Figure 2(a). Then f can be deformed in this
neighborhood to a map f ′ so that the Stein factorization of f ′ is as the diagram of Figure 2(b).

Proof. Suppose q ∈ M is the cusp singular point and α ⊂ M is the indefinite fold arc at
hand. Let x ∈ R

2 be a point on the other side of f(α) in f(U). Connect f(q) and x by an
embedded arc β′ . Then there is an arc β ⊂ M such that f(β) = β′ , β starts at q and β and
α do not intersect. By using the technique of [Le65] we can now deform f in a small tubular
neighborhood of β to achieve the claimed map f ′ . Note that during this move one singular
point of type (d) appears. �

An analogous statement holds if we move a cusp from a 1-sheeted region to a 2-sheeted
region.

(a) (b)

Figure 2. Moving cusps. A map can be deformed so that the image of a
cusp point goes to the other side of the image of an indefinite fold arc.

According to the next result, two cusps can be eliminated as in Figure 3:

Lemma 2.2 (Eliminating cusps). Suppose that in a neighborhood U of a point p ∈ M the
Stein factorization of a map f : M → R

2 is given by Figure 3(a). Then f can be deformed
in this neighborhood to a map f ′ so that the Stein factorization of f ′ is as the diagram of
Figure 3(b).

Proof. This statement is the elimination in [Le65, pages 285–295] for 3-dimensional source
manifolds. �

Recall that if f : M → R
2 is a stable map and Sf ⊂ M denotes its singular set, then f |Sf

is a generic immersion with cusps, i.e. if Cf ⊂ M denotes the set of cusp points, then f |Sf−Cf

is a generic immersion with finitely many double points and f |Cf
is disjoint from f |Sf−Cf

.
The following result will be the key ingredient in our subsequent arguments for proving

Theorem 1.2.
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(a) (b)

Figure 3. Eliminating cusps.

Lemma 2.3 (Making wrinkles). Suppose that f : M → R
2 is a stable map and let L ⊂ M

denote an embedded closed 1-dimensional manifold such that L is disjoint from the singular
set Sf , f |L is a generic immersion and f |L∪Sf

is a generic immersion with cusps. Let NL be
a small tubular neighborhood of L disjoint from Sf and fix an identification of NL with the
normal bundle of L. Let s : L → NL be a non-zero section such that f(s(x)) 6= f(x) for any
x ∈ L. Then f is homotopic to a smooth stable map f ′ such that

(1) f = f ′ outside NL ,
(2) the singular set of f ′ is Sf ∪ L ∪ s(L),
(3) f ′ has indefinite fold singularities along L,
(4) f ′ has definite fold singularities along s(L),
(5) f ′|L = f |L ,
(6) f ′|s(L) is an immersion parallel to f |L and

(7) if for a double point y of f |L the two points in f−1(y) ∩ L lie in the same connected
component of the fiber f−1(y), then the double point y of f ′|L correspond to a singularity
of type (d).

Proof. We perform the homotopy inside NL fiberwise as shown by Figure 4. Since NL is the
trivial bundle, the homotopy of the fibers yields a homotopy of the entire NL . �

Remark 2.4. If the submanifold L has boundary, we can still get something similar. In this
case the section s should be zero at the boundary points of L , and the homotopy yields a
stable map f ′ with cusps at ∂L .

3. Proof of the results

3.1. Construction of the stable map on M .

Proof of Theorem 1.2. We will prove the theorem by presenting an algorithm which produces
the map F on M with the desired properties. This algorithm will be given in seven steps;
the first six of these steps are concerned with maps on S3 . Let us start with a fold map
f0 : S3 → R

2 with one unknotted circle C ⊂ S3 as singular set such that f0|C is an embedding
and f−1

0 (p) is a circle for each regular point p ∈ f0(S
3). Then the Stein factorization of f0 is

a disk together with its embedding into R
2 . By cutting out the interior of a sufficiently small

tubular neighborhood NC of C from S3 , we get a solid torus S3 − intNC whose boundary is
mapped into R

2 by f0 as a circle fibration over a circle parallel to f0(C), and f0|S3−intNC
is a
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t = 0

t = 1/3

t = 2/3

t = 1

Figure 4. The deformation of f to f ′ in a fiber of NL .

trivial circle bundle S1 ×D2 → D2 . Suppose the link L ⊂ S3 is disjoint from NC ∪{1}×D2 .
Then by identifying S3− (NC ∪{1}×D2) with R

