On the discrepancy of random walks on the circle

Alina Bazarova ${ }^{1}$, István Berkes ${ }^{2}$ and Marko Raseta ${ }^{3}$

Abstract

Let X_{1}, X_{2}, \ldots be i.i.d. absolutely continuous random variables, let $S_{k}=\sum_{j=1}^{k} X_{j}(\bmod 1)$ and let D_{N}^{*} denote the star discrepancy of the sequence $\left(S_{k}\right)_{1 \leq k \leq N}$. We determine the limit distribution of $\sqrt{N} D_{N}^{*}$ and the weak limit of the sequence $\sqrt{N}\left(F_{N}(t)-t\right)$ in the Skorohod space $D[0,1]$, where $F_{N}(t)$ denotes the empirical distribution function of the sequence $\left(S_{k}\right)_{1 \leq k \leq N}$.

1 Introduction

Let X_{1}, X_{2}, \ldots be i.i.d. absolutely continuous random variables and let $S_{k}=$ $\sum_{j=1}^{k} X_{j}(\bmod 1)$. By a classical result of Lévy [6], the distribution of S_{k}

2010 Mathematics Subject Classification. 11K38, 60G50, 60F17
Keywords: i.i.d. sums mod 1; discrepancy
${ }^{1)}$ University of Birmingham, Centre for Computational Biology, Institute of Cancer and Genomic Sciences. Email: a.bazarova@bham.ac.uk.
${ }^{2)}$ A. Rényi Institute of Mathematics, Reáltanoda u. 13-15, 1053 Budapest, Hungary. Email: berkes.istvan@renyi.mta.hu. Research supported by NKFIH Grant K 125569.
${ }^{3)}$ University of Keele, Research Institute for Primary Care and Health Sciences and Research Institute for Applied Clinical Sciences. Email: m.raseta@keele.ac.uk.
converges weakly to the uniform distribution on $(0,1)$. Schatte [8] proved that the speed of convergence is exponential, and letting

$$
\left.D_{N}^{*}:=\sup _{0 \leq a<1} \left\lvert\, \frac{1}{N} \sum_{k=1}^{N} I_{(0, a)}\left(S_{k}\right)-a\right.\right) \mid \quad(N=1,2, \ldots)
$$

denote the star discrepancy of the sequence $\left(S_{k}\right)_{1 \leq k \leq N}$, he also proved in [9] the law of the iterated logarithm

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \sqrt{\frac{N}{\log \log N}} D_{N}^{*}=\gamma \quad \text { a.s. } \tag{1}
\end{equation*}
$$

where

$$
\gamma=\sup _{x \in[0,1)} \sigma^{2}(x)
$$

with

$$
\begin{equation*}
\sigma^{2}(x)=x-x^{2}+2 \sum_{j=1}^{\infty}\left(\mathbb{E} I_{(0, x)}(U) I_{(0, x)}\left(U+X_{j}\right)-x^{2}\right) \tag{2}
\end{equation*}
$$

Here U is a uniform $(0,1)$ random variable independent of the sequence $\left(X_{n}\right)_{n \geq 1}$ and for $0 \leq a<b \leq 1, I_{(a, b)}$ denotes the indicator function of (a, b), extended with period 1. Letting

$$
\begin{equation*}
F_{N}(t)=F_{N}(t, \omega)=\frac{1}{N} \sum_{k=1}^{N} I_{(0, t)}\left(S_{k}\right) \quad(0 \leq t \leq 1) \tag{3}
\end{equation*}
$$

denote the empirical distribution function of the first N terms of the sequence $\left(S_{n}\right)_{n \geq 1}$, Berkes and Raseta [2] proved a Strassen type functional LIL for $F_{N}(t)$, yielding precise asymptotics for several functionals of the empirical process. The purpose of the present paper is to prove the following result, determining the limit distribution of $\sqrt{N} D_{N}^{*}$.

Theorem 1. Let X_{1}, X_{2}, \ldots be i.i.d. random variables and assume X_{1} is bounded with bounded density. Let

$$
\begin{equation*}
\Gamma(s, t)=s(1-t)+\sum_{k=1}^{\infty} \mathbb{E} f_{s}(U) f_{t}\left(U+S_{k}\right)+\sum_{k=1}^{\infty} \mathbb{E} f_{t}(U) f_{s}\left(U+S_{k}\right) \tag{4}
\end{equation*}
$$

where U is a $U(0,1)$ variable independent of $\left(X_{n}\right)_{n \in \mathbb{N}}$ and $f_{s}=I_{(0, s)}-s$. Then the series in (4) are absolutely convergent and

$$
\begin{equation*}
\sqrt{N} D_{N}^{*} \xrightarrow{d} \sup _{0 \leq t \leq 1}|K(t)|, \tag{5}
\end{equation*}
$$

where $K(s)$ a mean zero Gaussian process with covariance function $\Gamma(s, t)$.

Actually, Theorem 1 will be deduced from a more general functional result describing the weak limit behavior of the empirical distribution function $F_{N}(t)$.

