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Abstract
We consider two directed polymer models in the Kardar–Parisi–Zhang (KPZ) univer-
sality class: the O’Connell–Yor semi-discrete directed polymer with boundary sources
and the continuum directed random polymer with (m, n)-spiked boundary perturba-
tions. The free energy of the continuum polymer is the Hopf–Cole solution of the KPZ
equation with the corresponding (m, n)-spiked initial condition. This new initial con-
dition is constructed using two semi-discrete polymer models with independent bulk
randomness and coupled boundary sources. We prove that the limiting fluctuations of
the free energies rescaled by the 1/3rd power of time in both polymermodels converge
to the Borodin–Péché-type deformations of the GUE Tracy–Widom distribution.

1 Introduction

The Kardar–Parisi–Zhang (KPZ) equation was introduced for the description of phys-
ical surface growth phenomena in [14]. The equation gives the stochastic evolution
of the height function F(T , X) where T ∈ R+ is the time and X ∈ R is the space
variable. It reads as

∂tF(T , X) = 1

2
∂2XF(T , X) + 1

2
(∂XF(T , X))2 + ξ(T , X), F(0, X) = F0(X)

(1.1)

where ξ denotes space-time Gaussian white noise with E [ξ(T , X)ξ(S,Y )] = δ(T −
S)δ(X − Y ). By the presence of the nonlinear term, the equation is not rigorously
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well-posed and serious work is required to make sense of the solution directly [12].
A natural way to give a solution to the equation formally is via the stochastic heat
equation (SHE) with multiplicative noise

∂TZ(T , X) = 1
2∂

2
XZ(T , X) + Z(T , X)ξ(T , X), Z(0, X) = Z0(X). (1.2)

The latter equation is well-posed, and F(T , X) = lnZ(T , X) with initial condition
F(0, X) = lnZ(0, X) defines a formal solution to (1.1) which is the Hopf–Cole solu-
tion of the KPZ equation. See [8] for a review on the KPZ equation and its universality
class which is the family of models with the same scaling and asymptotic behaviour
as the solution of the KPZ equation.

The Hopf–Cole solution of the KPZ equation can be understood as the partition
function of a directed polymer model by the Feynman–Kac representation

Z(T , X) = EB(X)

[
Z0(B(0)) : exp :

{∫ T

0
ξ(t, B(t))dt

}]
(1.3)

where the expectationE is taken over the law of a Brownianmotion B which is running
backwards from time T and position X and where : exp : is theWick exponential. The
representation (1.3) defines the partition function of the continuum directed random
polymer (CDRP) as it is the total weight of Brownian paths where the weight is
proportional to the exponential function of the integral of the disorder along the path.
The logarithm of the partition function F(T , X) = lnZ(T , X) is called the free
energy of the CDRP.

The present paper describes limiting fluctuations in two directed polymer models.
Directed polymers are well-studied objects in the KPZ universality class of models
in the recent mathematics and physics literature. The reason for the special interest
is that certain models possess exact solvable properties, i.e. explicit formulas can be
derived for some of their important observables. The first directed polymer model
with exact solvability is the O’Connell–Yor semi-discrete polymer [17,19]. Exactly,
solvable polymers on the square lattice are the log-gamma polymer [9,20,21], the
strict-weak polymer [10,18], the beta polymer [3] and the inverse beta polymer [22].
Methods to obtain exact solvability include explicit stationary measure, Bethe Ansatz
integrability and the (geometric) Robinson–Schensted–Knuth (RSK) correspondence.

In [5], the O’Connell–Yor model was considered with boundary perturbations. The
large time limit of the free energy was proved to be the Baik–Ben Arous–Péché (BBP)
distribution [2] which is the perturbed version of the GUE Tracy–Widom distribu-
tion. A similar limit distribution was obtained for the CDRP with m-spiked boundary
perturbation in [5].

The results of the present paper generalize those of [5] in the following sense.
We investigate the large scale behaviour of the free energy of two directed polymer
models. The first model is the O’Connell–Yor semi-discrete random polymer with log-
gamma boundary sources [6] which is themixture of the O’Connell–Yor semi-discrete
polymer with boundary perturbations considered in [5] and the log-gamma discrete
directed polymer. Explicit Fredholm determinant expressions are available in [6] for
the Laplace transform of the partition function of the polymer mixture model. Based
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on these formulas, we obtain the single time version of the Borodin–Péché distribution
as the limit distribution of the free energy. The Borodin–Péché distribution which is a
generalization of the BBP distribution was first described in its multi-time version in
last passage percolation with defective rows and columns and in a single time version
in a random matrix model in [7].

A closely related model is the stationary O’Connell–Yor polymer model which was
considered in [13] as the limit of theO’Connell–Yor semi-discrete polymermodelwith
log-gamma boundary sources. It was proved in [13] that the large time limit of the
stationary model is the Baik–Rains distribution and the solution of the stationary KPZ
equation was obtained as the scaling limit of the stationary O’Connell–Yor polymer.

The second model considered in the present paper is the CDRP which can be
obtained as the limit of the O’Connell–Yor semi-discrete polymer under the interme-
diate disorder scaling [11,16]. Extending the investigations of theCDRPwithm-spiked
boundary perturbation in [5], we introduce the (m, n)-spiked boundary perturbation.
The m-spiked boundary perturbation is nonzero for the positive values of the space
variable, and the (m, n)-spiked boundary perturbation can be seen as its two-sided
version with the appropriate coupling of the two sides. We prove Borodin–Péché limit
distribution for the free energy of the CDRPwith (m, n)-spiked boundary perturbation
based on explicit Fredholm determinant formulas from [6].

