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Rényi Institute of Mathematics, Budapest, Hungary

Email: bhupal@metu.edu.tr stipsicz@renyi.hu

Abstract We classify the resolution graphs of weighted homogeneous sur-
face singularities which admit rational homology disk smoothings. The
nonexistence of rational homology disk smoothings is shown by symplectic
geometric methods, while the existence is verified via smoothings of nega-
tive weight.

AMS Classification 14J17; 53D35, 32S25

Keywords smoothing of surface singularities, rational homology disk fill-
ings

1 Introduction

Suppose that S is the germ of an isolated normal complex surface singular-
ity. For hypersurface and complete intersection singularities, there are natural
smoothings (i.e., deformations with smooth generic fibre) given by the defining
functions, and their properties have been known for a long time: such a smooth-
ing is topologically a bouquet of 2–spheres. But in general it is not clear whether
smoothings of S exist, or, if they do, what their basic topological properties
are. It would be natural to try to understand those singularities which possess
a smoothing with the ‘simplest’ possible topology. We say that a smoothing is
a rational homology disk (QHD for short) if the underlying smooth 4-manifold
has rational homology groups isomorphic to H∗(D

4;Q), where D4 denotes the
4-dimensional disk. Strong constraints are imposed for a singularity to admit
a QHD smoothing — it is necessarily a rational surface singularity, implying
among other things that the resolution graph of S must be a (negative definite)
tree, and the link of S a rational homology sphere. Examples of singularities

with QHD smoothings already appeared in [17]. The p2

pq−1
cyclic quotient sin-

gularities (0 < q < p, (p, q) = 1) provide a complete list of cyclic quotients with
this property, and [17] also contained some further examples (with resolution
graphs given by Figure 1(a)). In fact, throughout the years, a list of such exam-
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ples was compiled by J. Wahl, which was known to the experts (cf. the remark
in [5, bottom of page 505]) but did not appear in print.

The smooth 4-manifold-theoretic application of certain singularities with QHD
smoothings, through the rational blow-down procedure (introduced by Fin-
tushel and Stern [3] and extended by Park [13]), have put the study of singu-
larities with QHD smoothings at the forefront of 4-dimensional topology. In
[16] a systematic investigation of the resolution graphs of such singularities was
initiated, and (relying on Donaldson’s famous Theorem A, and some further
observations) strong combinatorial constraints have been found for a (negative
definite) plumbing tree to be the resolution graph of a singularity admitting
a QHD smoothing. Although [16] did not aim to provide a complete classi-
fication of singularities with QHD smoothings, the examples given there (in
hindsight) provided a nearly complete list of weighted homogeneous singulari-
ties with QHD smoothings (the only missing examples from [16] are the ones
corresponding to the graphs of Figures 1(h) and (i), which were also known to
the authors of [16] to admit QHD smoothings).

In the present work — resting on results of [16] and on some fundamental theo-
rems in symplectic geometry — we give a complete classification of the resolu-
tion graphs of weighted homogeneous singularities admitting QHD smoothings.
Surprisingly enough, the complete list of resolution graphs of weighted homo-
geneous singularities with QHD smoothings essentially coincides with the list
of examples of Wahl mentioned above. In order to state our results precisely,
we need a few preliminary notions and definitions.

The link YΓ of a singularity SΓ with resolution graph Γ is determined by the
graph Γ, and according to [2] the 3-manifold YΓ admits a (up to contactomor-
phism) unique contact structure, its Milnor fillable contact structure ξΓ , given
by the 2-plane field of complex tangencies on YΓ as a link of SΓ . Any smooth-
ing of the singularity SΓ naturally provides a Stein filling of the Milnor fillable
contact 3-manifold (YΓ, ξΓ). (For the definition of various notions of fillings of
contact 3-manifolds, see [12, Section 12.1].)

Definition 1.1 We call a normal complex surface singularity SΓ spherical

Seifert if the link of the singularity is a Seifert fibred 3-manifold over the sphere
S2 . The spherical Seifert singularity SΓ is small Seifert if the link is a small
Seifert fibred 3-manifold, i.e., it admits a Seifert fibration over S2 with exactly
three singular fibres.

A normal surface singularity is therefore spherical Seifert if and only if it admits
a resolution graph which is a star-shaped tree and the vertices correspond to
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rational curves; in addition, SΓ is small Seifert if the central vertex (the unique
vertex of valency > 2) in a minimal good resolution is of valency 3. By [11,
Theorem 2.6.1], weighted homogeneous singularities with rational homology
sphere links are all spherical Seifert singularities (but the converse does not
hold). For a definition of weighted homogeneous singularities (also called quasi–
homogeneous, or singularities with a good C∗–action) see, for example, [11, p.
206].

Definition 1.2 Define QHD3 as the set of graphs given by Figure 1.
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Figure 1: The graphs defining the class QHD3 of plumbing graphs. We assume
that p, q, r ≥ 0.

Remark 1.3 The graphs given in Figure 1(a) form the set W of [16], those
in Figures 1(b) and (c) form N , while the collection of (d), (e), (f) and (g)
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were called M in [16]. The graphs of Figure 1(h) provide the 1-parameter
family B3

2 of certain star-shaped graphs with three legs in the class B of [16],
and the ones of the form (i) and (j) are two 1-parameter families C3

2 and C3
3 in

C . (For the definition of the classes A,B and C of graphs see Subsection 2.2.
The superscript in the notation is intended to indicate the number of legs; the
subscripts in the cases of B and C will be explained in Subsections 3.1 and 3.3.
With the same line of logic, families A3,B3

4 and C3
6 could also be defined, but

these graphs already appear as (e) (with p = 0), (d) (with r = 0) and (f) of
Figure 1.)

According to [6], normal complex surface singularities corresponding to the
resolution trees in QHD3 are all taut, that is, the resolution graph uniquely de-
termines the analytic structure of the corresponding singularity. Since for any
star-shaped negative definite plumbing tree of spheres there is a weighted ho-
mogeneous singularity with that resolution graph [14, Theorem 2.1], the unique
singularity above is necessarily weighted homogeneous. The first main result of
the paper is

Theorem 1.4 Suppose that SΓ is a small Seifert singularity with link YΓ .
Assume that Γ is a minimal good resolution graph of SΓ , and therefore a
negative definite star-shaped tree with three branches. Then the following three
statements are equivalent:

(1) The singularity SΓ admits a QHD smoothing.

(2) The Milnor fillable contact structure on YΓ admits a weak symplectic
QHD filling.

(3) The graph Γ is in QHD3 .

For star-shaped diagrams with more than three branches the analytic type of
the singularity is not determined by the graph itself, hence the formulation of
our result needs a little more care.

Definition 1.5 Define QHD4 as the union of all graphs given by Figures 2(a),
(b) and (c) for n ≥ 2 in each case.

According to [6], the analytic type of a normal surface singularity with resolu-
tion graph in QHD4 is determined by the analytic type of the four intersection
points of the central curve C with the branches, or equivalently, by the cross
ratio of these four points in C . In particular, all normal surface singularities
with these resolution graphs are weighted homogeneous. With these remarks
in place, we are ready to state the second main result of the paper.
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....
−2

−2

−2

−2

−2

−2

p  (−2)’sp  (−2)’sp  (−2)’s

−3 −4

−4

−3

−(p+2)

−6

−3

−3

−(p+2)

−2

−3

−3

−3

−4

−(p+2) (c)(b)(a)

−2 −2−3

Figure 2: The graphs of (a) define the class A4 , graphs of (b) give the class
B4 , while the graphs of (c) give C4 (in all these cases we assume p ≥ 0).
The union of the above specified classes is, by definition, QHD4 . Once again,
the superscript in the notation records the number of legs of these star-shaped
graphs.

Theorem 1.6 Suppose that Γ is a minimal, star-shaped plumbing tree with
at least four branches, and the framing (i.e. weight) of the central vertex is less
than −2. Then the following statements are equivalent.

(1) There is a Seifert singularity SΓ with resolution graph Γ which admits a
QHD smoothing.

(2) The Milnor fillable contact structure on YΓ admits a weak symplectic
QHD filling.

(3) The graph Γ is in QHD4 .

Remarks 1.7 (a) The assumption on the framing of the central vertex in
Theorem 1.6 is needed for our methods to work. In particular, a (−2)–framed
central vertex with four legs provides a (−2)–curve in the dual configuration,
hence the blow-down operation indicated by the dashed circles of Figures 11,
12 and 13 cannot be started. By accident, this assumption on the framing
of the central vertex implies no constraint on the holomorphic result, since a
normal surface singularity with QHD smoothing is necessarily rational, hence
the resolution graph does not admit a vertex for which the absolute value of
the framing is strictly less than the valency of the vertex minus 1. The question
of whether the Milnor fillable contact structure on the link of a normal surface
singularity with star-shaped resolution tree, at least four branches and central
framing −2 admits a weak symplectic QHD filling is still open.

(b) The above theorems concern exclusively the cases when the resolution
graph is star-shaped. No example of a normal surface singularity with non-
star-shaped minimal good resolution graph which admits a QHD smoothing is
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known. Partial results regarding the nonexistence of QHD smoothings follow
from [4, 16, 18], but the lack of a convenient and general compactifying divisor
prevents us from treating the general case with methods similar to the ones
applied in the present paper.

The idea of the proof of the main results can be summarized as follows. First
of all, the implication (1) ⇒ (2) in both theorems follows from the general
principle that any smoothing of a singularity is a weak symplectic filling of the
Milnor fillable contact structure on the link of the singularity. The implica-
tion (3) ⇒ (1) (which was mostly already verified in [16]) in both statements
requires the construction of QHD fillings; in the cases not covered by [16] we
will apply the method of smoothings of negative weight. In order to prove
(2) ⇒ (3) we need to show that for any star-shaped resolution graph outside
QHD3 and QHD4 the Milnor fillable contact structure admits no symplec-
tic QHD filling. These nonexistence results rely on deep symplectic geometric
theorems (most importantly on McDuff’s result regarding symplectic manifolds
containing symplectic spheres of self-intersection number 1) and tedious combi-
natorial arguments. In principle these arguments could be extended to classify
other types of symplectic fillings, but the combinatorics (which is already quite
delicate for the case of QHD fillings) can become extremely complex to handle.

Finally a few words about the use of symplectic geometry. In order to show that
certain singularities do not admit QHD smoothings, we will apply the following
strategy: first we will construct a fixed symplectic manifold for the singularity
at hand (which we will call the compactifying divisor) and glue the hypothe-
sized QHD weak symplectic filling to it in a symplectic manner. In the resulting
closed symplectic manifold we then locate a curve configuration, which will lead
to some geometric contradiction unless the singularity had resolution tree from
QHD3 or QHD4 . Although both the compactifying divisor and the hypoth-
esized smoothing are holomorphic objects, we do not know any holomorphic
way to glue them together to obtain a globally holomorphic closed manifold,
on which then algebro-geometric methods would be applicable. An alternative,
algebraic geometric compactification of the smoothings can be achieved by ap-
plying the method of deformations of ‘weight less than or equal to zero’. As
we were informed by J. Wahl [19], the necessary results can be proved using
delicate methods of complex algebraic geometry and singularity theory. From
that point on, the adaptation of our combinatorial arguments follow in a fairly
straightforward manner. We decided to use the symplectic geometric methods,
since in this way the resulting theorem becomes stronger in the aspect of getting
obstructions even for the existence of QHD weak fillings. Also, by completing

6



the arguments in the symplectic setting, our result shows yet another instance
where objects behave in a parallel manner in the complex analytic and in the
symplectic category.

The paper is organized as follows. In Section 2 the symplectic geometric prelim-
inaries used in the proofs of the main results are listed, together with a quick
outline of the ideas employed in the later arguments. Section 3 deals with
small Seifert singularities, i.e., with those singularities which have star-shaped
minimal good resolution graphs with three branches. Finally, in Section 4, we
address the general case of spherical Seifert singularities.

Acknowledgements: AS was supported by the Clay Mathematics Institute
and by OTKA T67928. Both authors acknowledge support by Marie Curie
TOK project BudAlgGeo. We would like to thank Ron Stern for many useful
correspondences and Jonathan Wahl for helping us with the smoothing theory
of normal surface singularities and suggesting important improvements and
corrections in the text. Finally, we would like to thank the anonymous referee
for useful comments and corrections.

2 Preliminaries

2.1 Symplectic geometric preliminaries

Our results rely on the following fundamental theorem due to McDuff.