Theorem 2. Under the conditions of Theorem 1 we have

$$
\begin{equation*}
\sqrt{N}\left(F_{N}(t)-t\right) \xrightarrow{D[0,1]} K(t) \quad \text { as } \quad N \rightarrow \infty . \tag{6}
\end{equation*}
$$

Relation (6) expresses weak convergence in the Skorohod space $D[0,1]$, see Billingsley [4] for basic definitions and facts for weak convergence of probability measures on metric spaces.

By a classical result of Donsker [5], if X_{1}, X_{2}, \ldots are i.i.d. random variables with distribution function F and F_{N} denotes the empirical distribution function of the sample $\left(X_{1}, \ldots, X_{N}\right)$, then

$$
\sqrt{N}\left(F_{N}(t)-F(t)\right) \xrightarrow{D[0,1]} B(F(t))
$$

where B is Brownian bridge. Note the substantial difference caused by considering mod 1 sums in the present case.

If X_{1} has a lattice distribution, the situation changes essentially. For example, in [1] it shown that if α is irrational and X_{1} takes the values α and 2α with probability $1 / 2-1 / 2$, then up to logarithmic factors, the order of magnitude of D_{N}^{*} is $O\left(N^{-1 / 2}\right)$ or $O\left(N^{-1 / \gamma}\right)$ according as $\gamma<2$ or $\gamma>2$, where γ is the Diophantine rank of α, i.e. the supremum of numbers c such that $|\alpha-p / q|<q^{-c-1}$ holds for infinitely many fractions p / q. The asymptotic distribution of D_{N}^{*} in this case remains open.

2 Proofs

The proof of our theorems uses, similarly to that of the functional LIL in [2], a traditional blocking argument combined with a coupling lemma of Schatte, see Lemma 1 below. The substantial new difficulty is to prove the tightness of the sequence $\sqrt{N}\left(F_{N}(t)-t\right)$, since the standard maximal inequalities (e.g. Billingsley's inequalities in [4], Section 2.12) are not applicable here. We circumvent this difficulty by proving a Chernoff type exponential bound (Lemma 6) for the considered partial sums which, combined with the chaining method of Philipp [7], yields the desired fluctuation inequality (Lemma 7).

Lemma 1. Let $\ell \geq 1$ and let I_{1}, I_{2}, \ldots be disjoint blocks of integers with $\geq \ell$ integers between consecutive blocks. Then there exists a sequence $\delta_{1}, \delta_{2}, \ldots$ of random variables such that

$$
\left|\delta_{n}\right| \leq C e^{-\lambda \ell}
$$

with some positive constants C, λ and the random vectors

$$
\left\{S_{i}, i \in I_{1}\right\},\left\{S_{i}-\delta_{1}, i \in I_{2}\right\}, \ldots,\left\{S_{i}-\delta_{n-1}, i \in I_{n}\right\}, \ldots
$$

are independent and have, except for the first one, uniformly distributed components.

For the proof, see [2]. The uniformity statement is implicit in the proof; see also Lemma 4.3 of [3].

In what follows, $C, \lambda, \gamma, \gamma^{\prime} \ldots$ will denote positive constants, possibly different at different places, depending (at most) on the distribution of X_{1}. The relation \ll will mean the same as the big O notation, with a constant depending on the distribution of X_{1}.

Let \mathcal{F} denote the class of functions f of the form $f=I_{(a, b)}-(b-a)$ ($0 \leq a<b \leq 1$), extended with period 1 . For $f \in \mathcal{F}$ we put

$$
\begin{equation*}
A^{(f)}:=\|f\|^{2}+2 \sum_{k=1}^{\infty} \mathbb{E} f(U) f\left(U+S_{k}\right) \tag{7}
\end{equation*}
$$

where U is a uniform $(0,1)$ random variable, independent of $\left(X_{j}\right)_{j \geq 1}$ and $\|f\|$ denotes the $L^{2}(0,1)$ norm of f. Put further

$$
\widetilde{m}_{k}=\sum_{j=1}^{k}\left\lfloor j^{1 / 2}\right\rfloor, \quad \widehat{m}_{k}=\sum_{j=1}^{k}\left\lfloor j^{1 / 4}\right\rfloor
$$

and let $m_{k}=\widetilde{m}_{k}+\widehat{m}_{k}$. Using Lemma 1 we can construct sequences $\left(\Delta_{k}\right)_{k \in \mathbb{N}}$, $\left(\Pi_{k}\right)_{k \in \mathbb{N}}$ of random variables such that $\Delta_{0}=0, \Pi_{0}=0$,

$$
\begin{equation*}
\left|\Delta_{k}\right| \leq C e^{-\lambda k^{1 / 4}}, \quad\left|\Pi_{k}\right| \leq C e^{-\lambda \sqrt{k}} \tag{8}
\end{equation*}
$$