The rest of the paper is organized as follows.We introduce theO’Connell–Yor semi-
discrete directed random polymer with log-gamma boundary sources and the CDRP
with (m, n)-spiked boundary perturbation in Sect. 2. Our main results, Theorem 2.3
and Theorem 2.5 are also stated in this section. We prove Theorem 2.3 in Sect. 3 and
Theorem 2.5 in Sect. 4.

2 Models andMain Results

We present the two models considered in this paper: the O’Connell–Yor semi-discrete
directed polymer with log-gamma boundary sources and the continuum directed ran-
dom polymer (CDRP) with (m, n)-spiked boundary perturbation. These models were
defined in [6], but the (m, n)-spiked boundary perturbation is new. We consider a
slightly different scaling of the boundary perturbations as in [6] yielding our main
results which are stated in this section.

2.1 O’Connell–Yor Semi-discrete Directed Polymer with Log-Gamma Boundary
Sources

TheO’Connell–Yor semi-discrete directed polymerwith log-gammaboundary sources
is the mixture of the semi-discrete polymer model introduced by O’Connell and Yor
[19] and the discrete one bySeppäläinen [20]. By log-gammadistributionwith parame-
ter θ > 0, wemean the distribution of the random variable− ln X where X has gamma
distribution with parameter θ , i.e. when X has density xθ−1e−x/�(θ) for x > 0.

Fix N ≥ 1 and n ≥ 0. Let a = (a1, . . . , aN ) ∈ R
N and α = (α1, . . . , αn) ∈ R

n+ be
such that αk − al > 0 for all 1 ≤ l ≤ N and 1 ≤ k ≤ n. In the polymer model that we
introduce, the horizontal axis is discrete on the left of 0 and continuous on the right
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Fig. 1 O’Connell–Yor semi-discrete directed polymer with log-gamma boundary sources. The thick solid
line is a possible path φ from (−n, 1) to (τ, N ). The random variables ω−k,l have log-gamma distribution
with parameter αk − al , and the Brownian motions B1, . . . , BN have drifts a1, . . . , aN

of 0 while the vertical axis is discrete. For all 1 ≤ k ≤ n and 1 ≤ l ≤ N , let ω−k,l be
independent log-gamma random variables with parameter αk − al . For all 1 ≤ l ≤ N ,
let Bl be independent Brownian motions with drift al which are also independent of
the log-gamma variables. The ω−k,l can be thought of as sitting at the lattice points
(−k, l), while Bl can be thought of as sitting along the horizontal ray from (0, l) as
shown on Fig. 1.

Admissible paths consist of discrete and semi-discrete parts. A discrete upright path
φd : (i1, j1) ↗ (i�, j�) is an ordered set of points ((i1, j1), (i2, j2), . . . , (i�, j�)) with
each (ik, jk) ∈ Z

2 and each increment (ik, jk) − (ik−1, jk−1) either (1, 0) or (0, 1). A
semi-discrete upright path φsd : (0, l) ↗ (τ, N ) is a union of horizontal line segments
((0, l) → (sl , l)) ∪ ((sl , l + 1) → (sl+1, l + 1)) ∪ · · · ∪ ((sN−1, N ) → (τ, N ))

where 0 ≤ sl < sl+1 < · · · < sN−1 ≤ τ . It is convenient to think of φsd as a
surjective non-decreasing function from [0, τ ] onto {l, . . . , N }. Our upright paths φ

in the mixture model are composed of discrete portions φd adjoined to semi-discrete
portions φsd in such a way that for some 1 ≤ l ≤ N , φd : (−n, 1) ↗ (−1, l) and
φsd : (0, l) ↗ (τ, N ).

To an upright path described above, we associate an energy

E(φ) =
∑

(i, j)∈φd

ωi, j + Bl (sl ) + (Bl+1(sl+1) − Bl+1(sl )) + · · · + (BN (τ ) − BN (sN−1)) (2.1)

which aggregates the randomness along the path, and hence, itself is random depend-
ing on ωi, j and B1, . . . , BN . The polymer measure on a path φ is proportional to its
Boltzmannweight given by eE(φ). The normalizing constant or polymer partition func-
tion for the O’Connell–Yor semi-discrete directed polymer with log-gamma boundary
sources is the integral of the Boltzmann weight over the background measure on the
path space φ, i.e.

Za,α(τ, N ) =
N∑
l=1

∑
φd :(−n,1)↗(−1,l)

∫
φsd :(0,l)↗(τ,N )

eE(φ) dφsd (2.2)
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where dφsd represents the Lebesgue measure on the simplex 0 ≤ sk < sk+1 <

· · · < sN−1 ≤ τ with which φsd is identified. The free energy of the O’Connell–Yor
semi-discrete directed polymer with log-gamma boundary sources is given by

Fa,α(τ, N ) = ln
(
Za,α(τ, N )

)
. (2.3)

The distribution of the partition function Za,α(τ, N ) of the O’Connell–Yor semi-
discrete directed polymer with log-gamma boundary sources is characterized in [6] as
follows.

Theorem 2.1 [6, Theorem 2.1] Fix N ≥ 9, n ≥ 0 and τ > 0. Let a = (a1, . . . , aN ) ∈
R

N and α = (α1, . . . , αn) ∈ R
n+ be such that αk − al > 0 for all 1 ≤ l ≤ N and

1 ≤ k ≤ n. For 1 ≤ k ≤ n and 1 ≤ l ≤ N let ω−k,l be independent log-gamma
random variables with parameter αk −al and for all 1 ≤ l ≤ N let Bl be independent
Brownian motions with drift al . Then, for all u ∈ C with positive real part

E

(
e−uZa,α(τ,N )

)
= det (1 + Ku)L2(Ca;α;ϕ) (2.4)

where the operator Ku is defined in terms of its integral kernel

Ku(v, v′) = 1

2π i

∫
Dv

ds �(−s)�(1 + s)
usevτ s+τ s2/2

v + s − v′
N∏
l=1

�(v − al)

�(s + v − al)

×
n∏

k=1

�(αk − v − s)

�(αk − v)
. (2.5)

The contours Ca;α;ϕ and Dv are given in Definition 2.2 below where ϕ ∈ (0, π/4) is
arbitrary.