3 and f0|S3−(NC∪{1}×D2) with the projection

onto R
2 , we get a link diagram L = f0(L). Now we start modifying this map f0 . In Steps

1 through 6 we will deal with maps on S3 , and the goal will be to obtain a map which is
suitable with respect to the fixed surgery link L . In particular, we aim to find a map on S3

with the property that its restriction to any component of L is an embedding into R
2 . We

suppose that the modifications through Step 1, . . . , Step 6 happen so that all the images of the
maps f1 , . . . , f6 lie completely inside the disk determined by the (unchanged) circle fi(C),
i = 1, . . . , 6. This can be reached easily by choosing f0(C) to bound an area “large enough”
in R

2 and supposing that the diameter of L is small.

Step 1. Our first goal is to deform f0 so that the resulting map f1 has fold singularities along
L . Apply Lemma 2.3 to the map f0 : S3 → R

2 and the embedded 1-dimensional manifold
L ⊂ S3 , and denote the resulting stable map by f1 . It is a fold map, its indefinite fold singular
set is L and its definite fold singular set is C ∪ L′ , where L′ = s(L) is isotopic to L ; for an
example see Figure 5.

Since L′ is isotopic to L , the integral surgery along L giving M can be equally per-
formed along L′ . Recall that doing surgery along L′ simply means that we cut out a tubular
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Figure 5. The image of the singular set of the map f1 : S3 → R
2 ,

where L is the trefoil knot. The outer circle is f1(C), the inner solid curve
is f1(L

′) and the dashed curve is f1(L). The double points of f1(L) correspond
to singularities of type (d).

neighborhood of the definite fold curve L′ (which is diffeomorphic to L′ × D2 ), and glue it
back by a diffeomorphism of its boundary L′ × S1 . If the image f1(L

′) was an embedding of
circles, then it would be easy to construct the claimed map F on the 3-manifold given by the
integral surgery. Since this is not the case in general, we need to further deform the map f1 .

Let B denote the interior of the bands (one for each component of L) bounded by qf1(L)
and qf1(L

′) in the Stein factorization Wf1 . Then B is immersed into R
2 by f̄1 . The Stein

factorizations of the maps f2, . . . , f6 in the next steps will be built on B . Let B′ denote the
surface Wf1 − clB .

Step 2. Now, our goal is to deform f1 so that the Stein factorization of the resulting map
f2 has small “flappers” near qf2(L

′) at the points where f̄2(qf2(L
′)) is tangent to the general

position vector v . These “flappers” will help us to move the image of L so that it will become
an embedding into R

2 .
First, we use Lemma 2.3 together with Remark 2.4 as follows. Let T be the set of points

in qf1(L
′) such that for each p ∈ T the direction v is tangent to f1(L

′) at f̄1(p). For each
p ∈ T take a small embedded arc αp in a small neighborhood of p in B such that f̄1|αp is

an embedding parallel to f1(L). For each arc αp there exists an embedded arc α̃p in S3 such
that qf1 |α̃p is an embedding onto αp . See, for example, the upper picture of Figure 6, where

the small dashed arcs having cusp endpoints represent the arcs f1(α̃p) = f̄1(αp) for all p ∈ T .
Apply Lemma 2.3 and Remark 2.4 to the map f1 : S

3 → R
2 and the arcs {α̃p ⊂ S3 :

p ∈ T} to obtain a map f ′
1 . The section s in Lemma 2.3 is chosen so that if we project the

f ′
1 -images of the arising new definite fold curves in R

2 to Rv , then for each curve there is only
one critical point, which is a maximum. An example for the resulting map f ′

1 can be seen
in the upper picture of Figure 6. Note that the deformation yielded small “flappers” in Wf ′

1

attached to B along the arcs {αp : p ∈ T}. Next, for each p ∈ T take small arcs βp in Wf ′

1

which intersect generically the previous arcs {αp : p ∈ T}, lie in B and on the “flappers” and
are mapped into R

2 almost parallel to v . See the new small dashed arcs in the lower picture
of Figure 6. Once again, there are small arcs {β̃p : p ∈ T} embedded in S3 mapped by f ′

1

onto {βp : p ∈ T}, respectively.
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v

Figure 6. We obtain the upper picture by applying Lemma 2.3 and Re-
mark 2.4 to the small arcs {α̃p : p ∈ T} in S3 which are mapped by f1
to the dashed arcs near the points of the diagram L where it is tangent to v .
We obtain the lower picture by applying Lemma 2.3 and Remark 2.4 to the
new arcs added to the upper picture. The solid arcs correspond to singulari-
ties of type (a) and the black double points of the dashed arcs correspond to
singularities of type (d).