and

$$
\begin{aligned}
T_{k}^{(f)} & :=\sum_{j=m_{k-1}+1}^{m_{k-1}+\lfloor\sqrt{k}\rfloor} f\left(S_{j}-\Delta_{k-1}\right) \quad k=1,2, \ldots \\
T_{k}^{*(f)} & :=\sum_{j=m_{k-1}+\lfloor\sqrt{k}\rfloor+1}^{m_{k}} f\left(S_{j}-\Pi_{k-1}\right) \quad k=1,2, \ldots
\end{aligned}
$$

are sequences of independent random variables. Since $\int_{0}^{1} f(x) d x=0$ for $f \in \mathcal{F}$, the uniformity statement in Lemma 1 implies that $\mathbb{E} T_{k}^{(f)}=\mathbb{E} T_{k}^{*(f)}=0$ for $k \geq 2$. The following asymptotic estimates for the variances of $T_{k}^{(f)}$ and $T_{k}^{*(f)}$ are from [2].

Lemma 2. For $f \in \mathcal{F}$ we have

$$
\sum_{k=1}^{n} \mathbb{V} \operatorname{ar}\left(T_{k}^{(f)}\right) \sim A^{(f)} \widetilde{m}_{n} \quad \sum_{k=1}^{n} \mathbb{V} \operatorname{ar}\left(T_{k}^{*(f)}\right) \sim A^{(f)} \widehat{m}_{n}
$$

where $A^{(f)}$ is defined by (7).

Since

$$
\operatorname{Cov}\left(T_{k}^{(f)}, T_{k}^{(g)}\right)=\frac{1}{4}\left(\mathbb{V} \operatorname{ar}\left(T_{k}^{(f+g)}\right)-\operatorname{Var}\left(T_{k}^{(f-g)}\right)\right)
$$

Lemma 2 implies

$$
\begin{equation*}
\sum_{k=1}^{n} \operatorname{Cov}\left(T_{k}^{(f)}, T_{k}^{(g)}\right) \sim \frac{1}{4}\left(A^{(f+g)}-A^{(f-g)}\right) \widetilde{m}_{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} \operatorname{Cov}\left(T_{k}^{*(f)}, T_{k}^{*(g)}\right) \sim \frac{1}{4}\left(A^{(f+g)}-A^{(f-g)}\right) \widehat{m}_{n} \tag{10}
\end{equation*}
$$

From (7) it follows that

$$
\begin{equation*}
A^{(f+g)}-A^{(f-g)}=4\langle f, g\rangle+4 \sum_{k=1}^{\infty} \mathbb{E} f(U) g\left(U+S_{k}\right)+4 \sum_{k=1}^{\infty} \mathbb{E} g(U) f\left(U+S_{k}\right) . \tag{11}
\end{equation*}
$$

Lemma 3. Let $f \in \mathcal{F}, h>0$ and let ξ be a random variable with $|\xi|<h$. Then for any $n \geq 1$ we have

$$
\mathbb{E}\left|f\left(S_{n}+\xi\right)-f\left(S_{n}\right)\right|^{2} \leq C h .
$$

Proof. Since X_{1} is bounded with bounded density, Theorem 1 of [8] implies that the sums $S_{n}=\sum_{k=1}^{n} X_{k}(\bmod 1)$ have a uniformly bounded density and thus

$$
\begin{equation*}
\mathbb{P}\left(S_{n} \in J\right) \leq C|J| \quad \text { for any interval } J . \tag{12}
\end{equation*}
$$

Now if $f=I_{(a, b)}-(b-a)$, then $\left|f\left(S_{n}+\xi\right)-f\left(S_{n}\right)\right|=\left|I_{(a, b)}\left(S_{n}+\xi\right)-I_{(a, b)}\left(S_{n}\right)\right|$ is different from 0 only if one of $S_{n}+\xi$ and S_{n} lies in (a, b) and the other does not, which, in view of $|\xi|<h$, implies that S_{n} lies closer to the boundary of (a, b) than h, i.e. $S_{n} \in(a, a+h)$ or $S_{n} \in(b-h, b)$. Since $\left|f\left(S_{n}+\xi\right)-f\left(S_{n}\right)\right| \leq 2$, Lemma 3 follows from (12).

Lemma 4. For $f \in \mathcal{F}$ and any $M \geq 0, N \geq 1$ we have

$$
\begin{equation*}
\mathbb{E}\left(\sum_{k=M+1}^{M+N} f\left(S_{k}\right)\right)^{2} \leq C\|f\| N . \tag{13}
\end{equation*}
$$

Proof. We first show

$$
\begin{equation*}
\left|\mathbb{E} f\left(S_{k}\right) f\left(S_{\ell}\right)\right| \leq C e^{-\lambda(\ell-k)}\|f\| \quad(k<\ell) \tag{14}
\end{equation*}
$$