Definition 2.2 Let a = (a1, . . . , aN ) ∈ R
N and α = (α1, . . . , αn) ∈ R

n+ be such that
αk − al > 0 for all 1 ≤ l ≤ N and 1 ≤ k ≤ n. Set μ = 1

2 max(a) + 1
2 min(α)

and η = 1
4 max(a) + 3

4 min(α). Then, for all ϕ ∈ (0, π/4), we define the contour
Ca;α;ϕ = {μ + ei(π+ϕ)y}y∈R+ ∪ {μ + ei(π−ϕ)y}y∈R+ . The contour is oriented so as to
have increasing imaginary part. For every v ∈ Ca;α;ϕ , we choose R = −Re(v) + η,
d > 0, and define a contour Dv as follows. Dv goes by straight lines from R − i∞,
to R − id, to 1/2 − id, to 1/2 + id, to R + id, to R + i∞. The parameter d is taken
small enough so that v + Dv does not intersect Ca;α;ϕ . See Fig. 2 for an illustration.

Our contribution on the O’Connell–Yor semi-discrete directed polymer with log-
gamma boundary sources is that we prove a Borodin–Péché scaling limit of its
free energy. To define the limiting distribution, fix two integers m and n. Let
b = (b1, . . . , bm) ∈ R

m and β = (β1, . . . , βn) ∈ R
n be two sets of parameters

and assume that

max
1≤l≤m

bl < min
1≤k≤n

βk (2.6)
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Fig. 2 Left: the contour Ca;α;ϕ (dashed) where the black dots symbolize the set of singularities of Ku(v, v′)
in v at ∪1≤l≤N {al , al − 1, . . . } coming from the factors �(v − al ). The contour v + Dv is the solid line.
Right: the contourDv where the light grey dots are the singularities at {1, 2, . . . } coming from �(−s) and
the dark grey dots are those at ∪1≤k≤n{αk − v, αk + 1 − v, . . . } coming from �(αk − v − s)

which is a natural constraint, since otherwise the corresponding polymer models are
not well defined, see Theorems 2.3 and 2.5 for the parameter scaling.

The Borodin–Péché distribution with parameters b and β [7] is defined as

FBP,b,β(r) = det
(
1 − KBP,b,β

)
L2((r ,∞))

(2.7)

with the kernel

KBP,b,β(x, y)= 1

(2π i)2

∫
γ

dw
∫

�

dz
1

z − w

ez
3/3−zy

ew3/3−wx

m∏
l=1

z − bl
w − bl

n∏
k=1

w − βk

z − βk

(2.8)

where the integration contours γ and � are given as follows. Let c > 0 be arbitrary.
Then, γ is −c + iR modified in a neighbourhood of the real axis so that it crosses the
axis between max1≤l≤m bl and min1≤k≤n βk . The contour � is c + iR modified in a
neighbourhood of the real axis so that it crosses the real axis between max1≤l≤m bl
and min1≤k≤n βk , and it does not intersect γ . We mention that for n = 0, the Borodin–
Péché distribution reduces to the BBP distribution and for n = m = 0 to the GUE
Tracy–Widom distribution.

To state our main theorem on the scaling limit of the O’Connell–Yor semi-discrete
directed polymer with log-gamma boundary sources, we will use the following
parametrization. Let�(z) = d

dz ln�(z) be the digamma function. For a given θ ∈ R+,
define

κ(θ) = � ′(θ), f (θ) = θ� ′(θ) − �(θ), c(θ) = (−� ′′(θ)/2)1/3. (2.9)

We may alternatively parameterize θ ∈ R+ in terms of κ ∈ R+ as

θκ = (� ′)−1(κ) ∈ R+, fκ = inf
t>0

(κt − �(t)) = f (θκ), cκ = c(θκ). (2.10)
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Theorem 2.3 Consider the O’Connell–Yor semi-discrete directed random poly-
mer with log-gamma boundary sources of the following parameters. Let a =
(a1, a2, . . . , am, 0, . . . 0) ∈ R

N with m ≤ N and α = (α1, α2, . . . , αn) ∈ R
n where

a1, a2, . . . am may depend on N and αk > max1≤l≤m al for 1 ≤ k ≤ n. Let κ > 0 be
arbitrary. Assume furthermore that there are real parameters b = (b1, . . . , bm) and
β = (β1, . . . βn) satisfying (2.6) such that for any 1 ≤ l ≤ m and 1 ≤ k ≤ n,

lim
N→∞ cκN

1/3(al(N ) − θκ) = bl and lim
N→∞ cκN

1/3(αk(N ) − θκ) = βk .

(2.11)

Then,

lim
N→∞P

(
Fa,α(κN , N ) − N fκ

cκN 1/3 ≤ r

)
= FBP,b,β(r) (2.12)

holdswhereFa,α is the free energyof theO’Connell–Yor semi-discrete directed random
polymer given in (2.3) and FBP,b,β is the Borodin–Péché distribution function defined
in (2.7).