The application of Lemma 2.3 and Remark 2.4 for these arcs provides us a map, which we
denote by f2 . This map will have one additional flapper for every flapper of f ′

1 . We choose
the section s in Lemma 2.3 so that the f2 -images of the arising new definite fold curves lie
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inward2 from the arcs {f̄ ′
1(βp) : p ∈ T}, respectively, in the f̄2 -image of B and the previous

flappers. For an enlightening example, see the lower picture of Figure 6. Note that after this
step |T | new singular points of type (d) appeared. Also note that for each p ∈ T we have
four cusp singular points in S3 , three of which are mapped by qf2 into B . We denote the set
of these three cusps by Cp . For each p ∈ T the f2 -images of two of these three cusps in Cp

point to the direction −v . We denote the set of these two cusps by Dp . Note that the definite
fold curves in the images of the two cusps in Dp are on opposite sides.

Step 3. Now our goal is to obtain definite fold arcs connecting points of S3 where f2 had
cusps. Moreover these definite fold arcs will be mapped into R

2 parallel to the diagram L .
(These curves will be translated in the next step so that later they will lead to an embedding
of L into R

2 .)
In order to reach this goal, we deform the map f2 : S3 → R

2 further by eliminating half
of the cusps as follows. We proceed for each component of L separately and in the same way,
thus in the following we can suppose that L is connected. Take a cusp q0 ∈ S3 which is in
Cx −Dx for an x ∈ T such that the entire f2(L

′) lies to the right hand side of its tangent at
f̄2(x). By going along the band B in Wf2 in the direction to which the f2 -image of this cusp
q0 points, we reach another cusp q1 in Cp for some p ∈ T at the next v -tangency of f2(L

′).
If this cusp does not belong to Dp , then it is possible to apply Lemma 2.2 and eliminate these
two cusps, since they are in the position of Figure 3. Then we continue by taking the cusp
in Dp whose Stein factorization is folded inward. If the cusp q1 does belong to Dp , then we
choose that cusp from Dp which can be used to eliminate q0 (it is easy to see that this is
exactly the cusp in Dp whose Stein factorization is folded inward), we eliminate them, then
we continue by taking the cusp belonging to Cp−Dp . This procedure goes all along the band
B , meets all p ∈ T and eliminates half of the cusps. After finishing this process, we obtain a
stable map, which we denote by f3 ; cf. Figure 7 for an example. The cusp elimination results
new definite fold curves whose f3 -image is an immersion, and which have double points near
the crossings of the diagram L . In the next step we will deform f3 so that the double points
of these new curves will be localized near the images of the remaining cusps.

Step 4. Now our goal is to deform f3 to a map f4 such that the definite fold arcs obtained
in the previous step will be mapped into R

2 far from the diagram L . (Informally, we will
“lift” some of the arcs in the direction of v .) Moreover, the immersion of these definite fold
arcs into R

2 will have double points only near some cusps of f4 . This brings us closer to the
original goal to have a map which embeds a link isotopic to L into the plane.

The cusp eliminations above affect only small tubular neighborhoods of curves connecting
cusps in S3 . Denote by δ ⊂ S3 the new definite fold arcs which appear in these tubular
neighborhoods after the eliminations. Note that by the algorithm above, the arcs δ are mapped
into R

2 so that by an elementary deformation they can be moved “upward” in the direction
of v , see Figure 7.

So we further deform f3 : S3 → R
2 to get a stable map denoted by f4 as indicated in

Figure 8: as it is shown by the picture, the arcs are “lifted”. In fact, we deform f̄3 : we move
the top of the “flappers” corresponding to the α-curves of Step 2 and the f̄3 -image of the
curves qf3(δ) in the direction of v and far from f3(L). We proceed for each component of L
separately and in the same way, thus in the following we can suppose that L is connected.
First we choose a point x ∈ T such that the entire f3(L

′) lies to the right hand side from its
tangent at f̄3(x). Then, by walking along the band B ⊂ Wf3 starting from x , we deform the

2At a point of {f̄ ′

1(p) : p ∈ T} let us call the direction which is perpendicular to f ′

1(L
′) and points toward

the direction where locally f ′

1(L
′) lies “inward”.
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Figure 7. Eliminating half of the cusps in the lower picture of Fig-

ure 6. The black double points correspond to singularities of type (d).