Indeed, by the proof of Lemma 1 in [2], there exists a r.v. Δ with $|\Delta| \leq$ $C e^{-\lambda(\ell-k)}$ such that $S_{\ell}-\Delta$ is a uniform r.v. independent of S_{k}. Hence

$$
\mathbb{E} f\left(S_{\ell}-\Delta\right)=\int_{0}^{1} f(t) d t=0
$$

and thus

$$
\begin{equation*}
\mathbb{E} f\left(S_{k}\right) f\left(S_{\ell}-\Delta\right)=\mathbb{E} f\left(S_{k}\right) \mathbb{E} f\left(S_{\ell}-\Delta\right)=0 \tag{15}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \left|\mathbb{E} f\left(S_{k}\right) f\left(S_{\ell}\right)-\mathbb{E} f\left(S_{k}\right) f\left(S_{\ell}-\Delta\right)\right| \\
& \leq \mathbb{E}\left(\left|f\left(S_{k}\right)\right|\left|f\left(S_{\ell}\right)-f\left(S_{\ell}-\Delta\right)\right|\right) \leq \tag{16}\\
& \left(\mathbb{E} f^{2}\left(S_{k}\right)\right)^{1 / 2}\left(\mathbb{E}\left|f\left(S_{\ell}\right)-f\left(S_{\ell}-\Delta\right)\right|^{2}\right)^{1 / 2}
\end{align*}
$$

Using (12) we get

$$
\begin{equation*}
\mathbb{E} f^{2}\left(S_{k}\right) \leq C \int_{0}^{1} f^{2}(t) d t=C\|f\|^{2} \tag{17}
\end{equation*}
$$

Also, $|\Delta| \leq C e^{-\lambda(\ell-k)}$ and Lemma 3 imply

$$
\begin{equation*}
\mathbb{E}\left|f\left(S_{\ell}\right)-f\left(S_{\ell}-\Delta\right)\right|^{2} \leq C e^{-\lambda(\ell-k)} \tag{18}
\end{equation*}
$$

which, together with (16)-(18), gives

$$
\left|\mathbb{E} f\left(S_{k}\right) f\left(S_{\ell}\right)-\mathbb{E} f\left(S_{k}\right) f\left(S_{\ell}-\Delta\right)\right| \leq C e^{-\lambda(\ell-k)} .
$$

Thus using (15) we get (14). Now by (14)

$$
\left|\sum_{M+1 \leq k<\ell \leq M+N} \mathbb{E} f\left(S_{k}\right) f\left(S_{\ell}\right)\right| \leq C N\|f\| \sum_{\ell \geq 1} e^{-\lambda \ell} \leq C N\|f\|
$$

which, together with (17), completes the proof of Lemma 4.

Let $0<t_{1}<\ldots<t_{r} \leq 1$ and put

$$
\mathbf{Y}_{k}=\left(f_{\left(0, t_{1}\right)}\left(S_{k}\right), f_{\left(0, t_{2}\right)}\left(S_{k}\right), \ldots, f_{\left(0, t_{r}\right)}\left(S_{k}\right)\right)
$$

where $f_{(a, b)}=I_{(a, b)}-(b-a)$, with the indicator $I_{(a, b)}$ extended with period 1 , as before.

Lemma 5. We have

$$
\begin{equation*}
N^{-1 / 2} \sum_{k=1}^{N} \mathbf{Y}_{k} \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma}), \tag{19}
\end{equation*}
$$

where

$$
\boldsymbol{\Sigma}=\left(\Gamma\left(t_{i}, t_{j}\right)\right)_{1 \leq i, j \leq r}
$$

Proof. Let

$$
\mathbf{T}_{k}=\left(T_{k}^{\left(f_{\left(0, t_{1}\right)}\right)}, \ldots, T_{k}^{\left(f_{\left(0, t_{r}\right)}\right)}\right), \quad \mathbf{T}_{k}^{*}=\left(T_{k}^{*\left(f_{\left(0, t_{1}\right)}\right)}, \ldots, T_{k}^{*\left(f_{\left(0, t_{r}\right)}\right)}\right)
$$

and let $\boldsymbol{\Sigma}_{\mathbf{k}}$ denote the covariance matrix of the vector \mathbf{T}_{k}. From (9), (10) and (11) it follows that

$$
m_{n}^{-1}\left(\boldsymbol{\Sigma}_{\mathbf{1}}+\ldots+\boldsymbol{\Sigma}_{\mathbf{n}}\right) \longrightarrow \boldsymbol{\Sigma}
$$

Clearly

$$
\left|\mathbf{T}_{k}\right| \leq C_{r} k^{1 / 2}=o\left(m_{k}^{1 / 2}\right)
$$

where C_{r} is a constant depending on r, showing that the sequence $\left(\mathbf{T}_{k}\right)_{k \geq 1}$ of independent, mean $\mathbf{0}$ random vectors satisfies the Lindeberg condition and thus

$$
\begin{equation*}
m_{n}^{-1 / 2} \sum_{k=1}^{n} \mathbf{T}_{k} \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma}) . \tag{20}
\end{equation*}
$$

A similar statement holds for the sequence $\left(\mathbf{T}_{k}^{*}\right)_{k \geq 1}$, implying that

$$
\begin{equation*}
\left|\sum_{k=1}^{n} \mathbf{T}_{k}^{*}\right|=O_{P}\left(\widehat{m}_{n}\right)=o_{P}\left(m_{n}^{1 / 2}\right) . \tag{21}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
m_{n}^{-1 / 2} \sum_{k=1}^{n}\left(\mathbf{T}_{k}+\mathbf{T}_{k}^{*}\right) \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma}) . \tag{22}
\end{equation*}
$$