Theorem 2.1 (McDuff, [7, Theorem 1.4]) Let (M,ω) be a closed symplec-
tic 4-manifold. If M contains a symplectically embedded 2-sphere L of self-
intersection number 1, then M is a rational symplectic 4-manifold. In partic-
ular, M becomes a the complex projective plane after blowing down a finite
collection of symplectic (−1)-curves away from L .

The following two lemmas are based on the above theorem of McDuff and the
details of the proofs can be found in [1]:

Lemma 2.2 (Cf. [1, Lemma 2.13]) Let (M,ω) be a closed symplectic 4-
manifold containing a symplectically embedded 2-sphere L of self-intersection
number 1 and a collection of symplectically immersed 2-spheres C1, . . . , Ck .
Suppose that J is a tame almost complex structure for which L , C1, . . . , Ck are
pseudoholomorphic. Then there exists at least one J -holomorphic (−1)-curve
in M \ L unless L · Ci > 0 and Ci · Ci = (L · Ci)

2 for all i .
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Lemma 2.3 ([1, Lemma 2.5]) Let M be a closed symplectic 4-manifold con-
taining a symplectically embedded 2-sphere L of self-intersection number 1.
If C is an irreducible singular or higher genus pseudoholomorphic curve in M ,
then C · L ≥ 3. In particular there are no irreducible singular or higher genus
pseudoholomorphic curves in M \ L .

This lemma has the following simple corollary.

Corollary 2.4 Let M be a closed symplectic 4-manifold containing a sym-
plectically embedded 2-sphere L of self-intersection number 1. Then there is
no cycle of pseudoholomorphic spheres in the complement L .

Proof If such a cycle existed, by gluing adjacent components around the nodes
we would be able to construct an embedded pseudoholomorphic curve of genus
1 which would contradict Lemma 2.3.

Another fact which we will frequently use is that for any almost complex struc-
ture J on a 4-manifold X any intersection point of two J -holomorphic curves
C1 and C2 contributes positively to the algebraic intersection number C1 ·C2 .

The next lemma easily follows from McDuff’s Theorem 2.1.

Lemma 2.5 Let M be a closed symplectic 4-manifold containing a symplec-
tically embedded 2-sphere L of self-intersection number 1. Then there is no
symplectically embedded sphere of nonnegative self intersection number in the
complement of L .

Proof Since M is rational, it follows that b+2 (M) = 1, immediately implying
the lemma. (Notice that a symplectic sphere of any self-intersection — including
0 — is homologically essential.)

Lemma 2.6 Suppose that C ⊂ CP2 is a J -holomorphic curve for some tame
almost complex structure J , in the homology class [C] = d[CP1] , and C has
at least two singular points. Then d ≥ 4.

Proof The J -holomorphic line passing through two singular points intersects
C with multiplicity at least 4, providing the result.

We record here the following fact which we will apply repeatedly in the sequel:
By the adjunction formula, a pseudoholomorphic rational curve representing the
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class 3[CP1] in CP2 must be either immersed with exactly one node (that is a
point where two branches of the curve intersect transversely) or it must have
exactly one nonimmersed point which is necessarily a (2, 3)-cusp singularity.
(Here a pseudoholomorphic curve in a 4-manifold is said to have a (2, 3)-cusp
singularity if there is a parametrization around the singular point in which the
curve has the form (z2, z3) + O(4), see [8].) In conclusion, the link of such a
curve around its singular point is either connected (and is the trefoil knot) or
has two components (and is the Hopf link).

2.2 The families A,B and C

The three inductively defined families A,B, C of graphs found in [16] will play
a central role in our subsequent arguments. For the sake of completeness, we
shortly recall the definition of these families below.

Let us define A as the family of graphs we get in the following way: start with
the graph of Figure 3(a), blow up its (−1)-vertex or any edge emanating from
the (−1)-vertex and repeat this procedure of blowing up (either the new (−1)-
vertex or an edge emanating from it) finitely many times, and finally modify the
single (−1)-decoration to (−4). Depending on the number and configuration of
the chosen blow-ups, this procedure defines an infinite family of graphs. Define
B similarly, this time starting with Figure 3(b) and substituting (−1) in the
last step with (−3), and finally define C in the same vein by starting with
Figure 3(c) and putting (−2) in the place of (−1) in the final step.

(a) (c)(b)

−3 −1 −3

−3

−2 −1 −6

−3

−2 −1 −4

−4

Figure 3: Nonminimal plumbing trees giving rise to the families A,B and C .

The starting point of the proofs of Theorems 1.4 and 1.6 rests on the main
result of [16] which can be summarized as follows. Recall the definitions of
W,M,N from Remark 1.3 and let G denote the set of plumbing chains with
framings determined by the negatives of the continued fraction coefficients of

the rational numbers of the form p2

pq−1
for all 0 < q < p and (p, q) = 1.

Theorem 2.7 ([16]) Suppose that Γ is a minimal, negative definite plumbing
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tree. If it gives rise to a surface singularity SΓ admitting a QHD smoothing,
or if the Milnor fillable contact structure on the corresponding plumbing 3-
manifold YΓ admits a QHD filling then Γ is in G ∪W∪N ∪M∪A∪B∪C .

2.3 Outline of the proof of (2) ⇒ (3) in the main theorems

Suppose that Γ is a graph of the type considered in Theorems 1.4 or 1.6.
Let YΓ denote the associated plumbed 3-manifold and ξΓ the unique Milnor
fillable contact structure on YΓ . According to Theorem 2.7, if (YΓ, ξΓ) admits a
symplectic QHD filling then Γ must be in W∪N ∪M∪A∪B∪C . Since by [16,
Section 8] the singularities corresponding to graphs in W∪N ∪M admit QHD
smoothings, the corresponding links admit symplectic QHD fillings. Therefore
we only need to consider star-shaped graphs in A∪B∪C ; let Γ be such a graph
with s legs ℓ1, . . . , ℓs and with central framing −b . Suppose that the framing
coefficients along the leg ℓi are given by the negatives of the continued fraction
coefficients of ni

mi

> 1. Consider then the “dual” graph Γ′ which is star-shaped
with s legs ℓ′1, . . . , ℓ

′
s , central framing b− s , and framings along leg ℓ′i given by

the negatives of the continued fraction coefficients of ni

ni−mi
. Let WΓ and WΓ′

denote the corresponding plumbing 4-manifolds.

Lemma 2.8 (Cf., for example, [16]) Suppose that Γ,Γ′ are star-shaped plumb-
ing trees as above. The boundary of WΓ is orientation preserving diffeomorphic
to the link YΓ , while ∂WΓ′ = −YΓ . In addition, WΓ ∪WΓ′ is a 4-manifold dif-
feomorphic to CP2#mCP2 for some positive integer m .

Proof (sketch) Consider the Hirzebruch surface Fb with zero-section of self-
intersection −b (and hence with infinity-section of self-intersection b). Fix s

distinct fibres of the CP1 -fibration and blow up the intersection points of these
fibres with the infinity-section. After the appropriate sequence of blow-ups we
can identify in the resulting rational surface a configuration of curves intersect-
ing each other according to Γ, and it is easy to see that the complementary
curves will intersect each other according to Γ′ . Since the curves intersecting
according to the graph Γ admit an ω -convex neighbourhood (with the symplec-
tic form ω being the Kähler form on the Hirzebruch surface), with the Milnor
fillable contact structure as induced structure on the boundary, the complement
(diffeomorphic to WΓ′ ) provides a strong concave filling of (YΓ, ξΓ). Since the
complement is also a regular neighbourhood of a configuration K of curves
(intersecting each other according to Γ′ ), we will refer to K (and sometimes,
with a slight abuse of notation, to the regular neighbourhood WΓ′ ) as the com-

pactifying divisor.
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Suppose now that X is a weak symplectic QHD filling of (YΓ, ξΓ). Since YΓ is a
rational homology 3-sphere, we can perturb the symplectic structure on X in a
neighbourhood of the boundary so that it becomes a strong symplectic filling of
(YΓ, ξΓ). Glue X and WΓ′ along YΓ to obtain a closed symplectic 4-manifold
Z . Let k denote the number of irreducible components of the compactifying
divisor K . Then since WΓ′ is a regular neighbourhood of K , we have that
b2(WΓ′) = k . Since X is a QHD, it follows that b2(Z) = k .

In all cases that we consider, it turns out that K (after, possibly, some blow-
downs) contains a component which is a sphere that is embedded in WΓ′ ⊂ Z

with self intersection number 1. (This is the step when the assumption Γ ∈
A∪B∪C , and the constraint of Theorem 1.6 on the framing of the central vertex
become crucial.) Let L denote one such component. By McDuff’s Theorem 2.1,
we conclude that Z is a rational symplectic 4-manifold and hence diffeomorphic
to CP2#(k−1)CP2 . In fact, McDuff’s Theorem implies that for a generic tame
almost complex structure J , in the complement of L we can find k−1 disjoint
embedded symplectic 2-spheres with self-intersection number −1 (we will refer
to these as symplectic (−1)-curves), and after blowing these down we obtain
CP2 . However, we would like to understand how the other components of K

descend under the blowing down map. We thus proceed as follows.

We choose a tame almost complex structure J on Z with respect to which all
the curves in K are pseudoholomorphic. We assume that J is generic among
those almost complex structures for which K is J -holomorphic. Appealing to
Lemma 2.2 we can find a pseudoholomorphic (−1)-curve E in Z disjoint from
L . By perturbing the almost complex structure J if necessary, we can assume
that E intersects each component of K transversely and does not pass through
any point where two or more components of K intersect. We choose a maximal
family {Ej} of such pseudoholomorphic (−1)-curves which are disjoint from L

and blow them down. Let Z ′ denote the resulting symplectic 4-manifold.

By [10, Lemma 4.1], we can find a tame almost complex structure J ′ on Z ′

with respect to which the images of all the components of K are pseudoholo-
morphic. We will again be in the situation where we have a closed symplectic
4-manifold containing a symplectically embedded 2-sphere of self-intersection
number 1 and a collection of symplectically immersed 2-spheres (the images of
the components of K − L). Let K ′ denote the image of K under the blowing
down map. If K ′ contains a curve disjoint from L (as will always be the case
in the situations we consider), then we can again appeal to Lemma 2.2 and find
a pseudoholomorphic (−1)-curve E′ in Z ′ \ L .

11



Note that E′ must be a component of K ′ . Indeed, assume to the contrary that
E′ is not a component of K ′ . Perturbing the almost complex structure slightly,
we may assume that E′ does not pass through the images of the blown-down
(−1)-curves Ej . Hence we may assume that E′ is actually a pseudoholomorphic
(−1)-curve already in Z \ L , which contradicts the maximality of {Ej}.
By suitably perturbing the almost complex structure, we can arrange that E′

intersects each component of K ′−E′ transversely and it does not pass through
any point where two or more components of K ′ − E′ meet. We then blow
down E′ . Let Z

′′

denote the resulting ambient symplectic 4-manifold and K
′′

denote the image of K ′ .

As before, we can again check that there are no pseudoholomorphic (−1)-curves
in Z

′′

except possibly for some components of K
′′

. Perturbing the almost com-
plex structure as before, blowing down these pseudoholomorphic (−1)-curves
and proceeding in this way, we must eventually obtain CP2 together with a
symplectically embedded 2-sphere of self-intersection number 1 and a collec-
tion of symplectically immersed 2-spheres. Since we are assuming that X is
a QHD, it follows that we must obtain CP2 after k − 1 blow downs and the
configuration K must descend to a valid configuration in CP2 . This places
strong restrictions on the combinatorial structure of K : all components of K

which are disjoint from L must be blown down at some point of this procedure
(so in particular they must become (−1)-curves at some earlier point), while a
component K0 of K intersecting L must become a J -holomorphic submanifold
of CP2 of degree K0 ·L . This condition, for example, determines the homolog-
ical square of the image of K0 in CP2 , and for low degrees it also determines
the topology of the result. For most graphs Γ we will reach a homological
contradiction at some point of this procedure, showing the nonexistence of the
hypothesized QHD filling X .

3 Small Seifert singularities

By Theorem 2.7 and by the fact that all graphs in W ∪N ∪M are known to
admit QHD smoothings [16], we only need to examine the three-legged graphs
in A∪ B ∪ C . The discussion will be given for each of these classes separately;
for technical reasons we start with the case of graphs in C .