2.2 ContinuumDirected Random Polymer (CDRP) with (m, n)-Spiked Boundary
Perturbation

The partition function Z(T , X) of the continuum directed random polymer with
boundary perturbation Z0(X) is given by the solution to the stochastic heat equation
with multiplicative noise (1.2) with initial condition Z0(X). The initial data Z0(X)

may be random, but it is assumed to be independent of the space-time white noise.
By the Feynman–Kac representation (1.3), Z(T , X) is indeed a partition function

of a directed polymer model, since Brownian paths are reweighted in a way that the
weight of a path is proportional to the Wick exponential of the randomness integrated
along the path. The normalizing constant which is the partition function Z(T , X) is
the integral of weights over the space of all possible paths. Note that Z(T , X) itself is
random as the randomness of the space-time white noise remains in the formula (1.3).

By the work of Mueller [15], as long as Z0(X) is almost surely positive, Z(T , X)

is positive for all T > 0 and X ∈ R almost surely. Hence, we can take its logarithm
and define the free energy for the continuum directed random polymer with boundary
perturbation lnZ0(X) by F(T , X) = ln(Z(T , X)) to be the Hopf–Cole solution of
the KPZ equation (1.1) with initial condition F0(X) = lnZ0(X).

Let us now introduce the CDRP with (m, n)-spiked boundary perturbation, and
let us construct the corresponding (m, n)-spiked initial condition for the stochas-
tic heat equation. For fixed integers m and n, let b = (b1, . . . , bm) ∈ R

m and
β = (β1, . . . , βn) ∈ R

n be such that (2.6) holds. Let B1, B2, . . . , Bm be independent
Brownian motions with drifts b1, b2, . . . , bm , and let B̃1, B̃2, . . . , B̃n be independent
Brownian motions with drifts β1, β2, . . . , βn . Furthermore, let ω−k,l be independent
log-gamma random variables with parameter βk − bl for 1 ≤ l ≤ m and 1 ≤ k ≤ n.
Assume that the two families of Brownian motions and the log-gamma random vari-

123



Journal of Theoretical Probability

ables are independent of each other. For X ≥ 0, let the semi-discrete partition function
Zb,β(X ,m) be constructed as in (2.2) using the Brownian motions B1, B2, . . . , Bm

and the log-gamma random variables.
Similarly, we construct another semi-discrete partition function which is coupled

to the previous one. Let the possible paths φ̃ be composed of a discrete upright part
φ̃d : (−n, 1) ↗ (k − n − 1,m) and of a semi-discrete part φ̃sd . For X̃ ≥ 0, let the
semi-discrete part φ̃sd : (k−n−1,m) ↗ (−1, X̃) be a union of vertical line segments
((k−n−1,m) → (k−n−1, sk))∪((k−n, sk) → (k−n, sk+1))∪· · ·∪((−1, sn−1) →
(−1, X̃)) where m ≤ sk < sk+1 < · · · < sn−1 ≤ X̃ . The energy of such a path is
instead of (2.1) defined by

E
(
φ̃
) =

∑
(i, j)∈φ̃d

ωi, j + B̃k(sk) + (B̃k+1(sk+1) − B̃k+1(sk)) + · · · + (B̃n(X̃)

−B̃n(sn−1)). (2.13)

Then, a partition function analogously to (2.2) is given by

Z̃b,β(X̃ , n) =
n∑

k=1

∑
φ̃d :(−n,1)↗(k−n−1,m)

∫
φ̃sd :(k−n−1,m)↗(−1,X̃)

eE(φ̃) dφ̃sd .

(2.14)

The Brownian motions B̃k can be thought of as sitting on the vertical rays starting at
(k − n − 1,m) for 1 ≤ k ≤ n which makes the definitions (2.13)–(2.14) natural.

For b ∈ R
m and β ∈ R

n , let

Zb,β
0 (X) =

{
Zb,β(X ,m), if X > 0,
Z̃β,b(−X , n), if X ≤ 0

(2.15)

define the (m, n)-spiked boundary perturbation for the CDRP, see Fig. 3. Let
Zb,β(T , X) denote the partition function of the CDRP with (m, n)-spiked bound-
ary perturbation which is the solution of the stochastic heat equation (1.2) with initial
condition given by (2.15). LetFb,β (T , X) = ln(Zb,β(T , X)) denote the free energy of
the CDRP with (m, n)-spiked boundary perturbation. Note that for n = 0, the bound-
ary perturbation (2.15) reduces to the m-spiked boundary perturbation considered in
[5].

According to the next theorem, the CDRP with (m, n)-spiked boundary perturba-
tions is the limit of theO’Connell–Yor semi-discrete directed polymerwith log-gamma
boundary sources under the intermediate disorder scaling. The theorem in this form
was not published yet, and it was first announced in [11] for the O’Connell–Yor
semi-discrete directed polymer with boundary perturbations and used, e.g. in [5,6].
Theorem 2.4 for perturbed boundaries below is a straightforward consequence of the
ones used in [5,6]. Intermediate disorder scaling results were, however, proved more
recently for the unperturbed multi-layer semi-discrete directed polymer in [16] using
the same ideas as in [11].
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Fig. 3 (m, n)-spiked boundary perturbation Zb,β
0 for the CDRP, i.e. the (m, n)-spiked initial condition for

the stochastic heat equation. It is realized by two semi-discrete polymer partition functions with log-gamma
boundary sources where the log-gamma random variables are sampled jointly. For X > 0, Zb,β (X ,m)

appears on the horizontal half-line starting at (0,m + 1), whereas Z̃β,b(−X , n) for X ≤ 0 appears on the
vertical half-line starting at the same point