Now using (8) and Lemma 3 we get

$$
\left\|T_{k}^{(f)}-\sum_{j=m_{k-1}+1}^{m_{k-1}+\lfloor\sqrt{k}\rfloor} f\left(S_{j}\right)\right\| \ll \sqrt{k} e^{-\lambda k^{1 / 4}}
$$

and

$$
\left\|T_{k}^{*(f)}-\sum_{j=m_{k-1}+\lfloor\sqrt{k}\rfloor+1}^{m_{k}} f\left(S_{j}\right)\right\| \ll k^{1 / 4} e^{-\lambda k^{1 / 2}}
$$

and thus

$$
\left\|\sum_{k=1}^{m_{n}} \mathbf{Y}_{k}-\sum_{k=1}^{n}\left(\mathbf{T}_{k}+\mathbf{T}_{\mathbf{k}}^{*}\right)\right\|=O(1)
$$

Together with (22) this shows that (19) holds for the indices $N=m_{n}$. To get (19) for all N, observe that $m_{k} \sim c k^{3 / 2}$ and thus for $m_{k} \leq N<m_{k+1}$ we have

$$
\left|\sum_{j=1}^{N} \mathbf{Y}_{j}-\sum_{j=1}^{m_{k}} \mathbf{Y}_{j}\right|=O\left(m_{k+1}-m_{k}\right)=O\left(k^{1 / 2}\right)=O\left(m_{k}^{1 / 3}\right)=O\left(N^{1 / 3}\right)
$$

This completes the proof of Lemma 5.
Lemma 6. For $f \in \mathcal{F}$, any $N \geq 1, t \geq 1$ and $\|f\| \geq \frac{1}{5} N^{-5 / 18}$ we have

$$
\begin{align*}
\mathbb{P}\left\{\left|\sum_{k=1}^{N} f\left(S_{k}\right)\right| \geq\right. & \left.t\|f\|^{1 / 4} \sqrt{N}\right\} \\
& \ll \exp \left(-C t\|f\|^{-7 / 20}\right)+t^{-2} \exp \left(-C N^{1 / 3}\right) . \tag{23}
\end{align*}
$$

Remark. The constants $1 / 5,5 / 18,1 / 4,7 / 20,1 / 3$ in (23) are not sharp and the inequality could be easily improved. However, the present form of Lemma 6 will suffice for the chaining argument in Lemma 7.

Proof. Put

$$
\psi(n)=\sup _{0 \leq x \leq 1}\left|\mathbb{P}\left(S_{n} \leq x\right)-x\right|
$$

By Theorem 1 of [8] we have

$$
\psi(n) \leq C e^{-\gamma n} \quad(n \geq 1)
$$

for some constant $\gamma>0$. Divide the interval $[1, N]$ into subintervals I_{1}, \ldots, I_{L}, with $L \sim N^{2 / 3}$, where each interval I_{ν} contains $\sim N^{1 / 3}$ terms. We set

$$
\sum_{k=1}^{N} f\left(S_{k}\right)=\eta_{1}+\cdots+\eta_{L}
$$

where

$$
\eta_{\nu}=\sum_{k \in I_{\nu}} f\left(S_{k}\right) .
$$

We deal with the sums $\sum \eta_{2 j}$ and $\sum \eta_{2 j+1}$ separately. Since there is a separation $\sim N^{1 / 3}$ between the even block sums $\eta_{2 j}$, we can apply Lemma 1 to get

$$
\eta_{2 j}=\eta_{2 j}^{*}+\eta_{2 j}^{* *}
$$

where

$$
\begin{aligned}
& \eta_{2 j}^{*}=\sum_{k \in I_{2 j}} f\left(S_{k}-\Delta_{j}\right) \\
& \eta_{2 j}^{* *}=\sum_{k \in I_{2 j}}\left(f\left(S_{k}\right)-f\left(S_{k}-\Delta_{j}\right)\right) .
\end{aligned}
$$

Here the Δ_{j} are r.v.'s with $\left|\Delta_{j}\right| \leq \psi\left(N^{1 / 3}\right) \leq C \exp \left(-\gamma N^{1 / 3}\right)$ and the r.v.'s $\eta_{2 j}^{*} j=1,2, \ldots$ are independent. Conditionally on Δ_{j}, the distribution of S_{k} in a term of $\eta_{2 j}^{* *}$ is the same as the (unconditional) distribution of an $S_{k_{1}}+c$ with $k_{1}<k$ and a constant c and thus by Lemma 3, the L_{2} norm of each summand in $\eta_{2 j}^{* *}$ is $\leq C \psi^{1 / 2}\left(N^{1 / 3}\right) \leq C \exp \left(-\gamma N^{1 / 3}\right)$ and thus for $\|f\| \geq N^{-1}$ we have

$$
\begin{align*}
\left\|\eta_{2 j}^{* *}\right\| & \leq C N \exp \left(-\gamma N^{1 / 3}\right) \leq C\|f\| N^{2} \exp \left(-\gamma N^{1 / 3}\right) \\
& \leq C\|f\| \exp \left(-\gamma^{\prime} N^{1 / 3}\right) \tag{24}
\end{align*}
$$