12



3.1 Graphs in C

Recall that graphs in C are defined by repeatedly blowing up the basic config-
uration shown by Figure 3(c) and then replacing the (−1)-framing with (−2).
To get three-legged graphs, we only blow up edges emanating from the (−1)-
vertex. There are three cases we distinguish depending on which edge we blow
up in the first step in the basic example. The index of the subfamily records the
(negative of the) framing of the leaf to which the first blown up edge points. No-
tice that the families C3

2 and C3
3 defined by the graphs of (i) and (j) of Figure 1

are subfamilies of C2 and C3 , respectively.

The family C6 : Consider the generic member of the family C6 depicted in
Figure 4(a). The dual graph (after possibly repeatedly blowing up the edge
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Figure 4: The generic graph, its dual, and the configuration of curves after 3
blow-downs in the family C6 .

emanating from the central vertex towards the long leg until the central framing
becomes −1) has the shape given by Figure 4(b). Blowing down the central ver-
tex together with the two (−2)’s (encircled by the dashed circle in Figure 4(b)),
we arrive at the diagram of Figure 4(c); here the curves are symbolized by arcs,
and the intersection of two arcs means that the two corresponding curves in-
tersect each other. (The dashed arc of Figure 4(c) will be relevant only at
some later point of the argument.) The resulting (+1)-curve will be denoted
by L , while the curves of the long leg (with framings c, c1, . . . , ck ) will become
D,C1, . . . , Ck , respectively. The tangency between D and L is a triple tan-
gency. (We use a straight line to indicate L and a cubic curve to picture D ,
which eventually will become a singular cubic in CP2 .) Since bn ≤ −6, it is
easy to see that k ≥ 3. Notice also that ci ≤ −2 once i ≥ 1 and c is negative.
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By gluing this compactifying divisor to a potentially existing QHD filling X

we get a closed symplectic manifold Z with b2(Z) = k + 2. The symplectic
4-manifold Z obviously contains a symplectic (+1)-sphere (namely, the curve
L), hence it follows by McDuff’s Theorem 2.1 that Z is a rational symplectic
4-manifold, that is, a symplectic blow-up of CP2 at a finite number of points,

hence Z is diffeomorphic to CP2#(k + 1)CP2 . By repeated applications of
Lemma 2.2, we can blow down the pair (Z,L) to obtain (CP2, line), while pre-
serving the pseudoholomorphicity of the images of D,C1, . . . , Ck . Since the
curves C1, . . . , Ck in the chain are disjoint from the (+1)-curve L and are ho-
mologically essential, we must blow them down, while the curve D will descend
to a cubic curve in CP2 . Since the resulting cubic curve will be the image of a
rational curve, it necessarily must contain a singular point. The above observa-
tions imply, therefore, that there is a unique additional (−1)-curve E in Z for
the chosen almost complex structure, which we have to locate in the diagram.
Since J -holomorphic curves intersect positively, the geometric intersections in
these cases can be computed via homological arguments.

Proposition 3.1 Under the above circumstances the exceptional divisor E

must intersect the curve D and the curve Ck in the chain in one point each.
Consequently, the framings should satisfy ci = −2 for i = 1, . . . , k and c = −k+
2. In particular, the resolution graph of the singularity (given by Figure 4(a))
must be of the form given in Figure 1(f).

Proof Let JK denote the nonempty set of tame almost complex structures
on Z with respect to which all the curves of K = L ∪ D ∪ C1 ∪ . . . ∪ Ck are
pseudoholomorphic. Choose an almost complex structure J which is generic
in JK . If we blow down all J -holomorphic (−1)-curves away from L , we can
show that the chain C1, . . . , Ck is transformed into a configuration of curves
which can be sequentially blown down. There must be precisely one (−1)-curve
E in the complement of L which is not contained in the chain C1, . . . , Ck ; this
(−1)-curve E must intersect the chain to start its sequential blow-down. E also
must intersect the curve D at least once, since (as D has intersection number
3 with the (+1)-curve L) D will become a singular cubic curve in CP2 . By
Corollary 2.4 the curve E cannot intersect the long chain twice. With a similar
argument we can see that it can intersect the chain only in its endpoints: if it
intersects the chain in a curve Ci which is not at one of its ends, then blowing
down E we get a curve C ′

i which now intersects D and two further curves in
the chain. When we blow down C ′

i , the two neighbours will pass through the
same point of D . If, now, the image of Ci−1 is the next curve of the chain to
get blown down, then the images of all curves in the portion C1, . . . , Ci−1 of the
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chain must get blown down before the image of the curve Ci+1 is blown down.
Otherwise, we will get a singular point on the image of D and at least one
further curve of the chain passing through through that singular point. After
a slight perturbation of the almost complex structure, when (the image) of one
of these curves is eventually blown down we will get a further singular point on
the image of D , which (with the aid of Lemma 2.6) provides a contradiction.
However, after the images of C1, . . . , Ck−1 are blown down, the image of D

will become singular, and the same argument again provides a contradiction.
If the image of Ci+1 is the next curve of the chain to get blown down after
C ′
i , then, as before, we can argue that the images of all curves in the portion

Ci+1, . . . , Ck of the chain must get blown down before the image of the curve
Ci−1 is blown down. If i > 3, then, when the image of Ci−1 is blown down, we
will get a contradiction as before. If i = 3, then, when image of Ci−1 is blown
down, we will obtain a singular point on the image of D which has multiplicity
greater than 2 and hence its link will not be the trefoil knot or the Hopf link,
a contradiction.

If E intersects the chain on its end near D , then after the second blow-down
D develops a transverse double point singularity, and the further blow-downs
then create more singular points (in the spirit of the argument above), leading
to a curve which cannot represent three times the generator in the complex
projective plane. Hence the only possibility for the (−1)-curve E is to intersect
the chain at its farther end, and intersect D once (as shown by the dashed curve
E of Figure 4(c)). In order to blow down all the curves in the chain we must
have ci = −2 for i = 1, . . . , k , and since the self-intersection of D will become
9 after all the blow-downs, we derive c = −k + 2. With this last observation,
and a simple computation of the dual graph, the proof is complete.

The family C3 : The generic member of this family is given by Figure 5(a),
together with the dual graph and the result of the triple blow-down. (Once
again, we disregard the dashed arcs of Figure 5(c) momentarily.) By gluing
the compactifying divisor given by Figure 5(c) to a potentially existing QHD
filling X we get a closed symplectic manifold Z , and a simple count shows that
b2(Z) = k + 5. The symplectic 4-manifold Z obviously contains a symplec-
tic (+1)-sphere (namely, the curve L), hence, by McDuff’s Theorem 2.1, Z

is diffeomorphic to CP2#(k + 4)CP2 . By repeated applications of Lemma 2.2,
we can blow down the pair (Z,L) to obtain (CP2, line), while preserving the
pseudoholomorphicity of the images of D,C1, . . . , Ck, B1, B2 . Since the curves
C1, . . . , Ck and B1, B2 are disjoint from the (+1)-curve L and are homologi-
cally essential, we must blow them down. This means that there are two further
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Figure 5: The generic graph, its dual, and the configuration of curves after 3
blow-downs in the family C3 . The curves E1, E2 are only shown for the first
possibility given by Proposition 3.2.

(−1)-curves E1 and E2 which we have to locate in the diagram. For a generic
almost complex structure these curves will be (−1)-curves disjoint from each
other. Since both B1 and B2 have to be blown down (being disjoint from
the (+1)-curve L), one of them must intersect one of the (−1)-curves, say
E1 . Since the complement of the (+1)-curve does not contain homologically
essential spheres with nonnegative square, E2 then cannot intersect any of the
Bi .

Proposition 3.2 Under the above circumstances, the existence of a QHD
smoothing X implies that E2 intersects D and Ck , and E1 either intersects
B1 and D or B2 and C1 . The self-intersections in these two cases are c = −k−1
and c1 = . . . = ck = −2 or c = −k + 2, c1 = −5 and c2 = . . . = ck = −2. In
particular, the resolution graph in the first case is given by Figure 1(j), while
in the second case by Figure 1(d) (with q = k − 4 and r = 2).

Proof Case I: Suppose that E1 · B1 > 0. After three blow-downs the curve
G becomes a (+1)-curve, so it cannot be blown down any further: in CP2 it
will be a curve intersecting the (+1)-curve once, hence it will be a line with
self-intersection number 1. Therefore, to prevent further blow-downs along the
points of the vertical curve, E2 ·G = 0 and E1 must be disjoint from the long
chain. So E2 must intersect the long chain, and since the whole chain must
be blown down, a simple adaptation of the proof of Proposition 3.1 gives that
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the only possibility for E2 is the one described in the statement. Notice that
the images of G and D must intersect each other three times after all curves
have been blown down, which can be achieved only if E1 intersects D exactly
once. (Recall that E2 must stay disjoint from G.) This argument shows that
the only possibility for E1 and E2 (under the assumption E1 ·B1 > 0) is given
by the dashed lines of Figure 5(c), providing the first set of values of c and ci .

Case II: Suppose now that E1 · B2 > 0. Then after three blow-downs the
vertical curve G becomes a 0-curve, so either (a) E2 intersects G or (b) E1

intersects a further (−1)-curve in the chain (after it has been partially blown
down). If E1 intersects B2 and E2 intersects G then none of the Ei intersect
the chain, and since the chain is nonempty, this provides a contradiction.

Therefore E1 should intersect the long chain, and it should intersect it in the
last curve to be blown down from there. Suppose that E1 · Ci = 1. Then E1

cannot intersect D , since otherwise after blowing down E1 , then sequentially
blowing down the images of B2 and B1 , C ′

i (the image of Ci ) will intersect
the image of D at least three times (counting with multiplicity). When (the
image of) C ′

i is eventually blown down, the image of D will gain a singularity
which is not permitted for a cubic in CP2 . This shows that E2 has to intersect
the chain (and start the sequence of blow-downs) and it also has to intersect D

to get a singularity on it. Furthermore, we also know that E2 must be disjoint
from G. The argument of Proposition 3.1 shows that E2 must intersect the
long chain at its farther end and also D . As usual, the framings are dictated
by the fact that all curves in the complement of the (+1)-curve must be blown
down, leading to the second set of values of c and ci . By determining the dual
graphs, the proof is complete.

The family C2 : The generic case in this family is shown by Figure 6(a). The
usual simple calculation shows that by assuming the existence of a QHD filling
for (YΓ, ξΓ) we have to locate two (−1)-curves in the diagram, which we will
denote by E1 and E2 . Since the curves A2, A3 and A4 must be blown down
at some point in the blow-down procedure, one of the (−1)-curves (say E1 )
should intersect A2 ∪A3 ∪A4 .

Proposition 3.3 In the situation under examination, the existence of a QHD
filling implies that E2 intersects D and Ck , while E1 either intersects A2 and
D or A4 and C1 or A4 and C2 . The framings in the three cases are given by
c = −k − 2 and c1 = . . . ck = −2, or c = −k + 3, c1 = −5, c3 = −3 and
c2 = c4 = . . . = ck = −2, or c = −k + 2, c2 = −6 and c1 = c3 = . . . ck = −2.
In particular, the resolution graph is as one of the graphs given by Figure 1(i)
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Figure 6: The generic graph, its dual, and the configuration of curves after 3
blow-downs in the family C2 . The curves E1, E2 are shown only for the first
possibility given by Proposition 3.3.

in the first case, by Figure 1(g) (with p = 0, r = 2, q = k − 4) in the second,
and by Figure 1(e) (p = 3, q = k − 4) in the third.

Proof Notice first that E1 cannot intersect A3 (otherwise we will have a self-
intersection 0 curve in the complement of L , contradicting Lemma 2.5); hence
we have two cases to examine.

Case I: Suppose that E1 · A2 > 0. In this case, after four blow-downs, the
self-intersection of A1 becomes 1, which cannot go any higher, since in CP2

the curve A1 will become a line. Therefore E1 must be disjoint from the chain
and E2 must be disjoint from all the Ai ’s. In order for the image of A1 to
intersect D three times, E1 must intersect D . Since E2 is disjoint from all
the Ai ’s, and it starts the blow-down of the chain, and is responsible for the
singularity on D , the usual argument presented in the proof of Proposition 3.1
locates it. In conclusion, the only possibility for the framings is the one given
by the statement.