Theorem 2.4 Fix T > 0, X ∈ R and real vectors b = (b1, . . . , bm) ∈ R
m and

β = (β1, . . . βn) ∈ R
n which satisfy (2.6). Set σ = (2/T )1/3 and κ = √

T /N + X/N
which yield by (2.10) that τ = κN = √

T N + X. Let the drifts be given by a =
(a1, . . . , am, 0, . . . , 0) ∈ R

N where al = √
N/T + 1/2 + bl for 1 ≤ l ≤ m and

the boundary parameters by αk = √
N/T + 1/2 + βk for 1 ≤ k ≤ n. Consider the

O’Connell–Yor semi-discrete directed random polymer partition function Za,α(τ, N )

defined in (2.2) with parameters a and α. With the scaling factor

C(N ,m, T , X) = exp

(
1

2
(N − m) ln

(
T

N

)
+ N + 1

2

(√
T N + X

)
+ X

√
N

T

)
, (2.16)

one has the convergence in distribution

Za,α(
√
T N + X , N )

C(N ,m, T , X)
⇒ Zb,β(T , X) (2.17)

as N goes to infinity where Zb,β(T , X) is the CDRP with (m, n)-spiked boundary
perturbation given in (2.15).

The main contribution of this work gives the large time limit of the CDRP free
energy with (m, n)-spiked boundary perturbation.

Theorem 2.5 Let b = (b1, . . . , bm) ∈ R
m and β = (β1, . . . βn) ∈ R

n be such that
bl < βk for all 1 ≤ l ≤ m and 1 ≤ k ≤ n. Let σ = (2/T )1/3 be scaled with the
time parameter and let Y ∈ R and r ∈ R be arbitrary. Then, for the free energy
of the CDRP with (m, n)-spiked boundary perturbation of parameters σb and σβ at
rescaled position X = 21/3YT 2/3,
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lim
T→∞P

(Fσb,σβ(T , 21/3YT 2/3) + T /24

(T /2)1/3
≤ r

)
= FBP,b+Y ,β+Y

(
r + Y 2

)

(2.18)

holds where FBP,b+Y ,β+Y is the Borodin–Péché distribution function given by (2.7)
with parameter vectors shifted coordinatewise.

3 Scaling Limit for the O’Connell–Yor Semi-discrete Polymer

We prove Theorem 2.3 in this section which is a modification of the proof of The-
orem 1.3 in [5]. We mention that in Theorem 1.3 in [5] which is the n = 0 case of
Theorem 2.3, the factor cκ is missing in the scaling of parameters (2.11). To keep our
discussion self-contained, we recall the main steps of the proof and extend it to the
present setup.

Let us scale

u = u(N , r , κ) = exp(−N fκ − rcκN
1/3) (3.1)

and set τ = κN . After the change of variables z̃ = s + v in (2.5) and by using Euler’s
reflection formula 1/(�(−s)�(1 + s)) = −π/ sin(πs),

Ku(v, v′) = −1

2π i

∫
Cz̃
dz̃

π

sin(π(z̃ − v))

exp(NG(v) + rcκN 1/3v)

exp(NG(z̃) + rcκN 1/3 z̃)

1

z̃ − v′

×
m∏
l=1

�(v − al)�(z̃)

�(z̃ − al)�(v)

n∏
k=1

�(αk − v − s)

�(αk − v)
(3.2)

where G(z) = ln�(z)−κz2/2+ fκ z. The integration contour Cz̃ in (3.2) was defined
in [5] in the absence of boundary parameters to be

{θκ + ε̃ + iy, y ∈ R} ∪
r⋃

q=1

Bv+q (3.3)

where Bv+q denotes a small circle around v + q and clockwise oriented. r ∈ N0
is chosen such that Re(v) + r ≤ θκ + O(N−1/3) and we set ε̃ = p(v)c−1

κ N−1/3

with p(v) ∈ {1, 3}. This choice of r and p(v) is needed to keep a uniformly positive
distance from the poles coming from the sine in the denominator in (3.2), see Sect.
5.1 in [5] for the precise definition. It is also argued in [5] that kernel Ku has enough
decay along the contour in (3.3) which corresponds to the ϕ = π/4 case for the Ca;α;ϕ
contour in Theorem 2.1.

In the present setup when there are boundary parameters al and αk scaled according
to (2.11), the contour Cz̃ is defined to be the contour (3.3) with a local modification
in an N−1/3 neighbourhood of θκ in a way that it crosses the real axis between the al
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Fig. 4 Integration paths Cw and
Cz . The black dots on the left are
the values of b1, . . . , bm and the
grey dots on the right are
β1, . . . , βn

and the αk singularities. By the Cauchy theorem, the contour v +Dv for z̃ seen on the
left of Fig. 2 can be replaced by Cz̃ without changing the kernel Ku in (3.2).

The functionG has a double critical point at θκ , i.e.G(v) � G(θκ)− (cκ )3

3 (v−θκ)3.
This suggests the rescaling around θκ by N 1/3, that is the change of variables

{
v, v′, z̃

} = {
�(w),�(w′),�(z)

}
with �(z) = θκ + zc−1

κ N−1/3. (3.4)

Then, the rescaled kernel is defined as

KN (w,w′) = c−1
κ N−1/3Ku(�(w),�(w′)) = −c−1

κ N−1/3

2π i

×
∫

�−1(Cz̃)
dz

πeNG(�(w))−NG(�(z))

sin(π(z − w)c−1
κ N−1/3)

×er(w−z)

z − w′
m∏
l=1

�(�(w) − al)�(�(z))

�(�(z) − al)�(�(w))

n∏
k=1

�(αk − �(z))

�(αk − �(w))
.