Thus

$$
\left\|\sum \eta_{2 j}^{* *}\right\| \leq C\|f\| \exp \left(-\gamma^{\prime \prime} N^{1 / 3}\right)
$$

and therefore by the Markov inequality

$$
\begin{aligned}
& \mathbb{P}\left(\left|\sum \eta_{2 j}^{* *}\right| \geq t\|f\|^{1 / 4} \sqrt{N}\right) \\
& \leq C t^{-2}\|f\|^{-1 / 2} N^{-1}\|f\|^{2} \exp \left(-2 \gamma^{\prime \prime} N^{1 / 3}\right) \leq C t^{-2} \exp \left(-2 \gamma^{\prime \prime} N^{1 / 3}\right)
\end{aligned}
$$

Let now $|\lambda| \leq d N^{-1 / 3}$ with a sufficiently small constant $d>0$. Then $\left|\lambda \eta_{2 j}^{*}\right| \leq$ $1 / 2$ for all N and thus using $e^{x} \leq 1+x+x^{2}$ for $|x| \leq 1 / 2$ we get, using $E \eta_{2 j}^{*}=0$ for $j \geq 2$,

$$
\begin{align*}
\mathbb{E}\left(\exp \lambda\left(\sum_{j} \eta_{2 j}^{*}\right)\right) & =\prod_{j} \mathbb{E}\left(e^{\lambda \eta_{2 j}^{*}}\right) \leq \prod_{j} \mathbb{E}\left(1+\lambda \eta_{2 j}^{*}+\lambda^{2} \eta_{2 j}^{* 2}\right) \\
& =\prod_{j}\left(1+\lambda^{2} \mathbb{E} \eta_{2 j}^{* 2}\right) \leq \exp \left(\lambda^{2} \sum_{j} \mathbb{E} \eta_{2 j}^{* 2}\right) \tag{25}
\end{align*}
$$

Here, and in the rest of the proof of the lemma, the sums and products are extended for $j \geq 2$. By Lemma 4

$$
\left\|\eta_{2 j}\right\| \leq C\|f\|^{1 / 2} N^{1 / 6}
$$

which, together with (24) and the Minkowski inequality, implies

$$
\left\|\eta_{2 j}^{*}\right\| \leq C\|f\|^{1 / 2} N^{1 / 6} .
$$

Thus the last expression in (25) cannot exceed

$$
\exp \left(\lambda^{2} C\|f\| \sum_{j} N^{1 / 3}\right) \leq \exp \left(\lambda^{2} C\|f\| N\right)
$$

We choose now

$$
\lambda=\frac{d}{2} N^{-1 / 2}\|f\|^{-3 / 5}
$$

with the number d introduced before and note that by $\|f\| \geq \frac{1}{5} N^{-5 / 18}$ we have $|\lambda| \leq d N^{-1 / 3}$. Thus using the Markov inequality, we get

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\sum_{j} \eta_{2 j}^{*}\right| \geq t\|f\|^{1 / 4} \sqrt{N}\right\} \leq 2 \exp \left\{-\lambda t\|f\|^{1 / 4} \sqrt{N}+\lambda^{2} C\|f\| N\right\} \\
& =2 \exp \left(-\|f\|^{-7 / 20} t+C\|f\|^{-1 / 5}\right) \leq 2 \exp \left(-C\|f\|^{-7 / 20} t\right)
\end{aligned}
$$

Recall that the sum here is extended for $j \geq 2$. However, the term corresponding to $j=1$ is $O\left(N^{1 / 3}\right)$ and since $\|f\|^{1 / 4} \sqrt{N} \geq N^{0.4}$ for $N \geq N_{0}$ by the assumptions of the lemma, the last chain of estimates remains valid by including the term $j=1$ in the sum in the first probability and changing t to $2 t$. A similar argument applies for the odd blocks $\eta_{2 j+1}^{*}$ (note that $\mathbb{E} \eta_{1}^{*}$ can be different from 0 , but this causes no problem), completing the proof of Lemma 6 .