Case II: Suppose now that E1 intersects A4 . After blowing down E1 , and then
sequentially blowing down the images of A4, A3 and A2 , the self-intersection
of A1 will increase to −1. In order to increase it to 1 we have a number of
possibilities.
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(i) E1 ·Ci = 0 for all i , i.e., E1 is disjoint from the chain. In this case E2 must
intersect A1 and also the last curve we blow down in the chain. Since then
there is no further curve starting the blow-down of the chain, this can happen
only if the chain has a single element. If E2 is disjoint from D , then after all
blow-downs have been carried out D remains smooth, which is a contradiction.
Therefore E2 must intersect D . Blowing down E2 and then the elements in
the chain we get that the image of A1 passes through D three times. Therefore
E1 must be disjoint from D . Computing the self-intersections, however, we see
that the curve with framing c (giving rise to D , which will become of self-
intersection 9) must have self-intersection c = 1 in the dual graph, which is a
contradiction.

(ii) Assume now that E1 intersects the chain in the curve we will blow down
last. This implies that E2 should intersect A1 , but since the blow-down of
E1 (together with the last curve in the chain) increases the self-intersection of
A1 by two, E2 must be disjoint from the chain. Therefore, once again, the
chain must be of length one. Performing the blow-downs, we conclude that D

remains smooth and the images of D and A1 will intersect each other only
twice, hence this case does not occur.

(iii) Finally, it can happen that E1 intersects the chain in the penultimate
curve to get blown down. Then E2 should be disjoint from the Ai ’s, and since
the singularity on D cannot be caused by blowing down E1 , we need that E2

intersects D . The usual argument given in the proof of Proposition 3.1 shows
the position of E2 , leading to two configurations, depending on whether the
last curve to be blown down is next to D or is one off. The resulting framings
in these two cases are then the ones given by the proposition.

3.2 Graphs in A

For three-legged graphs in A there is no need for further subdivisions since the
legs in this case are symmetric. As usual, the generic member of the family
is shown by Figure 7(a). The usual simple count shows that if we assume the
existence of a QHD filling, then we have to find two (−1)-curves E1, E2 in
Figure 7(a). The curve A is of self-intersection (−2), and will become a line in
CP2 , hence must be hit by one of the (−1)-curves, say by E1 .

Proposition 3.4 In this case, the curve E2 intersects D and Ck , while E1

intersects either A and C1 or A and C2 . The corresponding framings in both
cases are c = −k + 2, c2 = −3 and c1 = c3 = . . . ck = −2. In particular, the
resolution graph is of the form of Figure 1(e) with p = 0.

19



��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
������������ ����

�
�
�
�
�

�
�
�
�
� ������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����������������������������

−3

b
1

−2

−2

−2

−1−3 −2 c ckb bn c 1.... ....

−2

A

....
c

k

c1

E

E

1

2

L+1

c+3D

(a) (b)

(c)

Figure 7: The generic graph, its dual, and the configuration of curves after
3 blow-downs in the family A . Another possibility for E1 in (c) allowed by
Proposition 3.4 is the curve which intersects A and C2 (instead of C1 ). As
usual, we do not depict this second possibility.

Proof We are assuming that E1 intersects A . If E2 also intersects A , then
only one of them (say E2 ) can intersect the long chain, and only in the last
curve to be blown down, so we cannot start the blow-down process on the chain
unless it is of length one. We show that this case never occurs. In fact, to
create the singularity on D , the (−1)-curve E2 must intersect it, and so by
blowing down E2 and the unique element in the chain, we get that the resulting
A and D will intersect each other three times, hence E1 must be disjoint from
D . The self-intersection of the resulting singular cubic (which must be equal
to 9) is c + 8, implying that c = 1, which contradicts the fact that it should
be negative. Therefore E2 cannot intersect A , and so it must intersect the
long chain, and to create the singular point on D it must also intersect that
curve. The usual argument already discussed in Proposition 3.1 shows that E2

can intersect the chain only in Ck . In order to raise the self-intersection of A

from −2 to 1 we need that E1 intersect the chain in the penultimate curve to
be blown down. Since after the blow-downs the image of A will pass through
the singular point of D , E1 must be disjoint from D . The two very similar
possibilities for the (−1)-curves (differing only in the position of the E1 -curve)
result the same set of framings, hence the same set of resolution graphs.
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3.3 Graphs in B

Similarly to the case of C , the study of three–legged graphs in the family B falls
into two subcases, of B4 and B2 , depending on the choice of the first blow-up.
The family B3

2 defined by (h) of Figure 1, for example, is a subfamily of B2 .

The family B4 : The generic member of this family (together with the dual
graph and the configuration of curves after three blow-downs) is shown in Fig-
ure 8. The usual count of curves shows that we need to locate two (−1)-curves,
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Figure 8: The generic graph, its dual, and the configuration of curves after 3
blow-downs in the family B4 .

denoted by E1 and E2 . It is clear that one of them, say E1 , must intersect G

in order to increase its self-intersection to 1.

Proposition 3.5 Under the above hypotheses, the existence of a QHD filling
implies that E2 intersects D and Ck , while E1 intersects G and C1 . The
corresponding framings are c = −k + 2, c1 = −3 and c2 = . . . ck = −2. In
particular, the resolution graph is of the form given by Figure 1(d) with r = 0.

Proof If E2 also intersects G then both E1 and E2 must be disjoint from
the chain, hence it cannot be blown down. Therefore we can assume that E2 is
disjoint from G, and therefore E1 must intersect the chain in the last curve to
be blown down. The curve E1 must be disjoint from D , since if E1 intersects
D then after two blow-downs the curves resulting from G and D will intersect
at least four times, giving a contradiction. Therefore E1 must be disjoint from
D , hence E2 intersects the configuration of curves as is found in the proof of
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Proposition 3.1. The only possibility for the framings is the one given by the
proposition.

The family B2 : The graphs (with their duals, and the curve configuration
we get by the three blow-downs) are shown in Figure 9. The usual curve
count shows that for identifying a QHD filling we must find three (−1)-curves
E1, E2, E3 in the diagram. Suppose that E1 intersects G.

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

����

�
�
�
�
��
��
��
��

�
�
�
�

����

��
��
��
��

�
�
�
�

����

��
��
��
��
�
�
�
�

��
��
��
�������������� ����

�
�
�
�
�

�
�
�
�
� ����

����������������������������

b
1

−2

−2

−2

−4

−4 −2−2 cb b
n −2.... ....−1 c1 c

k

G

−1 −2

−2
A2

A1

ck
c1 ....

E

E 3

2
E1

L+1

(a) (b)

(c)

D c+3

Figure 9: The generic graph, its dual, and the configuration of curves after 3
blow-downs in the family B2 . The curves E1, E2 of (c) correspond to the first
possibility listed by Proposition 3.6.

Proposition 3.6 Under the circumstance described above, from the existence
of a QHD filling it follows that either

• the curve E3 intersects D and Ck , E2 intersects C1 and A1 and E1

intersects G, D and A2 and therefore the framings satisfy c = −k ,
c1 = −3 and c2 = . . . = ck = −2, or

• E3 intersects D and Ck , E2 intersects A2 and C2 , and E1 intersects G

and C1 and therefore the framings are given as c = −k + 2, c1 = −3,
c2 = −4, c3 = . . . = ck = −2, or

• E3 intersects D and Ck , E2 intersects A2 and C1 , and E1 intersects G

and C2 and the framings are c = −k + 2, c1 = −3, c2 = −4, c3 = . . . =
ck = −2.

In particular, the resolution graph is of the form of Figure 1(h) in the first case
and of Figure 1(g) (with p = 1, r = 0, q = k− 4) in the second and third cases.
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Proof Since G has self-intersection −1 and it intersects the curve L once,
its self-intersection must increase to 1, hence either another (−1)-curve, say
E2 , intersects G or E1 intersects either A2 or the chain. Note that E1 cannot
intersect both A2 and the chain, since if E1 ·Ci = 1 and E2 ·A = 1, then after
E1 and the image of A2 are blown down the image of Ci will become tangent
to the image of G. When the image of Ci is eventually blown down, the image
of G will gain a singularity, which is impossible for a line in CP2 .

Case I: E2 · G = 1. In this case both E1 and E2 must be disjoint from
A2 and the chain, hence E3 intersects both A2 and the chain. Also, since
G and A1 will intersect after the blowing down process has been carried out,
E1 or E2 (say E1 ) must intersect A1 . After blowing down the Ei ’s and the
image of A2 , the self-intersection of A1 will already be zero, hence E3 can only
intersect the chain in the last curve to get blown down, which is possible only
if the chain is of length one. If E3 is disjoint from D then (in order for A1

to intersect D three times) E1 must intersect D twice, and hence (in order to
avoid G · D > 3) the curve E2 must be disjoint from D . Now we can easily
see that the self-intersection of D increases to c + 8 after all the blow-downs
have been performed, and since it should be equal to 9, we deduce that c = 1,
contradicting the fact that c is negative. If E3 intersects D then after blowing
down E3 and then sequentially blowing down the images of A2 and the unique
element in the chain we get a singularity on D of multiplicity 3, a contradiction.
This shows that Case I, in fact, cannot occur.

Case II: E1 · A2 = 1. Then both E2 and E3 must be disjoint from G, and
one of them (say E2 ) intersects A1 . To increase the self-intersection of A1 , the
curve E2 should intersect the chain in the last curve to be blown down. Since
the image of G will intersect D , we see that E1 · D = 1. This implies that
after blowing down E1 and A2 , the curve A1 will intersect D once, therefore
E2 cannot intersect D (since it would add three to A1 · D ). Now the usual
argument from the proof of Proposition 3.1 shows that E3 starts the blow-down
of the chain, and it also intersects D in one point, leading to the first case of
the proposition.

Case III: E1 · Ci = 1. Recall that by the previous argument we can assume
that E2 ·G = E3 ·G = 0. If E2 and E3 are both disjoint from the chain, then
the chain must have length one. But then, if E1 ·D = 0, then, after completing
the blowing down process, the intersection number of the images of G and D

will be less than 3 and if E1 ·D = 1, then, after completing the blowing down
process, the intersection number of the images of G and D will be greater than
3, both contradicting the fact that the intersection number of a line and a cubic
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in CP2 is equal to three. So we may assume that E3 intersects the chain, say
E3 · Cl = 1, and, by the preceding argument, that E1 ·D = 0. If E3 ·D = 0,
again we find that, after the blowing down process has been carried out, the
intersection number of the images of G and D will be 2, a contradiction. So
we must have E3 ·D = 1. Now observe that we must have E3 ·A2 = 0. Indeed,
if E3 · Cj = 1 and E3 · A2 = 1, then after E3 and the image of A2 are blown
down, the image C ′

j of Cj will be tangent to the image D . It is now easy to
see that after the blowing down process is complete the image of D will have
more than one singular point or a singularity of multiplicity greater than 2,
both of which are impossible for a cubic in CP2 . Since A2 must be hit by
a (−1)-curve, we deduce that E2 · A2 = 1. We now check that E1 and E3

are disjoint from A1 . If E1 · A1 = 1, then after blowing down E1 the images
of G and A1 will intersect in a point and the image of Ci will pass through
that point. When the image of Ci is eventually blown down, the intersection
number of the images of G and A2 will be 2, which is impossible for a pair
of lines in CP2 . If E3 · A1 = 1, then the chain must have length one (to
prevent the intersection number of the images of A1 and D going above 3).
Usual simple calculation shows that c must be 1 contradicting c < 0. We have
thus checked that E1 and E3 are disjoint from A1 . It follows that, in order
for the self-intersection number of the image of A1 to increase to 1, we must
have that E2 intersects the string in the penultimate curve of the chain to get
blown down. Suppose that E2 · Cj = 1. Now if l < k , then it is easy to see
that we must have k = 2, l = 1 and j = 2. But then, after completing the
blowing down process, the intersection number of the images of A1 and D will
be 2, a contradiction. Thus we must have l = k . It follows that we must have
j = 1 or 2. If j = 1, then we must have i = 2, and if j = 2, then we must
have i = 1. The blowing down process now fixes c, c1, . . . , ck , which depends
only on k and is independent of j , giving c = −k + 2, c1 = −3, c2 = −4 and
c3 = . . . = ck = −2. The two possible configurations of the curves E1, E2, E3

(providing the same dual graphs) are the ones given by the proposition.

Proof of Theorem 1.4 Consider a small Seifert singularity SΓ . Since a
smoothing of SΓ provides a weak symplectic filling of the Milnor fillable contact
structure (YΓ, ξΓ) of the link, the implication (1) ⇒ (2) follows. The implica-
tion (2) ⇒ (3) is a direct consequence of the combination of Propositions 3.1,
3.2, 3.3, 3.4, 3.5 and 3.6, together with Theorem 2.7.