flappers and the curves f̄3(qf3(δ)) to be mapped into the plane as a “zigzag” far away from the

diagram L . More precisely, consider the coordinate system in R
2 with origin x and coordinate

axes Rv⊥ and Rv , respectively, where v⊥ denotes the vector obtained by rotating v clockwise
by 90 degrees. By extending the f̄3 -image of the flappers in the direction of v deform the
f̄3 -image of the curves qf3(δ) so that by going along B between the points pi, pi+1 ∈ T , where
1 ≤ i ≤ |T |− 1 and p1 = x , the corresponding component of the curve f3(δ) is mapped into a
small tubular neighborhood of a line with slope (−1)i+1 for i = 1, . . . , |T |−1. Finally, arrange
the last component of f3(δ) starting with slope −1 and ending at the first (extended) flapper
belonging to x , see Figure 8.

Note that as a result the double points of the immersion of the deformed curves f4(δ) are
in a small neighborhood of the cusps mapped close to the tops of the flappers.

Step 5. In this step, we modify the stable map f4 so that the cusps of the resulting map f5
will be easy to eliminate in the next step. Let l ⊂ R

2 be a line perpendicular to v located near
f̄4(B), separating it from the other parts moved to the direction of v in Step 4, as indicated
in Figure 8.
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Figure 8. The Stein factorization of f4 , i.e. the deformation of f3 of

Figure 7. (The straight line represents the line l used to cut Wf4 in Step 5.)
The upper part of Wf4 from the bold 1-complex is denoted by A . (As usual,
the circle f4(C) is omitted.)

Now, we cut the 2-complex Wf4 − B′ (recall that B′ denotes Wf1 − clB , see Step 1)
along the f̄4 -preimage of the line l , thus we obtain the decomposition

Wf4 = A ∪f̄−1

4
(l)∩(Wf4

−B′) A
′,

where A′ denotes the 2-dimensional CW complex containing qf4(L) and A denotes the closure

of Wf4 − A′ . Then q−1
f4

(A) is a 3-manifold with boundary. Let us denote the 1-complex

qf4(∂q
−1
f4

(A)) by ∂A . In order to visualize ∂A in Figure 8, we suppose that the cutting

of Wf4 along f̄−1
4 (l) ∩ (Wf4 − B′) is a little bit perturbed and thus the bold 1-complex in

Figure 8 represents ∂A . Before proceeding further, we need a better understanding of the
qf4 -preimages of the sets appearing in the above decomposition. The preimage q−1

f4
(∂A) is

clearly diffeomorphic to J ×S1 for a link J ⊂ S3 . The following statements show much more
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about q−1
f4

(∂A). It is easy to see that the numbers of components of J and L are equal.

However, we have the stronger

Lemma 3.1. A longitudinal curve in q−1
f4

(∂A) is isotopic to L.

Proof. The 1-complex ∂A decomposes as a union of 1-cells: some of them (which we depict
as “small 1-cells” in Figure 8) are attached at one of their endpoints to the union of the other
1-cells, we denote these small cells by σi for i = 1, . . . , |T | . Others are attached by both of

their endpoints. Let σ denote the 1-complex ∂A−⋃|T |
i=1 σi . Then the PL embedding σ ⊂ Wf4

is isotopic to the subcomplex ι of Wf4 formed by the arcs of type (b) in the open bands B
connecting the singular points of type (d) in B . Furthermore, the subcomplex ι is isotopic to
qf4(L

′). Take a small closed regular neighborhood N of qf4(L
′). Then q−1

f4
(N) is naturally

a D2 -bundle over L′ . The boundary of N in Wf4 is a 1-manifold isotopic to qf4(L
′), and

we will denote it by λ . Clearly q−1
f4

(λ) is diffeomorphic to L′ × S1 . Note that any section of

q−1
f4

(λ) is isotopic to L′ .
The isotopy between λ and ι and the isotopy between ι and σ can be chosen easily so that

they give a PL embedding ε : S1 × [0, 1] → Wf4 such that S1 ×{0} and S1 ×{1} correspond
to λ and σ , respectively. For j = 1, . . . , |T | , let Uj denote small regular neighborhoods of
the singular points of type (d) located near the cusp points in B in Wf4 , such a Uj and the

restriction f̄4|Uj
can be seen in Figure 1(d). Then the intersection ε(S1 × [0, 1]) ∩ (

⋃|T |
j=1 Uj)

consists of a union of disks, which will be denoted by
⋃|T |

j=1Dj .