(3.5)

Let the new contour Cw be the local perturbation of {−|y| + iy, y ∈ R} in a constant
neighbourhood of 0 in a way that it crosses the real axis between the bl and βk

singularities as shown in Fig. 4, also compare with Fig. 2. Further, let Cz be the local
modification of 1+ iR in a neighbourhood of 0 so that it does not intersect Cw, and it
crosses the real axis between the two families of singularities. Then, one can replace
Ca;α;ϕ by Cw and the integration path �−1(Cz̃) in (3.5) by Cz so that one has the
equality of Fredholm determinants det (1 + Ku)L2(Ca;α;ϕ) = det (1 + KN )L2(Cw) by
the Cauchy theorem.

Based on the next two propositions and by using Lemma 3.3, Theorem 2.3 on the
scaling limit for the O’Connell–Yor semi-discrete polymer can be verified.

Proposition 3.1 Let KN (w,w′) be given in (3.5). Uniformly for w,w′ in a bounded
set of Cw,

lim
N→∞KN (w,w′) = K̃BP,b,β(w,w′) (3.6)
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where

K̃BP,b,β (w,w′) := 1

2π i

∫
Cz

dz
1

(w − z)(z − w′)
ez

3/3−r z

ew3/3−rw

m∏
l=1

z − bl
w − bl

n∏
k=1

w − βk

z − βk
. (3.7)

Proposition 3.2 For any w,w′ ∈ Cw there exists a constant C ∈ (0,∞) such that

|KN (w,w′)| ≤ Ce−| Im(w)| (3.8)

uniformly for all N large enough.

Lemma 3.3 [4, Lemma 4.1.38] Consider a sequence of functions (�n)n≥1 map-
ping R → [0, 1] with the following properties: x → �n(x) is strictly decreasing,
limx→−∞ �n(x) = 1, limx→∞ �n(x) = 0 for all n and �n(x) → 1x≤0 as n → ∞
uniformly onR\[−δ, δ] for all δ > 0. Consider a sequence of randomvariables Xn and
a continuous probability distribution function p(r) such thatE [�n(Xn − r)] → p(r)
as n → ∞ for each r ∈ R. Then, Xn converges in distribution to the distribution given
by p(r).

Proof of Theorem 2.3 By Hadamard’s bound and by dominated convergence, Proposi-
tions 3.1 and 3.2 together imply that

det (1 + KN )L2(Cw) → det
(
1 − K̃BP,b,β

)
L2(Cw)

= det
(
1 − KBP,b,β

)
L2((r ,∞))

= FBP,b,β(r) (3.9)

as N → ∞ where the first equality above follows from the same reformulation of
Fredholm determinants as in Lemma 8.7 of [5].

Let us define a sequence of functions �N (x) = exp(− exp(cκN 1/3x)). Now by
(3.1),

E

[
�N

(
Fa,α(κN ) − N f κ

cκN 1/3 − r

)]

= E

[
euZ

a,α(τ,N )
]

= det (1 + Ku)L2(Ca;α;ϕ) → FBP,b,β(r) (3.10)

as N → ∞ where we used the definition of �N , Theorem 2.1 and (3.9). To conclude
the proof, one uses Lemma 3.3 with p(r) = FBP,b,β(r).

We introduce the extra gamma factors

P(w, z, a) = �(�(w) − al)

�(�(w))

�(�(z))

�(�(z) − al)
, Q(w, z, αk) = �(αk − �(z))

�(αk − �(w))
(3.11)

for 1 ≤ l ≤ m and 1 ≤ k ≤ n. To extend the proofs of Propositions 5.1 and 5.2 of
[5] to those of Propositions 3.1 and 3.2, the following lemma about the bounds on the
extra factors is the key.
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Lemma 3.4 Once the contours Cw and Cz are fixed, there is a constant C such that

|Q(w, z, αk)| ≤ C
|w|
N 1/3

(
1 + N 1/3

|z|
)

≤ C |w|
(
1 + 1

|z|
)

(3.12)

as long as w ∈ Cw and z ∈ Cz .
Furthermore, let N be large enough to make the N−1/3 difference of Cz̃ and the

contour in (3.3) small. Then, the small circles in Cz̃ and in (3.3) can only be present,
i.e. r > 0 can only happen for a v ∈ Ca;α;ϕ if |v| > ε for some fixed ε > 0. In this
case, there is a C such that for any v ∈ Ca;α;ϕ and q = 1, . . . , r ,

|Q(�−1(v),�−1(v + q), αk)| ≤ C . (3.13)

Proof After substituting (3.4) and the scaling (2.11) into the definition (3.11), one can
write

Q(w, z, α) = �
(
(βk − z + o(1))c−1

κ N−1/3
)

�
(
(βk − w + o(1))c−1

κ N−1/3
) . (3.14)

First, we show that for the numerator,

∣∣∣� (
(βk − z + o(1))c−1

κ N−1/3
)∣∣∣ ≤ C

(
1 + N 1/3

|z|
)

(3.15)

holds if z ∈ Cz . To this end, we use the asymptotics

lim|y|→∞ |�(x + iy)|(2π)−1/2e
1
2π |y||y| 12−x = 1 (3.16)

from equation 6.1.45 of [1]. If z ∈ Cz and |z| > δN 1/3 for some fixed δ > 0,
then the real part of the argument of the gamma function in (3.15) goes to 0 as
N → ∞; hence, it is bounded. Consequently, (3.16) yields an exponential decay of
|� (

(βk − z + o(1))c−1
κ N−1/3

) | in |z| which we bound by a constant. By the asymp-
totics �(Z) ∼ 1/Z around Z = 0, one gets that the left-hand side of (3.15) can be
upper bounded by CN 1/3/|z| as long as |z| < δN 1/3. This proves (3.15).