In order to verify the implication (3) ⇒ (1), we need to produce QHD smooth-
ings for singularities with resolution graphs in QHD3 . This result follows from
[16, Example 8.4] for the graphs of Figure 1(a), (b) and (c), and from [16,
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Example 8.3] for (d), (e), (f) and (g). For singularities with resolution graphs
given by Figure 1(h), (i) and (j) we give an argument resting on the theorem
of Pinkham [15] as formulated in [16, Theorem 8.1]. In order to apply this
result for a singularity SΓ , we need to find an embedding of rational curves in a
rational surface R intersecting each other according to the dual graph Γ′ with
the property that rkH2(R;Z) = |Γ′| .

L

N1
N

N
2

C

C

[0:1:0]

[1:0:−1]

[0:0:1]

3

Figure 10: The curves used in the constructions of the embeddings.

To this end, let us consider the singular cubic C given by equation f(x, y, z) =
y2z − x3 − x2z in CP2 and the lines L,N1, N2 and N3 given by the equations
{z = 0}, {x + z = 0}, {y − (x + 8

9
z)
√
3i = 0}, and {y = 0}, respectively, cf.

Figure 10. (The line L is tangent to C at one of its inflection point [0 : 1 : 0];
N1 is tangent to C at [−1 : 0 : 1] and further intersects it in [0 : 1 : 0]; N2 is
tangent to C in another inflection point [−4

3
: −i 4

3
√
3
: 1].)

By sequentially blowing down the (−1)–curves of Figure 4(c) (starting with the
dashed one), we are led to a configuration of curves involving a singular cubic
and a tangent at one of its inflection points. Since C and L provide such a
configuration, the reverse of the above blow-down procedure gives an embedding
of the configuration of Figure 4(c), and therefore of (b) into some blow-up of
CP2 . A simple count of the applied blow-ups shows that this embedding is
exactly of the type needed to apply Pinkham’s result, hence this argument shows
that graphs of Figure 1(f) correspond to singularities with QHD smoothings.
The same line of argument, with various starting configurations, then shows
that all the remaining graphs of Figure 1 correspond to singularities with QHD
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smoothings: a suitable starting configuration for the graphs of Figure 1(h) is
the configuration given by the curves L,C,N1 and N3 of Figure 10, for (i)
L,C,N2 and for (j) L,C,N1 will be a convenient choice. With this last step,
the proof of Theorem 1.4 is now complete.

4 Spherical Seifert singularities

Next we turn to the examination of generic spherical Seifert singularities. Since
a star-shaped graph in A ∪ B ∪ C can have at most four legs, it follows from
Theorem 2.7 that if a spherical Seifert singularity admits a QHD smoothing
(or the Milnor fillable contact structure on its link admits a QHD filling) then
the valency of the central vertex is at most four. The three-legged graphs were
analyzed in the previous section, so now we will focus on the case of four-legged
graphs. Once again, it follows from Theorem 2.7 that we only need to consider
graphs in A ∪ B ∪ C .

4.1 The family C

We start by considering the four-legged graphs in the family C . The generic
four-legged member Γ of C is given in Figure 11(a), with the dual graph given
by Figure 11(b). After three blow-downs we obtain the configuration K de-
picted in Figure 11(c). As before, the horizontal (+1)-curve will be denoted L

and the two curves which are triply tangent to L will be denoted F and D ,
with F being the curve with square +1. The chain of (−2)-curves connected
to the curve F will be denoted B1, . . . , B4 , with B1 intersecting F and the
chain of curves intersecting D will be denoted C1, . . . , Ck , with C1 intersecting
D . By symplectically gluing K to a QHD filling X we get a closed symplectic
4-manifold Z , and the usual elementary homological computation shows that
(since X is a QHD) there must be precisely two (−1)-curves, say E1 and E2 ,
in the complement of L that are not contained in the strings B1, . . . , B4 and
C1, . . . , Ck . Since the string B1, . . . , B4 must be transformed into a configu-
ration which can be sequentially blown down after blowing down E1 and E2 ,
it follows that at least one of these (−1)-curves must intersect B1 ∪ · · · ∪ B4 .
Assume, without loss of generality, that E1 intersects B1 ∪ · · · ∪B4 .

Proposition 4.1 By assuming the existence of the QHD filling X we get that
E1 intersects D , F and B4 , while E2 intersects D and Ck . The framings then
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D c+3

+1F

D
F
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Figure 11: The four-legged graphs in C .

are given by c = −k − 3 and c1 = . . . = ck = −2 (with k ≥ 0). In particular,
the graph of Figure 11(a) should be of the form Figure 2(c).

Proof If E1 ·B2 = 1 or E1 ·B3 = 1, then blowing down E1 and then sequen-
tially blowing down the images of B2 and B3 leads to a (+1)-curve (the image
of B1 or B4 ) in the complement of L , contradicting Lemma 2.5. Hence we
can assume that either E1 · B1 = 1 or E1 · B4 = 1. First we argue that k > 0
can be assumed in Figure 11(b). Indeed, k = 0 implies that in Figure 11(a) we
have b = −3, b1 = . . . = bn = −2. Among these possibilities only the one with
n = 2 is in C , and that particular graph appears among the ones of Figure 2(c).
For this reason, from now on we will assume that k > 0.

Case I: Suppose that E1 ·B1 = 1. Note first that E1 ·F = 0. Indeed, suppose
that E1 · F ≥ 1. If E1 · F > 1, then blowing down E1 would lead to a point
on the image F ′ of F under the blowing down map through which at least two
branches of F ′ pass. Also the intersection number of the image B′

1 of B1 and
F ′ will be at least three. By perturbing the almost complex structure slightly,
we can assume that B′

1 and F ′ intersect transversely. Then blowing down B′
1

we see that the image F ′′ of F ′ will have two singularities, which by Lemma 2.6
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contradicts the fact that F ′′ will eventually blow down to a cubic in CP2 . A
similar contradiction arises if E1 ·F = 1, after blowing down both E1 and B′

1 .
There are now two possibilities: E1 ·(C1∪· · ·∪Ck) = 1 or E1 ·(C1∪· · ·∪Ck) = 0.
Note that E1 · (C1 ∪ · · · ∪Ck) > 1 is impossible by Corollary 2.4.

IA. E1 · (C1 ∪ · · · ∪Ck) = 1. Suppose that E1 ·Ci = 1. After blowing down E1

and then sequentially blowing down the images of B1, . . . , B4 , observe that the
image C ′

i of Ci will be 4-fold tangent to the image F ′ of F . Perturbing the
almost complex structure, we may assume that C ′

i intersects F ′ transversely.
Eventually C ′

i will get blown down and this will create a singularity on the image
of F that is not allowed for a cubic in CP2 , since the link of its singularity has
four components, providing the desired contradiction.

IB. E1 ·(C1∪· · ·∪Ck) = 0. We have E1 ·D = 0 or E1 ·D = 1. (E1 ·D > 1 is not
allowed as blowing down E1 , then perturbing the almost complex structure so
that B′

1 , the image of B1 , and D′ , the image of D , intersect transversely and
then blowing down B′

1 would create two nodes on the image of D′ , contradicting
Lemma 2.6.) After blowing down E1 and then sequentially blowing down the
images of B1, . . . , B4 , the intersection number of the images F ′ and D′ of F

and D , respectively, will be either 3 or 7. Now, by arguing as in the proof
of Proposition 3.1, we can show that E2 must intersect the last curve Ck in
the string C1, . . . , Ck and the curve D′ . E2 must also intersect F ′ , otherwise,
after the blowing down process has been carried out, the image of F ′ would be
nonsingular and rational, which is impossible for a cubic in CP2 . In fact, it is
necessary that E2 · F ′ = 2, otherwise the image of F ′ will either be smooth
or have the wrong type of singularity. Also it is necessary that the string
C1, . . . , Ck be empty, otherwise, after blowing down E2 , when the image of Ck

is collapsed a further singularity will be introduced in the image of F ′ . Now the
condition that D′ gets blown down to a rational cubic in CP2 forces us to have
E2 ·D′ = 2. Blowing down E2 , we see now that the intersection number of the
images of D′ and F ′ will be either 7 or 11 (depending on E1 · D = 0 or 1),
which is impossible for a pair of irreducible cubic curves in CP2 . In conclusion,
we found that E1 · B1 = 1 leads to contradiction, hence we can consider

Case II: E1 · B4 = 1. As before, we distinguish two cases according to the
intersection of E1 with the chain C1 ∪ . . . ∪ Ck .

IIA. E1 · (C1 ∪ · · · ∪Ck) = 1. Suppose that E1 ·Ci = 1. Note that E1 ·F = 0,
otherwise the image of F after completing the blowing down process would
have more than one singular points. For a similar reason, E1 ·D must also be
0. We now divide E1 · Ci = 1 into three cases.
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(i) Suppose that i = 1, i.e., E1 intersects the chain in the curve intersecting D .
Blow down E1 , then sequentially blow down the images of B4, . . . , B1 and then
the images of C1, . . . , Cl until the resulting string C ′

l+1
, . . . , C ′

k attached to D′ ,
the image of D , is minimal, that is, contains no (−1)-curves. Let F ′ denote
the image of F . Then F ′ · D′ = l + 2, where 0 ≤ l ≤ k . First suppose that
l < k . Then, by arguing as in the proof of Proposition 3.1, one can show that
E2 must intersect the last curve C ′

k of the string C ′
l+1

, . . . , C ′
k and the curves

F ′ and D′ , each once transversally. Now blow down E2 and then sequentially
blow down the images of C ′

k, . . . , C
′
l+1

. Then the images of F ′ and D′ will be
nodal curves and for the intersection number of them to be 9 we require that
k = 2. However, to make the self-intersection number of the image of F ′ equal
9 we require that k = 3. This contradiction show that the case l < k cannot
occur. Now suppose that l = k . Then to introduce singularities of the right
type into the images of the curves F ′ and D′ we require that E2 · F ′ = 2 and
E2 ·D′ = 2. A simple check now shows that, as before, to make the intersection
number of the images of F ′ and D′ 9 we require k = 2 and to make the image
of D′ have self-intersection number 9 we require k = 3, again a contradiction.

(ii) Suppose next that 1 < i < k (k ≥ 3). Blow down E1 , then sequentially
blow down the images of B4, . . . , B1 . Suppose first that the image C ′

i of Ci

under the blowing down map is not a (−1)-curve. Then, arguing as in the proof
of Proposition 3.1, one can show that E2 must intersect the last curve Ck in
the string attached to D and it must necessarily intersect F ′ , the image of F .
It follows that i = 1, otherwise, after blowing down E2 and then sequentially
blowing down the images of Ck, . . . , C1 , the image of F ′ would have more than
one singularity, contradicting Lemma 2.6. Since i > 1 is assumed, we reached
a contradiction. Thus C ′

i must be a (−1)-curve. Now blow down C ′
i . Note

that the images of the curves Ci−1 and Ci+1 must be the last two curves (in
some blowing down process) of the string attached to D to get blown down,
otherwise the image of F ′ after completing the blowing down process will have
more than one singular point, a contradiction. Now there are two cases to
consider: E2 · F ′ = 0 or E2 · F ′ = 1.

Suppose that E2 · F ′ = 0. Then it is easy to see that after the blowing down
process has been carried out, the image of F ′ will have self-intersection number
8, which contradicts the fact that F should blow down to a cubic in CP2 .

Suppose that E2 ·F ′ = 1. Then E2 must be disjoint from the string attached to
D . In order to make D singular, E2 ·D must necessarily be 2. It is now easy to
check that, after carrying out the blowing down process, the intersection number
of the images of the curves F and D will be less than 9, which contradicts the
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fact that they should blow down to a pair of cubics in CP2 .

(iii) Finally assume that i = k (k ≥ 2). Blow down E1 , then sequentially blow
down the images of B4, . . . , B1 and then the images of Ck, . . . , Cl+1 until the
resulting string C ′

1, . . . , C
′
l attached to D′ (the image of D ) is minimal. If a

nonempty string remains, then, as before, E2 must intersect the last curve C ′
l in

the string and the curves F ′ , the image of F , and D′ , each once transversally.
Then blowing down E2 and then the image of C ′

l , we find that l must be 1,
otherwise the image of F ′ , after completing the blowing down process, would
have more than one singular point, contradicting Lemma 2.6. It follows that the
intersection number of the images of F ′ and D′ , after completing the blowing
down process, will be 8, contradicting the fact that they should blow down to
a pair of cubics in CP2 .