First, observe that for each j = 1, . . . , |T | there exists a disk D̃j embedded into q−1
f4

(Uj)

in S3 whose boundary ∂D̃j is mapped by qf4 homeomorphically onto the boundary ∂Dj , i.e.

∂D̃j is a lifting of ∂Dj . To see this, consider the 3-manifold q−1
f4

(Uj) for each j = 1, . . . , |T | .
By [Le85] the manifold q−1

f4
(Uj) is diffeomorphic to R × [0, 1], where R is a disk with three

holes and it is mapped by f4 into R
2 as we can see in Figure 9(a). Each disk Dj can be

located in Uj essentially in four ways, for example the lower picture of Figure 9(b) shows the
disk Dj for the leftmost non-simple singularity crossing of type (d) in Figure 8. We get Dj

on the picture by cutting out the two shaded areas from the 2-complex Uj . It is easy to see

in the upper picture of Figure 9(b) how to put the disk D̃j into R × [0, 1]. The other three

possibilities for the location of a disk Dj in Uj and the disk D̃j in q−1
f4

(Uj) can be described

in a similar way.

Now observe that ε(S1× [0, 1])−⋃|T |
j=1Dj can be lifted to S3 extending

⋃|T |
j=1 D̃j because

of the following. First, the regular neighborhoods of the singular points of type (c) in B (see
Figure 1(c)) intersect ε(S1 × [0, 1]) in disks which can be lifted to S3 . Then the intersection
of the small regular neighborhoods of the singular curves of type (b) and ε(S1 × [0, 1]) can
be lifted as well since there is no constraint for the lift at the regular points of f4 . Finally
observe that the rest of ε(S1× [0, 1]) intersects Wf4 only in areas of non-singular points which
are attached to the boundary of ε(S1 × [0, 1]), so the previous lifts extend over the entire
ε(S1 × [0, 1]).

Hence we obtain an embedding ε̃ : S1 × [0, 1] → S3 with S1 × {0} and S1 × {1} corre-
sponding to lifts of λ and σ , respectively. Thus we obtain an isotopy between a longitude of
q−1
f4

(∂A) and a lift of λ . The fact that any lift of λ is isotopic to L′ finishes the proof. �

Lemma 3.2. The preimage q−1
f4

(A) is isotopic to a regular neighborhood of L.
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(a) (b)

Figure 9. In (a) we can see the manifold R × [0, 1] and how it is mapped
onto the regular neighborhood Uj and into R

2 , cf. Figure 1(d). R × {0} is
mapped onto the left side of the rectangle f̄4(Uj) as a proper Morse function
with two indefinite critical points. The two “figure eights” in R× {0} are the
two singular fibers. R×{1} is mapped similarly onto the right side of f̄4(Uj).
The middle fiber in R× [0, 1] is mapped to the singular point of type (d). For

a detailed analysis see [Le85]. In (b) we can see the boundary ∂D̃j in R× [0, 1]
and its image in Uj represented by a bold 1-complex.

Proof. It is enough to show that q−1
f4

(A) is diffeomorphic to L×D2 extending naturally the

L × S1 structure on its boundary since by Lemma 3.1 the union of tori ∂q−1
f4

(A) contains a
longitude isotopic to L . Moreover it is enough to show that the qf4 -preimage of the part of
A homeomorphic to the CW complex in Figure 10 is diffeomorphic to [0, 1] ×D2 , where the
qf4 -preimage of the two vertical edges on the right-hand side of the 2-complex of Figure 10
corresponds to {0, 1} ×D2 . Clearly the qf4 -preimage of the two vertical edges on the right-

hand side is diffeomorphic to {0, 1} ×D2 since q−1
f4

(x) is a circle for any x lying in the two

vertical edges except if x is one of the two top ends. If x is one of the two top ends, then q−1
f4

(x)
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Figure 10.

is one point since it is a definite fold singularity. The qf4 -preimage of the backward sheet in
Figure 10 is diffeomorphic to [0, 1]×D2 minus I ×D2 for an interval I . The qf4 -preimage of
the forward sheet is diffeomorphic to I ×D2 . �

Corollary 3.3. Any longitudinal curve in q−1
f4

(∂A) is isotopic to L.