Lemma 7. For any $N \geq 1,0<\delta<1$ we have

$$
\mathbb{P}\left(\sup _{0 \leq a \leq \delta}\left|\sum_{k=1}^{N}\left(I_{(0, a)}\left(S_{k}\right)-a\right)\right| \gg \delta^{1 / 8} \sqrt{N}+N^{4 / 9}\right) \ll \delta^{4}+N^{-2} .
$$

Proof. For any $h \geq 1,1 \leq j \leq 2^{h}$ let $\varphi_{h}^{(j)}$ denote the indicator function of the interval $\left[(j-1) 2^{-h}, j 2^{-h}\right)$ and put

$$
F(N, j, h)=\left|\sum_{k=1}^{N}\left(\varphi_{h}^{(j)}\left(S_{k}\right)-2^{-h}\right)\right| .
$$

Clearly $\left\|\varphi_{h}^{(j)}\right\|=2^{-h / 2}$. We observe that if $0 \leq a \leq 1$ has the dyadic expansion

$$
a=\sum_{j=1}^{\infty} \varepsilon_{j} 2^{-j} \quad \varepsilon_{j}=0,1
$$

and $H \geq 1$ is an arbitrary integer, then $g_{a}=I_{(0, a)}$ satisfies

$$
\begin{equation*}
\sum_{h=1}^{H} \varrho_{h}(x) \leq g_{a}(x) \leq \sum_{h=1}^{H} \varrho_{h}(x)+\sigma_{H}(x) \tag{26}
\end{equation*}
$$

where ϱ_{h} is the indicator function of $\left[\sum_{j=1}^{h-1} \varepsilon_{j} 2^{-j}, \sum_{j=1}^{h} \varepsilon_{j} 2^{-j}\right)$ and σ_{H} is the indicator function of $\left[\sum_{j=1}^{H} \varepsilon_{j} 2^{-j}, \sum_{j=1}^{H} \varepsilon_{j} 2^{-j}+2^{-H}\right)$. For $\varepsilon_{h}=0$ clearly $\varrho_{h} \equiv 0$ and thus (26) remains valid if in the sums we keep only those terms where $\varepsilon_{h}=1$. Also, for $\varepsilon_{h}=1, \varrho_{h}$ coincides with one of the $\varphi_{h}^{(j)}$ and σ_{H} also coincides with some of the $\varphi_{H}^{(j)}$. It follows that

$$
g_{a}(x)-a \leq \sum_{1 \leq h \leq H}^{*}\left(\varrho_{h}(x)-\varepsilon_{h} 2^{-h}\right)+\left(\sigma_{H}(x)-2^{-H}\right)+2^{-H}
$$

and

$$
g_{a}(x)-a \geq \sum_{1 \leq h \leq H}^{*}\left(\varrho_{h}(x)-\varepsilon_{h} 2^{-h}\right)-2^{-H}
$$

where \sum^{*} means that the summation is extended only for those h such that $\varepsilon_{h}=1$. Setting $x=S_{k}$ and summing for $1 \leq k \leq N$ we get

$$
\sum_{k \leq N}\left(g_{a}\left(S_{k}\right)-a\right) \leq \sum_{k \leq N} \sum_{1 \leq h \leq H}^{*}\left(\varrho_{h}\left(S_{k}\right)-\varepsilon_{h} 2^{-h}\right)+\sum_{k \leq N}\left(\sigma_{H}\left(S_{k}\right)-2^{-H}\right)+N 2^{-H}
$$

and

$$
\sum_{k \leq N}\left(g_{a}\left(S_{k}\right)-a\right) \geq \sum_{k \leq N} \sum_{1 \leq h \leq H}^{*}\left(\varrho_{h}\left(S_{k}\right)-\varepsilon_{h} 2^{-h}\right)-N 2^{-H} .
$$

Hence it follows that for any $N \geq 1, H \geq 1$ there exist suitable integers $1 \leq j_{h} \leq 2^{h}, 1 \leq h \leq H$ such that

$$
\left|\sum_{k \leq N}\left(g_{a}\left(S_{k}\right)-a\right)\right| \leq 2 \sum_{h \leq H}\left|\sum_{k \leq N} \varphi_{h}^{\left(j_{h}\right)}\left(S_{k}\right)-2^{-h}\right|+N 2^{-H}
$$

$$
\begin{equation*}
=2 \sum_{h \leq H} F\left(N, j_{h}, h\right)+N 2^{-H} \tag{27}
\end{equation*}
$$

Introduce the events

$$
\begin{aligned}
G(N, j, h) & =\left\{F(N, j, h) \geq 2^{-h / 8} \sqrt{N}\right\}, \\
G_{N} & =\bigcup_{A \leq h \leq B \log _{2} N} \bigcup_{j \leq 2^{h}} G(N, j, h)
\end{aligned}
$$

with $A=\log _{2} \frac{1}{a}, B=\frac{5}{9}$. For $h \leq B \log _{2} N$ we have $\left\|\varphi_{j}^{(h)}-2^{-h}\right\| \geq 2^{-h / 2}-$ $2^{-h} \geq 2^{-h / 2}(1-1 / \sqrt{2}) \geq \frac{1}{5} N^{-5 / 18}$ and thus applying (23) with $t=1$, we get

$$
\mathbb{P}(G(N, h, j)) \ll \exp \left(-C 2^{7 h / 40}\right)+N^{-3}
$$

and consequently

$$
\begin{equation*}
\mathbb{P}\left(G_{N}\right) \ll \sum_{h=A}^{\infty} 2^{h} \exp \left(-C 2^{7 h / 40}\right)+N^{-3} \sum_{h \leq B \log _{2} N} 2^{h} \tag{28}
\end{equation*}
$$