If l = 1, that is the whole string attached to D gets sequentially blown down
after blowing down E1 , then one can check that the intersection numbers of
E2 and the images of F ′ and D′ must both be 2. Again it follows that, after
completing the blowing down process, the intersection numbers of the images
of F ′ and D′ will be 8, a contradiction. This completes IIA and hence we
conclude that

IIB. E1 · (C1 ∪ · · · ∪Ck) = 0. We claim that E1 · F = 1. To see this, suppose,
for a contradiction, that E1 ·F = 0. Then we have E1 ·D = 0 or 1. Blow down
E1 and then sequentially blow down the images of the curves B4, . . . , B1 . Then
the image F ′ of F will still be smooth. It is thus necessary to have E2 ·F ′ = 2,
otherwise the image of F will be smooth or have the wrong type of singularity.
But then the string C1, · · · , Ck must be empty, otherwise E2 would have to
intersect it and thus blowing down would create additional singular points on
the image of F , a contradiction. It follows that, after completing the blowing
down process, the intersection number of the images of F and D will be less
than 9, a contradiction. This verifies E1 · F = 1.

Now blowing down E1 and then sequentially blowing down the Bi , we find that
the image of F becomes a rational curve with a single nodal point and having
self-intersection number 9. It follows that E2 cannot intersect F and that E1

must intersect D once transversally. Let F ′ , D′ denote the images of F and
D , respectively, after blowing down E1 and the Bi . It is then easy to check
that F ′ ·D′ = 9. Now the only possibility for E2 , by the argument in the proof
of Proposition 3.1, is that E2 ·Ck = 1 and E2 ·D = 1. For each value of k , the
blowing down process now fixes c and c1, . . . , ck , providing the result.
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4.2 The family B

We next consider four-legged graphs in the family B : the generic four-legged
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Figure 12: The four-legged graphs in B .

member of this family is given by Figure 12(a) with the dual graph given by
Figure 12(b). After three blow-downs we obtain the configuration K depicted
in Figure 12(c). As before, Z is the closed symplectic 4-manifold we get by
gluing the compactifying divisor WΓ′ (containing K ) to a weak symplectic
QHD filling of (YΓ, ξΓ). It is easy to check that there must be three (−1)-
curves, say E1, E2, E3 , not contained in the strings B1, B2 and C1, . . . , Ck ,
such that, after blowing down these three (−1)-curves, the images of the curves
in the strings B1, B2 and C1, . . . , Ck can be sequentially blown down and in
the process F and D will be transformed to a pair of cubics in CP2 and the
images of G and L will be lines. Since in the blowing down process the string
B1, B2 will eventually transform into a string which can be sequentially blown
down, one of the (−1)-curves E1, E2, E3 , must intersect B1 ∪B2 ; assume that
this curve is E1 .

Proposition 4.2 Under the hypothesis of the existence of a QHD filling, we
get that E1 intersects D , F and B2 , E2 intersects F , G and C1 , while E3
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intersects D and Ck . The corresponding framings are given as c = −k − 2,
c1 = −3 and c2 = . . . = ck = −2. In particular, the resolution graph is of the
form given by Figure 2(b).

Proof Note that E1 must be disjoint from G, otherwise blowing down E1 and
then sequentially blowing down the images of B1 and B2 the image of G would
be either singular or would have self-intersection number 2, which contradicts
the fact that G should blow down to a line in CP2 . Since one of the Ei must
necessarily intersect G we may assume that E2 ·G = 1. We now consider the
two possibilities: E1 · Bi = 1 for i = 1, 2.

Case I: E1 · B1 = 1. The curve E1 must necessarily be disjoint from F ,
otherwise the image of F after completing the blowing down process would
have more than one singular point which is impossible for a cubic in CP2 . We
consider the two possibilities: E1 ·(C1∪· · ·∪Ck) = 1 or E1 ·(C1∪· · ·∪Ck) = 0.

IA. E1 · (C1 ∪ · · · ∪Ck) = 1. Suppose that E1 ·Ci = 1. Note that the image of
Ci must be the last curve of the string attached to D to get blown down, since
blowing down the the image of Ci will make the image of F singular so that
if there are any remaining curves in the string then these will create additional
singularities on the image of F when they are blown down, a contradiction.

Suppose that E2 · (C1 ∪ · · · ∪Ck) = 0. Then the condition that G blows down
to a (+1)-curve in CP2 , forces us to have E3 · G = 1. But then necessarily
E3 · (C1 ∪ · · · ∪Ck) = 0. Thus the string C1, . . . , Ck must have length 1. Now
E2 and E3 must necessarily intersect F , each once transversally, otherwise the
intersection number of the images of F and G will not be 3. It is also necessary
that the intersection number of one of E2 or E3 and D be 2 and the other
be 0 to meet the requirements that the image of D be singular and that the
images of D and G have intersection number 3. But then after completing the
blowing down process we will find that the images of D and F have intersection
number 7, a contradiction.

Suppose that E2 · (C1 ∪ · · · ∪Ck) = 1. Note that E2 must necessarily intersect
Ci , the last curve in the string to get blown down, otherwise the image of G

after repeatedly blowing down will have self-intersection number greater than
1, a contradiction. Note also that E2 must be disjoint from F , otherwise
blowing down the image of Ci will lead to a triple point on the image of F , a
contradiction. Now consider the (−1)-curve E3 . If E3 intersects C1∪· · ·∪Ck ,
then E3 will be disjoint from F . In such a case, after completing the blowing
down process, the image of F will be a 7-curve, a contradiction. If E3 is
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disjoint from C1 ∪ · · · ∪ Ck , then E3 · F can be 0 or 1. In either case, after
completing the blowing down process, the image of F will have self-intersection
number at most 8, again a contradiction. This argument concludes the analysis
of the case E1 · (C1 ∪ · · · ∪ Ck) = 1.

IB. E1 · (C1 ∪ · · · ∪ Ck) = 0. Suppose that E2 · (C1 ∪ · · · ∪ Ck) = 0 as well.
As before, it implies that E3 ·G = 1. It follows that E1, E2, E3 will be disjoint
from C1 ∪ · · · ∪ Ck . But this means that the string must be empty, which is
never the case.

Suppose now that E2 ·(C1∪· · ·∪Ck) = 1. Then E2 must intersect the last curve
of the string to get blown down. Also we must necessarily have E3 ·G = 0. If
E3 is disjoint from C1∪ · · ·∪Ck , then the string must have length 1. It follows
that, after completing the blowing down process, the intersection number of the
images of D and G will be either 2 or 4, depending on whether E2 ·D = 0 or
1, a contradiction in both cases. So we may assume that E3 ·(C1∪· · ·∪Ck) = 1.
Note that the only way an appropriate singularity on the image of D can arise
is if E3 ·D = 1. It follows that we must have E3 ·Ck = 1 and E2 ·C1 = 1. Note
also that we necessarily have E2 · F = 1, otherwise the intersection number of
the images of F and G will not be 3. If E3 · F = 0, then, after completing
the blowing down process, the intersection number of the images of F and D

will be at most 8, a contradiction. If E3 · F = 1, then after completing the
blowing down process, the intersection number of the images of F and G will
be 4, again a contradiction. This last observation concludes the discussion of
Case I and shows that E1 ·B1 = 1 is not possible.

Case II: E1 ·B2 = 1. Again we consider the two possibilities: E1 · (C1 ∪ · · · ∪
Ck) = 1 or E1 · (C1 ∪ · · · ∪ Ck) = 0.

IIA. E1 · (C1 ∪ · · · ∪ Ck) = 1. Note that E1 · F = 0, otherwise when the
image of Ci is eventually blown down the image of F will develop more than
one singularity, a contradiction. For a similar reason we also have E1 ·D = 0.
Suppose that E1 · Ci = 1. We consider the possibilities for i .

(i) i = 1. Suppose that E2 · (C1 ∪ · · · ∪ Ck) = 0. Then the condition that the
image of G, after completing the blowing down process, be a (+1)-curve forces
us to have E3 ·G = 1 and E3 · (C1 ∪ · · · ∪Ck) = 0. Also, the condition that the
images of F and D have nodes and that the intersection numbers of the images
of F and G, and D and G be 3 forces us to have E2 · F = 2, E2 ·D = 0 and
E3 · F = 0, E3 ·D = 2, or vice-versa. Finally, the condition that F will have
self-intersection number 9 forces us to have k = 3. But then it follows that the
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intersection number of the images of F and D , after completing the blowing
down process, will be 6, a contradiction.

Suppose that E2 · (C1 ∪ · · · ∪Ck) = 1. Then E2 will intersect the last curve of
the string to get blown down. Note that E2 ·D = 0, otherwise, after completing
the blowing down process, the intersection number of the images of D and G

will be greater than 3, a contradiction. Similarly E2 ·F = 0. Note also that E3

is necessarily disjoint from G. Thus if E3 is also disjoint from the string or from
D , it follows that the intersection number of D and G after completing the
blowing down process will be 2, a contradiction. Thus E3 necessarily intersects
the string and D . In fact, we require that E3 · Ck = 1. Now the condition
that the image of F have a singularity forces us to have E3 · F = 1. Also, the
condition that the image of F have self-intersection number 9 forces us to have
k = 3. However, if k = 3, then the intersection number of the images of F and
D , after completing the blowing down process, will be 10, a contradiction.

(ii) 1 < i < k (k ≥ 3). If E2 · (C1 ∪ · · · ∪ Ck) = 0, then, as before, we
require that E3 ·G = 1, E3 · (C1 ∪ · · · ∪Ck) = 0. It follows that we must have
k = 3, otherwise, after completing the blowing down process, the image of F

will either have a singularity of multiplicity greater than two or will have more
than one singular point, neither of which is permitted for a cubic in CP2 . Now
the condition that the images of F and G have intersection number 9 forces
us to have E2 ·F = E3 ·F = 1. But then the image of F , after completing the
blowing down process, will have self-intersection number 10, a contradiction.
Thus E2 · (C1∪ · · · ∪Ck) = 1 and E2 intersects the last curve of the string that
gets blown down. Note that, as in the previous case, E2 · F = 0, E2 ·D = 0.

Suppose that Ci · Ci = −4. Then the image of Ci will be a (−1)-curve, after
blowing down E1 and then sequentially blowing down the images of B2, B1 . It
follows that the images of Ci−1, Ci+1 must be the last two curves of the string
attached to D to get blown down. Since E2 · (C1 ∪ · · · ∪ Ck) = 1, note that,
as before, we require E3 · (C1 ∪ · · · ∪ Ck) = 1, E3 · D = 1. It follows that we
must have E3 · Ck = 1. Note that E3 · F = 0, otherwise the image of F after
completing the blowing down process would have more than one singular points,
a contradiction. Now, after completing the blowing down process, we find that
the intersection number of the images of D and F will be 8, a contradiction.

Suppose that Ci ·Ci < −4. Then after blowing down E1 and then sequentially
blowing down B2, B1 , the image of Ci will not be a (−1)-curve. As before,
we can show that E3 · Ck = 1, E3 · D = 1. The condition that F become
singular forces us to have E3 · F = 1. Now after completing the blowing down
process we see that the F will have more than one singularity, since i > 1, a
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contradiction.

(iii) i = k (k ≥ 2). If E2 · (C1 ∪ · · · ∪ Ck) = 0, then, as before, we require
that E3 · G = 1, E2 · (C1 ∪ · · · ∪ Ck) = 0. To obtain the correct types of
singularities on the images of F and D and to meet the requirement that the
intersection numbers of the images of F and G, and D and G, after completing
the blowing down process, be 3, we require that E2 · F = 2, E3 · F = 0 or
E2 · F = 0, E3 · F = 2 and likewise for D . It follows that after completing the
blowing down process the intersection number of the images of F and D will
be 8, a contradiction. So E2 · (C1 ∪ · · · ∪ Ck) = 1 and E2 intersects the last
curve of the string that gets blown down.

Suppose that E3 ·(C1∪· · ·∪Ck) = 0 or E3 ·D = 0. Then since E3 ·G = 0, after
completing the blowing down process the intersection number of the images of
D and G will be 2, a contradiction. So E3 · (C1∪· · ·∪Ck) = 0 and E3 ·D = 1.
Similarly we can check that E3 · F = 1.