In order to obtain the map f5 , we modify the map f4|q−1

f4
(A) : L × D2 → R

2 outside a

neighborhood of q−1
f4

(∂A) as it is shown by Figure 11: our goal is to have the arrangement

that if for a cusp singularity q1 ∈ S3 the point qf5(q1) is connected in Wf5 − A′ to ∂A by a
1-cell γ mapped into R

2 parallel to v and γ corresponding to an indefinite fold curve, then a
definite fold curve should connect q1 to another cusp q2 with the same property for qf5(q2).

Thus we obtain a map f5 such that q−1
f5

(Wf5 −A′) is isotopic to a regular neighborhood of L

by the same argument as in Lemma 3.2. Also q−1
f5

(Wf5 − A′) coincides with q−1
f4

(A) and f5

coincides with f4 in a neighborhood of q−1
f5

(A′).

We arrange the cusps of f5 in q−1
f4

(A) to form pairs as follows. In Wf5 sheets are attached

to B along arcs of type (b) (possibly containing points of type (c) at some endpoints). Walking
along the bands B and restricting ourselves to the intersection of the sheets and Wf5 − A′ ,
we have that every sheet contains a pair of cusps and every second sheet contains a singular
arc of type (a) connecting its pair of cusps, for example, see Figure 11.

A natural pairing is that two cusps form a pair if they are in the same sheet and they are
connected by a singular arc of type (a). We refer to this pairing as Q-pairing. We also define
another pairing P : two cusps form a P -pair if they are in the same sheet and they are not
connected by any singular arc of type (a).

Step 6. In this step, we eliminate the cusps of f5 contained in q−1
f5

(Wf5 − A′). These cusps

are mapped by f5 in the direction of v far from L and arranged into P -pairs in the previous
step. The restriction of the resulting map f6 : S3 → R

2 to a link isotopic to L will be an
embedding. (Hence after this step the construction of the claimed map F on M will be easy.)

We have exactly |T |/2 P -pairs of cusps in q−1
f5

(Wf5 − A′). Observe that for each com-

ponent of L one P -pair can be eliminated immediately: for example in Figure 11 the pair on
the “highest” sheet is in the sufficient position to eliminate. In the following, we deal with the
other P -pairs.

More concretely, we perform the deformations and the eliminations of the pairs of cusps
of f5 in q−1

f4
(A) as shown in Figure 12 as follows.
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Figure 11. The Stein factorization of f5|q−1

f5
(Wf5

−A′) : L × D2 → R
2 .

There are two P -pairs of cusps.

First, by using Lemma 2.1 we move each pair of cusps having the position as in Fig-
ure 12(a) to the position as in Figure 12(b) thus creating a singularity of type (d). Then by
using Lemma 2.2 we eliminate each pair of cusps, see Figures 12(b) and 12(c).

The resulting map will be denoted by f6 (see Figure 13). Notice that f6 and f5 coincide
in a neighborhood of q−1

f5
(A′). The deformations above yield definite fold curves K ⊂ S3 ,

whose image under f6 is an embedding into R
2 as indicated in Figure 13 by the bold curve.

Lemma 3.4. The link K is isotopic to L.

Proof. By Lemma 3.1 the link L is isotopic to a longitude of the union of tori q−1
f4

(∂A). In

Step 6 we modify f5 only inside q−1
f4

(A). The subcomplex σ of ∂A used in the proof of

Lemma 3.1 is PL-isotopic to a 1-dimensional PL submanifold σ′ of Wf5 − A′ such that σ′

goes through the singular curves of type (a) appearing in the Q-pairing at the end of Step 5
and goes through the top of Wf5 −A′ , i.e. the top of the 2-complex in Figure 11. To be more
precise, in Figure 12(a) the part of σ′ connecting the two cusp endpoints of the singular arcs
of type (a) is represented by a bold dashed arc and denoted by σ′′ . During the moving of
the pair of cusps as depicted by the arrows in Figure 12(a), σ′′ is deformed to the curve σ′′′

represented by a bold dashed arc in Figure 12(b). This deformation gives an isotopy between
some liftings to S3 of σ′′ and σ′′′ . Since a part of σ′′ is collinear to a singular arc of type (a)
as we can see in Figure 12(a), any lifting to S3 of σ′′ is isotopic to any other lifting. Hence
further deforming σ′′′ to σ′′′′ represented by the bold dashed curve in Figure 12(c) yields an
isotopy between some liftings of σ′′ and σ′′′′ . Finally, changing again the lifting to S3 of σ′′′′

if necessary, we eliminate the pair of cusps as indicated in Figure 12(b) and deform σ′′′′ to be
identical to the type (a) singular arc appearing at the elimination in Figure 12(c). All this
process gives an isotopy in S3 between K and a lifting of σ , hence an isotopy between K and
L . �

Step 7. As a final step, we perform the given surgeries along K with the appropriate coef-
ficients. Since f6|K is an embedding into R

2 on each component of K , and K consists of
definite fold singular curves such that the local image of a small neighborhood of the definite
fold curve is situated “outside” of the image of the definite fold curve, a map of M is par-
ticularly easy to construct: a small tubular neighborhood NK of K , which is diffeomorphic
to K × D2 , is glued back to S3 − intNK such that {pt.} × ∂D2 maps to a longitude in



18 BOLDIZSÁR KALMÁR AND ANDRÁS I. STIPSICZ

(a)

(b)

(c)

Figure 12. Moving and eliminating the cusps. We move and eliminate
the P -pair of cusps along the arrows. The dashed arcs represent 1-complexes
used to deform σ in the proof of Lemma 3.4.

∂(M − intNK), hence NK can be mapped into R
2 as the projection π : K ×D2 → D2 . This

π extends over M − intNK and the resulting map M → R
2 is stable. Let us denote it by F .

It is easy to see that F has the claimed properties:

The Stein factorization WF is homotopy equivalent to the bouquet
∨n(L)

i=1 S2 : The Stein fac-
torization Wf4 is clearly contractible. The CW-complexes Wf5 and Wf6 are still contractible
since the corresponding steps do not change the homotopy type. At the final surgery we attach
a 2-disk to Wf6 for each component of L .

The number of cusps of F is equal to tv(L): Each point in f1(L
′) at which f1(L

′) is tangent to
the chosen general position vector v (these are exactly the points of the set f̄1(T )) corresponds
to a cusp of F by the construction and there are no other cusps. |T | = tv(L) hence we get
the statement.

All the non-simple singularities of F are of type (d): This follows from the fact that singu-
larities of type (e) never appear during the construction.



MAPS ON 3-MANIFOLDS 19

Figure 13. The Stein factorization of the stable map f6 : S3 → R
2 .

(The circle f6(C) is omitted.)

The number of the non-simple singularities of F is equal to cr(L) + 3
2tv(L) − n(L): Each

crossing of the diagram L gives a singularity of type (d). Also each point in T gives a
singularity of type (d) by the construction. Finally, the movement illustrated in Figure 12(b)
gives one singular point of type (d) for each pair of points in T except one pair for each
component of L .

The number of non-simple singularities which are not connected by any singular arc of type
(b) to any cusp is equal to cr(L) + 1

2tv(L) − n(L): In the previous argument, if we do not
count the singularities of type (d) corresponding to the v -tangencies of f1(L

′), then we get
the statement.

The number of simple singularity crossings of F in R
2 is no more than 8cr(L)+6ℓ(L, v)tv(L)+

tv(L)
2 : We can suppose that the number of simple singularity crossings of f4|q−1

f4
(A′)) is no more

than 8cr(L)+2tv(L)+6ℓ(L, v)tv(L). The maps f4 , f5 , f6 and F coincide in a neighborhood
of q−1

f4
(A′) and also their images coincide in the half plane bounded by the line l and lying
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in the direction −v (for the notations, see Step 5). The simple singularity crossings of F in
F (q−1

f4
(A)) come from the intersections of the F̄ -images of the “sheets” attached to the bands

B ⊂ WF (for the notation, see Step 2). For example, in Figure 13, two such sheets intersect
on the right-hand side in four simple singularity crossings. Hence we obtain an upper bound
for the number of simple singularity crossings of F in F (q−1

f4
(A)) if we suppose that all the

sheets intersect each other in eight crossings. This gives the upper bound

8

(

tv(L)

2
− 1 +

tv(L)

2
− 2 + · · ·+ 1

)

= 4
tv(L)

2

(

tv(L)

2
− 1

)

= tv(L)
2 − 2tv(L).

Thus we obtain the upper bound

8cr(L) + 2tv(L) + 6ℓ(L, v)tv(L) + tv(L)
2 − 2tv(L) = 8cr(L) + 6ℓ(L, v)tv(L) + tv(L)

2

for all the simple singularity crossings of F .