Next, we prove for the denominator that

∣∣∣� (
(βk − w + o(1))c−1

κ N−1/3
)∣∣∣ ≥ c

(
1 + N 1/3

|w|
)

(3.17)

for w ∈ Cw with a constant c small enough. Equation 6.1.37 in [1] reads as

�(z) = e−z zz−
1
2 (2π)1/2

(
1 + O

(
1

z

))
. (3.18)
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For w ∈ Cw and |w| > δN 1/3, one can write w = −t N 1/3 ± it N 1/3 for some
t > δ/

√
2. Hence, the left-hand side of (3.17) grows as Ce−t t t as t → ∞ which we

can lower bound by a small constant as t > δ/
√
2. If |w| < δN 1/3, by the asymptotics

�(Z) ∼ 1/Z around Z = 0 again, the left-hand side of (3.17) is lower bounded by
cN 1/3/|w|. This shows (3.17). Putting (3.15) and (3.17) together yields (3.12) with a
large enough C .

The uniform lower bound on |v| follows from the choice of the contours. On the
one hand, r is chosen such that Re(v) + r ≤ θκ + O(N−1/3). On the other hand,
v ∈ Ca;α;ϕ satisfies v = θκ + O(N−1/3) + ei(π±ϕ)y for some y ∈ R+. These two
properties imply the lower bound if the small circles are present.

To show (3.13) if the circles are present, observe that the ratio which we want to
bound in absolute value simplifies as

Q(�−1(v),�−1(v + q), αk) = �(αk − v − q)

�(αk − v)
= 1

(αk − v − 1) . . . (αk − v − q)
.

(3.19)

This is bounded by an absolute constant since |v| > ε also means that | Im(v)| is
uniformly positive. ��
Proof of Proposition 3.1 Knowing the asymptotics �(z) � 1/z near zero from [1], one
can conclude from (3.14) that under the scaling (2.11), Q(w, z, αk) → (w−βk)/(z−
βk) holds as N → ∞ for k = 1, . . . , n. Similarly, P(w, z, al) → (z − bl)/(w − bl)
for l = 1, . . . ,m. As in the proof of Proposition 5.1 in [5], the Taylor expansion of the
remaining factors in the integrand of KN in (3.5) yields that the integrand converges
to the integrand of K̃BP,b,β in (3.7).

One can apply dominated convergence as it is done in the proof of Proposition 5.1
in [5]. It was proved in [5] based on Lemma 5.4 that the integration contour of KN in z
is steep descent for the function−Re(G(�(z)))with derivative going to−∞ linearly
in | Im(z̃)| = N−1/3| Im(z)|. Since the Q factors are bounded in (3.12), the decay
of e−NG(�(z)) ensures that the integral which defines the kernel KN in (3.5) is still
convergent in the presence of the Q factors. Hence, the steps of the proof of Proposition
5.1 in [5] can be followed. In particular, the integral which defines KN restricted to
the set | Im(z)| > δN 1/3 is O(e−c(δ)N ). On the other hand, on | Im(z)| < δN 1/3, one
can replace the integrand of KN by the integrand of K̃BP,b,β with an overall error of
order O(N−1/3). This verifies the convergence of the kernels (3.6). ��
Proof of Proposition 3.2 The exponential bounds obtained in the proof of Proposition
5.2 in [5] are not affected by the presence of extra polynomial factors which upper
bound Q in (3.12)–(3.13). Hence (3.8) follows. ��

4 Large Time Limit of the CDRPwith (m,n)-Spiked Boundary
Perturbations

In this section, we prove Theorem 2.5 about the large time limit of the free energy
Zb,β of the CDRP with (m, n)-spiked boundary perturbations. We start by giving a
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Fredholm determinant formula for its Laplace transform in Proposition 4.1 based on
Theorem 2.1. Let b = (b1, . . . , bm) and β = (β1, . . . , βn) be such that (2.6) holds.
Define the kernel

K(σ )
b,β(x, y) = 1

(2π i)2

∫
dw

∫
dz

σπ Sσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew3/3−wx

m∏
l=1

�(σw − bl)

�(σ z − bl)

×
n∏

k=1

�(βk − σ z)

�(βk − σw)
(4.1)

where

σ = (2/T )1/3 (4.2)

and the integration contour for w is from − 1
4σ − i∞ to − 1

4σ + i∞ and crosses the
real axis between max1≤l≤m bl/σ and min1≤k≤n βk/σ . The other contour for z goes
from 1

4σ − i∞ to 1
4σ + i∞, it also crosses the real axis between max1≤l≤m bl/σ and

min1≤k≤n βk/σ , and it does not intersect the contour for w.

Proposition 4.1 Fix S with positive real part, T > 0, b and β real vectors with (2.6).
Set σ as in (4.2). Then,

E

[
exp

(
−Se

X2
2T + T

24Zb,β(T , X)

)]
= det

(
1 − K(σ )

b+X/T ,β+X/T

)
L2(R+)

(4.3)

where Zb,β is the partition function of the CDRP with (m, n)-spiked boundary per-
turbations and K(σ )

b,β is defined in (4.1).