Suppose that E3 · Cj = 1 for j < k . Blow down E1, E2, E3 and then sequen-
tially blown down the images of B2, B1 . Note then that, after the images of
Ck, Ck−1, . . . , Cj have been sequentially blown down, the image of F will be-
come singular. Also after the images of Cj, Cj−1, . . . , C2 have been sequentially
blown down the image of D will become singular. Since the images of F and
D should have exactly one singularity, the image of Cj must necessarily be the
last curve of the string to get blown down. It follows that j must be 2. It is
now easy to check that, after the blowing down process has been completed,
the intersection number of the images of F and D will be 8, a contradiction.

Suppose that E3 ·Ck = 1. Then once the image of Ck is blown down the image
of F will become singular. It follows that k must be 1, contrary to assumption.

IIB. E1 · (C1 ∪ · · · ∪ Ck) = 0. If E2 · (C1 ∪ · · · ∪ Ck) = 0, then we must have
E3 ·G = 1 and E3 ·(C1∪· · ·∪Ck) = 0. It follows that the string C1, . . . , Ck must
be empty, which is never the case. So E2 · (C2∪ · · ·∪Ck) = 1 and E2 intersects
the last curve that gets blown down. We thus necessarily have E3 ·G = 0.

Suppose that E1 · F = 0. If E2 · F = 0 also, then the only way that the
image of F can have the correct type of singularity is if E3 · F = 2 and
E3 · (C1 ∪ · · · ∪Ck) = 0. But then, after completing the blowing down process,
we find that the intersection number of the images of F and G will be 2, a
contradiction. So E2 ·F = 1. There are now two ways that the image of F can
have the correct type of singularity: if E3 ·F = 1 and E3 · (C1∪· · ·∪Ck) = 1 or
if E3 ·F = 2 and E3 · (C1 ∪ · · · ∪Ck) = 0. In the former case, after completing
the blowing down process, the intersection number of the images of F and G
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will be 4, a contradiction. In the latter case, after completing the blowing down
process, the intersection number of the images of D and G will be either 2 or
4 depending on whether E2 ·D = 0 or 2, a contradiction in either case.

Suppose that E1 ·F = 1. If E2 ·F = 0, then, after completing the blowing down
process, the intersection number of the images of F and G will be either 2 (if
E3 ·F = 1 and E3 ·(C1∪· · ·∪Ck) = 1) or 1 (if E3 ·F = 0 or E3 ·(C1∪· · ·∪Ck) =
0), a contradiction in either case. So E2 · F = 1. Note now that if E3 · F = 1,
then the self-intersection number of the image F , after completing the blowing
down process, will be greater than 9, which is not possible for a cubic in CP2 ,
implying that E3 ·F = 0. Also if E2 ·D = 1, then, after completing the blowing
down process, the intersection number of the images of D and G will be greater
than 3, a contradiction, hence we conclude that E2 ·D = 0. Next note that if
E3 · (C1 ∪ · · · ∪Ck) = 0 or E3 ·D = 0, then since E3 ·G = 0, after completing
the blowing down process, the intersection number of the images of D and G

will be 2, a contradiction. So E3 · (C1∪· · ·∪Ck) = 1 and E3 ·D = 1. It follows
that we must have E3 ·Ck = 1 and E2 ·C1 = 1. Also if E1 ·D = 0, then, after
completing the blowing down process, the intersection number of the images of
D and F will be 5, a contradiction. So we must have E1 ·D = 1. Thus the
three (−1)-curves E1, E2, E3 must be as given by the Proposition.

4.3 The family A

Finally we consider four-legged graphs in the family A . The generic four-legged
member Γ of A is given in Figure 13(a) with the dual graph in (b). After three
blow-downs we obtain the configuration K indicated in Figure 13(c). Suppose
that Z is the closed symplectic 4-manifold we get by symplectically gluing the
compactifying divisor WΓ′ (containing K ) to a weak symplectic QHD filling
of YΓ . Then it is easy to check that there must be three (−1)-curves, say
E1, E2, E3 , not contained in the string C1, . . . , Ck , such that, after blowing
down these three (−1)-curves, the image of B can be blown down and the
images of the curves in the string C1, . . . , Ck can be sequentially blown down
so that in the process F and D are transformed to a pair of cubics in CP2 and
the images of L and A are lines. Since in the blowing down process B will be
eventually transformed into a curve which can be blown down, one of the three
(−1)-curves, call it E1 , must intersect B .

Proposition 4.3 If a QHD filling exists in the situation described above,
then either Γ′ blows down to a 3-legged graph (and was treated earlier), or
E1 intersects D , F and B , E2 intersects A , F and either C1 or C2 and
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Figure 13: The four-legged graphs in A . Proposition 4.3 allows another con-
figuration for E2 in (c), where it intersects C2 instead of C1 .

E3 intersects D and Ck . The corresponding framings in the latter case are
given as c = −k , c2 = −3 and c1 = c3 = . . . = ck = −2. In particular, the
corresponding resolution graph is of the form given by Figure 2(a).

Proof Note that if E1 · A = 1, then E1 · (C1 ∪ · · · ∪ Ck) = 0, otherwise
after blowing down E1 and then the image of B , the image of A will become
singular when the image of Ci is eventually blown down, where E1 · Ci = 1,
which contradicts the fact that the image of A in CP2 will be a line. Thus
at least one (−1)-curve different from E1 should intersect A . Let us call this
(−1)-curve E2 . We now begin the case-by-case analysis.

Case I: E1 · (C1 ∪ · · · ∪Ck) = 1. Suppose that E1 ·Ci = 1. In this case, by the
argument above, we will necessarily have E1 · A = 0. Note that if E1 · F = 1,
then after E1 and the image of B are blown down, the image F ′ of F will
be singular. However, the intersection number of the image C ′

i of Ci and F ′

will be 2. Thus when the image of C ′
i is eventually blown down the image of

F ′ have a second singularity, which contradicts the fact that it must eventually

37



blow down to a cubic in CP2 . Thus E1 ·F = 0. Also, we must have E1 ·D = 0,
otherwise, after repeatedly blowing down, the image of D will eventually have
a triple point, which contradicts the fact that the image of D in CP2 should
also be a cubic.

Note that if E2 ·(C1∪· · ·∪Ck) = 0, then we must have have E3 ·A = 1 and E3 ·
(C1∪· · ·∪Ck) = 1, since, after completing the blowing down process, the image
of A should be a smooth curve of self-intersection number 1. Renumbering E2

and E3 , if necessary, we may assume that E2 · (C1 ∪ · · · ∪ Ck) = 1. Suppose
that E2 · Cj = 1. Notice that, in the blowing down process, the image of Cj

must either be the last curve of the string attached to D to get blown down
or it must be the penultimate curve to get blown down, since otherwise, after
the blowing process is complete, the self-intersection number of the image of A
will be greater than 1, a contradiction.

(i) i = 1.

(ia) Suppose first that the image Cj is the last curve of the string to get blown
down. Then we must have E3 · A = 1, and hence E3 · (C1 ∪ · · · ∪ Ck) = 0.
Now, since E1 · D = 0, there are two ways that an appropriate singularity
can appear on image of D : either E2 · D = 1 or E3 · D = 2. Suppose that
E2 · D = 1. Then E3 · D = 0, otherwise, after completing the blowing down
process, the intersection number of the images of D and A would be greater
than 3, a contradiction. We now have E2 · F = 0 or 1. If E2 · F = 0, then we
must have E3 · F = 2, otherwise the image of F , after completing the blowing
down process, would be smooth and rational, which is a contradiction. Now the
condition that the self-intersection number of the image of F , after completing
the blowing down process, will be 9, forces us to have k = 2. But then, after
completing the blowing down process, the intersection number of the images
of F and D will be 7, a contradiction. If E2 · F = 1, then E3 · F = 0,
otherwise the intersection number of the images of F and A , after completing
the blowing down process, would be greater than 3, a contradiction. Now,
again, the condition that the self-intersection number of the image of F , after
completing the blowing down process, will be 9, forces us to have k = 3. But
then, after completing the blowing down process, the intersection number of
the images of F and D will be 10, again a contradiction.

Suppose that E3 ·D = 2. Then E2 ·D = 0. We now have E2 · F = 0 or 1. If
E2 · F = 0, then we must have E3 · F = 2. Now, as before, the condition that
the self-intersection number of the image of F , after completing the blowing
down process, will be 9, forces k = 3. But then, after completing the blowing
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down process, the intersection number of the images of F and D will be 10, a
contradiction. If E2 · F = 1, then we must have E3 · F = 0. Thus, again, the
condition that the self-intersection number of the image of F , after completing
the blowing down process, will be 9, forces k = 3. And, this time, after
completing the blowing down process, the intersection number of the images of
F and D will be 7, again a contradiction.

(ib) The image of Cj is then the penultimate curve of the string to get blown
down. Then we must have E3 · A = 0. Also, we must have E2 · D = 0,
otherwise, after completing the blowing down process, the intersection number
of the images of D and A would be greater than 3, a contradiction. Similarly,
we must have E2 · F = 0.

Suppose that E3 · (C1∪ · · ·∪Ck) = 0 or E3 ·D = 0. Then, after completing the
blowing down process, the intersection number of the images of D and A will
be at most 2, a contradiction. So E3 · (C1 ∪ · · · ∪ Ck) = 1 and E3 ·D = 1. If
E3 ·Cl = 1 for l < k , then we must have l = k − 1 and j = k , otherwise, after
completing the blowing down process, the image of D will have more than one
singular point, a contradiction. However, if l = k − 1 and j = k , then, after
completing the blowing down process, the intersection number of the images of
D and A will be 2, a contradiction. So we must have E3 · Ck = 1. Also we
must have E3 · F = 1, otherwise the image of F , after completing the blowing
down process will be smooth, a contradiction. Now, the condition that the
self-intersection number of the image of F , after completing the blowing down
process, will be 9, forces us to have k = 3. But then, after completing the
blowing down process, the intersection number of the images of F and D will
be 10, a contradiction.

(ii) 1 < i < k (k ≥ 3).

(iia) The image of Cj is last curve of the string to get blown down. Then we
must have E3 ·A = 1, and hence E3 · (C1 ∪ · · · ∪ Ck) = 0. If k is greater than
2, then, after completing the blowing down process, the image of F will either
have a point of multiplicity greater than 2 or have more than one singular point,
neither of which is possible for a cubic in CP2 . Thus we must have k = 3 and
thus j = 1 or 3. Also, we must have E2 ·F = 0, otherwise, after completing the
blowing down process, the image of F will have a triple point, a contradiction.
Furthermore, we must have E3 ·F = 1, otherwise, after completing the blowing
down process, the intersection number of the images of F and A will be less
that 3, a contradiction. Now the only way a singularity of the appropriate type
can appear on the image of D is if E2 ·D = 1 or E3 ·D = 2.
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Suppose first that E2 ·D = 1. Then we must have E3 ·D = 0, otherwise, after
completing the blowing down process, the intersection number of the images
of A and D will be greater than 3, a contradiction. It follows that, after
completing the blowing down process, the intersection number of the images of
F and D will be at most 8, which contradicts the fact that images of F and
D in CP2 are a pair of cubics.

Suppose now that E3 ·D = 2. Then we must have E2 ·D = 0, otherwise, after
completing the blowing down process, the intersection number of the images
of D and A will be greater that 3, a contradiction. It follows that, after
completing the blowing down process, the intersection number of the images of
F and D will be at most 8, a contradiction.

(iib) The image of Cj is the penultimate curve of the string to get blown down.
Then we must have E3 · A = 0 and E2 ·D = E2 · F = 0. Also, we must have
E3 · (C1 ∪ · · · ∪Ck) = 1 and E3 ·D = 1.

Suppose that E3 · Cl = 1 for l < k . Then the image of Cl must be the last
curve of the string attached to D to get blown down. Indeed, it is easy to see
that after the image of Cl is blown down, the image of the portion Cl+1, . . . , Ck

of the the string must be a point, otherwise, after completing the blowing down
process, the image of D will have more than one singular point. Thus we must
have i > l or j > l . In the former case, after the portion Cl, . . . , Ck of the the
string has been collapsed to a point, the image of F will be singular and thus
the image of Cl must be the last curve of the string to get blown down. In the
latter case, since the image of Cj is the penultimate curve of the string to get
blown down, Cl must be the last curve of the string to get blown down. Now
again using the assumption that the image of Cj is the penultimate curve of
the string to get blown down, we must have either j < l or j > l . Suppose that
j < l . Then we must have i > l . Also, we must have E3 ·F = 0, otherwise, after
completing the blowing down process, the image of F will have a singularity of
multiplicity greater than 2, a contradiction. Now, after completing the blowing
down process, the intersection number of the images of A and F will be 2, a
contradiction. Suppose that j > l . Then, after completing the blowing down
process, the intersection number of the images of A and D will be 2, again a
contradiction.