The number of connected components of the singular set of F is no more than n(L)+ 3
2tv(L)+

1: The curve C is a component and the links L and L′ give singular set components as well.
Also the cusp elimination in Step 3 gives additional tv(L) components. Steps 4 and 5 clearly
do not increase more the number of singular set components. In Step 6 the changings showed
in Figure 12 increase the number of components by at most 1

2tv(L). Finally Step 7 decreases
it by n(L).

The maximal number of the connected components of any fiber of F is no more than tv(L)+3:
The maximal number of the connected components of any fiber of f1 is 3. This value is no
more than 3 + tv(L) for f2 , . . . , f5 and also for f6 . When we perform the surgery in Step 7,
3 + tv(L) is still an upper bound hence we get the statement.

The indefinite fold singular set of F : Finally the statement of (8) about the indefinite fold
singular set of F is obvious from the construction. This finishes the proof of Theorem 1.2. �

Remark 3.5. Suppose we have two links in S3 . If the projections of the two links coincide,
then the resulting stable maps on the two 3-manifolds in the construction described above
will have the same Stein factorizations. Therefore only the Stein factorization itself is a very
week invariant of the 3-manifold.3

Proof of Theorem 1.4. Let M be a closed orientable 3-manifold obtained by an integral surgery
along a link in S3 . Theorem 1.2 gives a stable map F of M into R

2 without singularities of
type (e). We can eliminate the cusps of F without introducing any singularities of type (e).
Indeed, the map constructed by Theorem 1.2 has an even number of cusps, whose qF -image
is situated in B ⊂ WF . Moreover since the locations of the F -images of the cusps are at the
v -tangencies of L , each cusp c has a pair c′ which can be moved close to c (thus possibly
creating new singular points of type (d)) and can be used to eliminate these pairs in the sense
of Lemmas 2.1 and 2.2. �

Remark 3.6. By [EM97] every closed orientable 3-manifold has a wrinkled map into R
2

since any orientable 3-manifold is parallelizable. This argument leads to another proof of
Theorem 1.4. However, the h-principle used in the proof of the results in [EM97] does not
provide any construction for the wrinkled map.

Next we give the proof of the estimate given in (1.1) in Section 1.

Lemma 3.7. ℓ(L, v) ≤ tv(L)− 1.

3The paper [MPS95] is closely related to this remark.
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Proof. For any v -tangency p we have ℓ(L, v, p) ≤ tv(L) − 1 since by going along the com-
ponents of L in the diagram L , in order to pass through the intersections of the half line
emanating from p in the direction of v , for each intersection one needs to pass through a
v -tangency as well. �

3.2. Estimates for TB− . Recall that the Thurston-Bennequin number tb(L) of a Legen-
drian knot L can be computed through the simple formula

tb(L) = w(L)− 1

2
(#cusps(L)).

Proof of Theorem 1.9. By Theorem 1.2 (5) and Lemma 3.7 we have

s(F ) ≤ 8cr(L) + 7tv(L)
2 − 6tv(L)

for the constructed stable map F . (Here, again, L denotes the generic projection of the knot
L we get from the front projection of the Legendrianization L of L by rounding the cusps.)
Since d(F ) = s(F ) + ns(F ), by Theorem 1.2 (3), (5) and Lemma 3.7 we have

d(F ) ≤ 9cr(L) + 7tv(L)
2 − 9

2
tv(L)− n(L).

If L has only negative crossings, then the Thurston-Bennequin number tb(L) is equal to
−cr(L)− 1

2 tv(L), where v is the vector in which the front projection has no tangency.
Hence

28tb(L)2 = 28cr(L)2 + 28cr(L)tv(L) + 7tv(L)
2

and

28cr(L)2 + 28cr(L)tv(L) + 7tv(L)
2 ≥ 9cr(L) + 7tv(L)

2 − 9

2
tv(L)− n(L).

Thus |tb(L)| ≥
√

d(F )√
28

, implying (by the fact that tb(L) is negative for a knot admitting

a projection with only negative crossings)

(3.1) tb(L) ≤ −
√

d(F )√
28

.

Also by Theorem 1.2 (4), we have

|tb(L)| = cr(L) +
1

2
tv(L) ≥ nsnc(F ) + 1,

which gives

(3.2) tb(L) ≤ −nsnc(F )− 1.

Finally note that d(F ) ≥ s(F ) for any stable map F , and by taking the minimum for all
the stable maps in (3.1) and (3.2), we get the statement. �
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