Clearly, the second term on the right hand side of (28) is $\ll N^{-2}$. On the other hand, the terms of the first sum in (28) decrease superexponentially and thus the sum can be bounded by a constant times its first term, i.e. the sum is

$$
\ll 2^{A} \exp \left(-C 2^{7 A / 40}\right) \ll 2^{-4 A} \ll a^{4}
$$

Hence

$$
\mathbb{P}\left(G_{N}\right) \ll a^{4}+N^{-2}
$$

Note that when breaking the interval $(0, a)$ into dyadic intervals of length 2^{-h} we automatically have $h \geq \log \frac{1}{a}=A$ and thus choosing

$$
H=\left[B \log _{2} N\right]
$$

it follows that with the exception of a set with probability $\ll a^{4}+N^{-2}$, for any $0<a \leq \delta$ the expression in the second line of (27) is

$$
\begin{aligned}
& \ll \sum_{A \leq h \leq H} 2^{-h / 8} \sqrt{N}+N 2^{-H} \ll 2^{-A / 8} \sqrt{N}+N^{4 / 9} \ll a^{1 / 8} \sqrt{N}+N^{4 / 9} \\
& \ll \delta^{1 / 8} \sqrt{N}+N^{4 / 9} .
\end{aligned}
$$

This proves Lemma 7.

Lemma 5 implies the convergence of the finite dimensional distributions of the sequence $\sqrt{N}\left(F_{N}(t)-t\right)$ in (5) to those of K and to prove Theorem 2 it remains to prove the tightness of the sequence in $D[0,1]$. To this end, fix $\varepsilon>0$ and choose h so that $2^{-h} \leq \varepsilon<2^{-(h-1)}$. Note that for $j=0,1, \ldots, 2^{h}-1$ we have

$$
\begin{align*}
\mathbb{P}\left(\sup _{0 \leq a \leq 2^{-h}}\left|\sum_{k=1}^{N}\left(f_{j 2^{-h}+a}\left(S_{k}\right)-f_{j 2^{-h}}\left(S_{k}\right)\right)\right| \gg 2^{-h / 8} \sqrt{N}+N^{4 / 9}\right) \\
\ll 2^{-4 h}+N^{-2} \tag{29}
\end{align*}
$$

For $j=0$ relation (29) is identical with Lemma 7 and for $j=1,2, \ldots$ the proof is the same. It follows that

$$
\begin{align*}
& \mathbb{P}\left(\max _{0 \leq j \leq 2^{h}-1} \sup _{0 \leq a \leq 2^{-h}}\left|\sum_{k=1}^{N}\left(f_{j 2^{-h}+a}\left(S_{k}\right)-f_{j 2^{-h}}\left(S_{k}\right)\right)\right| \gg 2^{-h / 8} \sqrt{N}+N^{4 / 9}\right) \\
& \ll 2^{-3 h}+2^{h} N^{-2} . \tag{30}
\end{align*}
$$

Then (30) implies that with the exception of a set with probability

$$
\ll 2^{-3 h}+2^{h} N^{-2} \ll \varepsilon^{3}+N^{-2} \varepsilon^{-1}
$$

the fluctuation of the process $\sqrt{N}\left(F_{N}(t)-t\right)$ over any subinterval of $(0,1)$ with length $\leq \varepsilon$ is

$$
\ll \varepsilon^{1 / 8}+N^{-1 / 18} .
$$

By Theorem 15.5 of Billingsley [4, Chapter 3], the sequence $\sqrt{N}\left(F_{N}(t)-t\right)$ is tight in $D[0,1]$. This completes the proof of Theorem 2; Theorem 1 follows immediately from Theorem 2.

References

[1] Berkes, I. and Borda, B.: On the discrepancy of random subsequences of $\{n \alpha\}$. Acta Arithmetica, to appear.
[2] Berkes, I. and Raseta, M.: On the discrepancy and empirical distribution function of $\left\{n_{k} \alpha\right\}$. Unif. Distr. Theory 10 (2015), 1-17.
[3] Berkes, I. and Weber, M.: On the convergence of $\sum c_{k} f\left(n_{k} x\right)$. Mem. Amer. Math. Soc. 201 (2009), no. 943, viii+72 pp.
[4] Billingsley, P.: Convergence of probability measures. Wiley, 1968.
[5] Donsker, M.: Justification and extension of Doob's heuristic approach to the Kolmogorov- Smirnov theorems, Ann. Math. Statist. 23 (1952), 277-281.
[6] Lévy, P.: L'addition des variables aléatoires définies sur une circonference. Bull. Soc. Math. France 67 (1939), 1-40.
[7] Philipp, W.: Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith. 26 (1975), 241-251.
[8] Schatte, P.: On the asymptotic uniform distribution of sums reduced mod 1. Math. Nachr. 115 (1984), 275-281.
[9] Schatte, P.: On a uniform law of the iterated logarithm for sums mod 1 and Benford's law. Lithuanian Math. J. 31 (1991), 133-142.