Suppose that E3 · Ck = 1. Then we must have E3 · F = 0 or 1. Suppose that
E3 · F = 0. Then, in the blowing down process, the images of the curves Ci−1

and Ci+1 must be the last two curves of the string attached to D to get blown
down. It follows that we must have i = 2. It is now easy to check that, after
completing the blowing down process, the image of F will have self-intersection
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number 8, a contradiction. Suppose that E3 · F = 1. Then the image of Ci

must be the last curve of the string to get blown down. It follows that we
must have i = 2 and j = 1. We now find that, after completing the blowing
down process, the intersection number of the images of F and A will be 2, a
contradiction.

(iii) i = k (k ≥ 2).

(iiia) The image of Cj is last curve of the string to get blown down. Then we
must have E3 · A = 1, and hence E3 · (C1 ∪ · · · ∪ Ck) = 0. Also we must have
j = 1. Now the only way a singularity of the appropriate type can appear on
the image of D is if E2 ·D = 1 or E3 ·D = 2.

Suppose that E2 · D = 1. Then we must have E3 · D = 0. Now we have
E2 · F = 0 or 1. If E2 · F = 0, then it is easy to see that, after completing the
blowing down process, the intersection number of the images of F and D will
be 5, a contradiction. If E2 · F = 1, then one can check that, after completing
the blowing down process, the intersection number of the images of F and D

will be 8, again a contradiction.

Suppose that E3 · D = 2. Then we must have E2 · D = 0. Again we have
E2 · F = 0 or 1. If E2 · F = 0, then we must have E3 · F = 2. It follows
that, after completing the blowing down process, the intersection number of
the images of F and D will be 8, a contradiction. If E2 ·F = 1, then we must
have E3 · F = 0. In this case, after completing the blowing down process, the
intersection number of the images of F and D will be 5, again a contradiction.

(iiib) The image of Cj is the penultimate curve of the string to get blown down.
Then we must have E3 · A = 0 and E2 ·D = E2 · F = 0. Also, we must have
E3 · (C1∪ · · ·∪Ck) = 1 and E3 ·D = 1. Furthermore, we must have E3 ·F = 1,
otherwise, after completing the blowing down process, the image of F would
be smooth, a contradiction. Now note that if l 6= 1, then we must have l = 2
and j = 1, otherwise, after completing the blowing down process, the image
of F will have more than one singular point, a contradiction. If l = 1, then
C1 must be the last curve to get blown down, otherwise, after completing the
blowing down process, the image of D will have more than one singular point, a
contradiction. Thus we must have j = 2. It now follows that, after completing
the blowing down process, the intersection number of the images of D and A

will be 2, a contradiction. If l = 2 and j = 1, then C2 must be the last curve
to get blown down and in this case it follows that, after completing the blowing
down process, the intersection number of the images of F and A will be 2,
again a contradiction.
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Case II: E1 · (C1 ∪ · · · ∪ Ck) = 0.

IIA. E1 ·A = 1. Since we are assuming that E2 ·A = 1 also, we will necessarily
have E2 · (C1∪· · ·∪Ck) = 0 and E3 ·A = 0. Also, since the string C1 . . . , Ck is
nonempty for every 4-legged graph Γ in A , we must have E3 ·(C1∪· · ·∪Ck) = 1.
Now if E1 · D = 0, then, after completing the blowing down process, the
intersection number of the images of D and A will be at most 2, a contradiction.
It follows that we must have E1 ·D = 1 and thus we must also have E2 ·D = 1.

Suppose that E1·F = 1. Then we must have E2 ·F = 0. If E3 ·F = 0 also holds,
then, after completing the blowing down process, the self-intersection number
of the image of F will be 6, a contradiction. So we must have E3 · F = 1
and k must be 2. But then, after completing the blowing down process, the
intersection number of the images of F and D will be 10, a contradiction.

Suppose that E1 · F = 0. Then we must have E2 · F = 2. Again we require
E3 · F = 1 and k = 2. It thus follows again that, after completing the blowing
down process, the intersection number of the images of F and D will be 10, a
contradiction as before.

IIB. E1 · A = 0. We may now assume E2 · (C1 ∪ · · · ∪ Ck) = 1, since if
E2 · (C1 ∪ · · · ∪ Ck) = 0, then we would necessarily have E3 · A = 1 and
E3 · (C1 ∪ · · · ∪Ck) = 1, and we would just renumber the (−1)-curves. Suppose
that E2 · Cj = 1. It follows that, in the blowing down process, the image of
Cj is either the last curve of the string to get blown down or the penultimate
curve to get blown down.

(i) Suppose first that the image of Cj is last curve of the string to get blown
down. Then we must have E3 · A = 1 and E3 · (C1 ∪ · · · ∪ Ck) = 0. Since we
are assuming that E1 · A = 0, we must have that k = 1. Now if E2 · F = 0,
then, after completing the blowing down process, the intersection number of
the images of A and F will be at most 2, a contradiction. So E2 · F = 1 and
thus E3 · F = 1 also. It follows that we must have E1 · F = 1, otherwise, after
completing the blowing down process, the image of F would be smooth or have
more than one singularity, a contradiction in both cases.

Suppose that E2 · D = 1. Then we must have E3 ·D = 0. Note also that we
must have E1 · D = 1, otherwise, after completing the blowing down process,
the intersection number of the images of F and D will be different from 9, a
contradiction. It follows that D must have self-intersection number 2 and C1

must have self-intersection number −2. It is easy to see that in this case Γ is
just the unique three-legged graph in the family A with four vertices and we
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already know that in this case the corresponding contact 3-manifold (YΓ, ξΓ)
admits a QHD filling.

Suppose that E2 ·D = 0. Then we must have E3 ·D = 2. Again we can check
that we must have E1 ·D = 1. As in the previous case, it follows that D must
have self-intersection number 2 and C1 must have self-intersection number −2,
and this case has already been considered.

(ii) The image of Cj is the penultimate curve of the string to get blown down.
Then we must have E3 ·A = 0. Note that if E2 ·D = 1, then, after completing
the blowing down process, the intersection number of the images of A and D

will be 4, a contradiction. Thus E2 · D = 0. Also we must have E3 · (C1 ∪
· · · ∪ Ck) = 1 and E3 · D = 1, otherwise, after completing the blowing down
process, the intersection number of the images of A and D will be at most 2,
a contradiction. Suppose that E3 · Cl = 1. Now if l < k , then we must have
k = 2, l = 1 and j = 2. But then, after completing the blowing down process,
the intersection number of the images of A and D will be 2, a contradiction.
So l = k . It follows that we must have j = 1 or 2. Now note that if E2 ·F = 0,
then, after completing the blowing down process, the intersection number of
the images of A and F will be at most 2, a contradiction. So we must have
E2 · F = 1. It also follows that we must have E3 · F = 0, otherwise, after
completing the blowing down process, the intersection number of the images of
A and F will be greater than 3, a contradiction. We now must have E1 ·F = 1,
otherwise, after completing the blowing down process, the image of F will be
smooth, a contradiction. For each value of k and for j = 1, 2, the blowing
down process now fixes c, c1, . . . , ck , as stated in the Proposition.

Now we are ready to give the proof of the second main result of the paper.

Proof of Theorem 1.6 Consider a spherical Seifert singularity SΓ with min-
imal good resolution graph having at least four legs (and central framing < −2).
Once again, the existence of a QHD smoothing implies the existence of a QHD
filling of the Milnor fillable contact structure ξΓ on the link YΓ showing the
implication (1) ⇒ (2). Suppose now that (YΓ, ξΓ) admits a QHD filling. By
Theorem 2.7, we get that Γ is a 4-legged graph in A∪B∪C . Therefore the com-
bination of Propositions 4.1, 4.2 and 4.3 implies (2) ⇒ (3). Finally (3) ⇒ (1)
follows from the results of [16, Examples 8.7, 8.12 and 8.14], cf. also [18]. These
existence results then conclude the proof of the theorem.

For the sake of completeness we provide curve configurations in CP2 with the
property that repeated blow-ups provide the configurations of Figures 11(c),
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12(c) and 13(c), and hence, by Pinkham’s result [15] (as formulated in [16,
Theorem 8.1]), we get an alternative proof of the existence of QHD smooth-
ings. Below we will restrict ourselves to the description of the curves and their
intersection patterns, and leave it to the reader to check that an appropriate
blow-up sequence restores the diagrams listed above.

Let D be the cubic curve defined by the equation

f(x, y, z) = y2z − x3 − x2z

and L the line {z = 0}.
In order to find a configuration which can be blown up to Figure 11(c), let us
add the cubic D1 given by the equation

f1(x, y, z) = y2z +
1

2
xyz + yz2 − 9

8
x3 − 2x2z − xz2

to L and D . The curves D and D1 are rational nodal cubics with nodes at
[0 : 0 : 1] and [−2

3
: −1

3
: 1], respectively. It is easy to check that both D and

D1 are triply tangent to L at the point [0 : 1 : 0] and are also triply tangent
to each other at [0 : 1 : 0] and have intersection multiplicity 6 at the point
[0 : 0 : 1].

For finding the configuration providing the base for Figure 12(c), we consider
L and D as before, together with D2 given by the equation

f2(x, y, z) = y2z + 2xyz + 2yz2 − 2x3 − 4x2z − 2xz2.

The curve D2 is a rational nodal cubic with a node at [−1 : 0 : 1], and L , D
and D2 are pairwise triply tangent at [0 : 1 : 0]. Also D and D2 intersect at
[0 : 0 : 1] with intersection multiplicity 4 and at [−1 : 0 : 1] with intersection
multiplicity 2. Consider, furthermore, L1 given by the equation {x + z = 0}.
It passes through the point [0 : 1 : 0] and is tangent to D at [−1 : 0 : 1].

Finally we describe a configuration from which repeated blow-ups result in the
configuration of Figure 13(c). Once again, consider L and D as before, together
with the cubic D3 given by the equation f3(x, y, z) =

y2z+(1−i
√
3)xyz+

4

9
(3−i

√
3)yz2+

1

2
(−1+i

√
3)x3+(−2+i

√
3)x2z−4

9
(−3+i

√
3)xz2.

This curve is a rational nodal cubic with a node at [−4

3
: −4

9
i
√
3 : 1]. The line

L and the curves D , D3 are pairwise triply tangent at [0 : 1 : 0]. Also the
curves D and D3 intersect at each of the points [0 : 0 : 1] and [−4

3
: −4

9
i
√
3 : 1]

with intersection multiplicity 3. Let N be the line {y − i
√
3(x + 8

9
z) = 0}; it

is triply tangent to D at [−4

3
: −4

9
i
√
3 : 1] and intersects D3 at the same point

with intersection multiplicity 3.
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[16] A. Stipsicz, Z. Szabó and J. Wahl, Rational blowdowns and smoothings of surface

singularities, Journal of Topology 1 (2008), 477–517.

[17] J. Wahl, Smoothings of normal surface singularities, Topology 20 (1981), 219–
246.

[18] J. Wahl, Construction of QHD smoothings of valency 4 surface singularities,
arXiv:1005.2199.

[19] J. Wahl, Personal communication.

45

http://arxiv.org/abs/0808.3794
http://arxiv.org/abs/0908.3774
http://arxiv.org/abs/1005.2199


�� ������

�
�
�
�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

����������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������������������������������

b

1

−2 −2 −2 −2

−1

−2

−2

b

−3

−3−3

bn

....
c k

c

c1....

−2

A

B

−2

c
1 .... c

k

+1

(a) (b)

(c)

L

c+3D

+1F

D
F

E

E

E

3

2

1

c
2


	1 Introduction
	2 Preliminaries
	2.1 Symplectic geometric preliminaries
	2.2 The families A, B and C
	2.3 Outline of the proof of (2)(3) in the main theorems

	3 Small Seifert singularities
	3.1 Graphs in C
	3.2 Graphs in A
	3.3 Graphs in B

	4 Spherical Seifert singularities
	4.1 The family C
	4.2 The family B
	4.3 The family A