Proof Let Theorem 2.1 be used with

u = S

C(N ,m, T , X)
e

X2
2T + T

24 (4.4)

whereC(N ,m, T , X) is given by (2.16). Then, on the left-hand side of (2.4) with τ =√
T N + X , Theorem 2.4 on the intermediate disorder scaling yields the convergence

in distribution

uZa,α(
√
T N + X , N ) ⇒ Se

X2
2T + T

24Zb,β(T , X) (4.5)

as N → ∞. By definition (2.2), the partition function Za,α is positive; hence, (4.5)
implies the convergence of the Laplace transforms

E

[
e−uZa,α(τ,N )

]
→ E

[
exp

(
−Se

X2
2T + T

24Zb,β(T , X)

)]
(4.6)

as N → ∞ where τ = √
T N + X and u is defined in (4.4).
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On the other hand, the same scaling of parameters is used on the right-hand side
of (2.4). Then, Theorem 6.3 of [6] is used to conclude the convergence of Fredholm
determinants

lim
N→∞ det (1 + Ku)L2(Ca;α;π/4)

= det
(
1 − K(σ )

b+X/T ,β+X/T

)
L2(R+)

(4.7)

under the following scaling of the parameters. As in Theorem 2.4, one sets τ =√
T N + X , κ = τ/N and θκ is given by (2.10). This means that θκ = √

N/T −
X/T + 1/2 + O(N−1/2). One sets u given by (4.4) and σ given by (4.2). For the
boundary parameters al and αk , instead of the scaling given in Theorem 2.4, one sets
al = θκ + bl and αk = θκ + βk according to Sect. 6 of [6]. This difference results in
the shift by X/T in the rescaled boundary parameters bl and βk which completes the
proof. ��

The following proposition is the key for the proof of Theorem 2.5.

Proposition 4.2 We have

det
(
1 − K(σ )

σb,σβ

)
L2(R+)

→ det
(
1 − KBP,b,β

)
L2(r ,∞)

(4.8)

as σ → 0 where K(σ )
b,β and KBP,b,β are given in (4.1) and (2.8).

Proof of Theorem 2.5 Let S = e−r/σ and define the functions �T (x) = exp(−ex/σ )

where σ = (2/T )1/3. Observe that one can write

exp

(
−Se

X2
2T + T

24Zb,β(T , X)

)
= �T

(
Fσb,σβ(T , X) + X2

2T + T
24

σ−1 − r

)
. (4.9)

By taking expectation above

E

[
�T

(
Fσb,σβ(T , X) + X2

2T + T
24

σ−1 − r

)]
= E

[
exp

(
−Se

X2
2T + T

24Zb,β(T , X)

)]

= det
(
1 − K(σ )

σb+X/T ,σβ+X/T

)
L2(R+)

→ det
(
1 − KBP,b+Y ,β+Y

)
L2(r ,∞)

(4.10)

as T → ∞ where we used Proposition 4.1 in the second equation above. To conclude
the convergence in (4.10), Proposition 4.2 was used with boundary parameters σb +
X/T = σ(b + Y ) and σβ + X/T = σ(β + Y ) where X = 21/3YT 2/3.

The functions �T satisfy the properties of Lemma 3.3; hence, by (4.10) the lemma
is applicable for the random variables σ(Fσb,σβ(T , X) + X2/(2T ) + T /24) and
with the distribution function FBP,b+Y ,β+Y (r) defined by (2.7). By observing that
σ X2/(2T ) = Y 2 and by substituting r by r + Y 2, one arrives to (2.18). ��
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We are left with proving Proposition 4.2. We use the following decay bound from
[6] adapted to the present setting.

Lemma 4.3 [6, Lemma B.4] Fix b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 · · · ≤ βn so that
βi − b j < 1 for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then, there is a finite constant C such
that for any x, y ∈ R+

∣∣∣K(σ )
b,β(x, y)

∣∣∣ ≤ C exp

(
−β1

σ
y + bm

σ
x

)
. (4.11)

Proof of Proposition 4.2 By setting S = e−r/σ , the kernel on the left-hand side of (4.8)
reads as

K(σ )
σb,σβ(x, y) = 1

(2π i)2

∫
dw

∫
dz

σπe−r(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew3/3−wx

m∏
l=1

�(σ(w − bl))

�(σ (z − bl))

×
n∏

k=1

�(σ(βk − z))

�(σ (βk − w))
. (4.12)

Then, the first factor in the double integral in (4.12) converges to e−r(z−w)/(z − w)

as σ → 0. For the product of the gamma ratios,

m∏
l=1

�(σ(w − bl))

�(σ (z − bl))

n∏
k=1

�(σ(βk − z))

�(σ (βk − w))
→

m∏
l=1

z − bl
w − bl

n∏
k=1

w − βk

z − βk
(4.13)

as σ → 0. Hence, the integrand in (4.12) converges to that of KBP,b,β(x + r , y + r)

given in (2.8) as σ → 0. Since along the contours for w and z, the factors ez
3/3−w3/3

in (4.12) have fast enough decay, we conclude that

lim
σ→0

K(σ )
σb,σβ(x, y) = KBP,b,β(x + r , y + r). (4.14)

To show that the convergence of the kernels (4.14) implies the convergence of
Fredholm determinants (4.8), one uses dominated convergence. Lemma 4.3 applied
to K(σ )

σb,σβ provides a uniform upper bound in σ . Using this upper bound, the nth term
in the Fredholm determinant expansion of the left-hand side of (4.8) is bounded by

1

n!
∫
R+

. . .

∫
R+

det
[
K(σ )

σb,σβ(xi , x j )
]n
i, j=1

dx1 . . . dxn

≤ C2nnn/2

n!
∫
R+

. . .

∫
R+

e−(β1−bm)
∑n

j=1 x j dx1 . . . dxn

= C2nnn/2

(β1 − bm)nn!

(4.15)
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where we also used the Hadamard bound in the first inequality above. Since the right-
hand side of (4.15) is summable, dominated convergence implies (4.8). ��
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