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Abstract

Recent optimization efforts and extensive benchmark applications are presented il-

lustrating the accuracy and efficiency of the linear-scaling local natural orbital (LNO)

coupled-cluster with single-, double,- and perturbative triple excitations [CCSD(T)]

method. A composite threshold combination hierarchy (Loose, Normal, Tight, etc.) is

introduced, which enables black box convergence tests and is useful to estimate the ac-

curacy of the LNO-CCSD(T) energies with respect to CCSD(T). We also demonstrate

that the complete basis set limit (CBS) of LNO-CCSD(T) energies can be reliably ap-

proached via basis set extrapolation using large basis sets including diffuse functions.

Where reference CCSD(T) results are available, the mean (maximum) absolute errors

of LNO-CCSD(T) reaction and intermolecular interaction energies with the default

Normal threshold combination are below 0.2-0.3 (0.6-1.0) kcal/mol, while the same

measures with the Tight setting are 0.1 (0.2-0.5) kcal/mol for all the tested systems in-

cluding highly-complicated cases. The performance of LNO-CCSD(T) is also compared
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with that of other popular local CCSD(T) schemes. The exceptionally low hardware re-

quirements of the present scheme enables the routine calculation of benchmark-quality

energy differences within chemical accuracy of CCSD(T)/CBS for systems including a

few hundred atoms. LNO-CCSD(T)/CBS calculations can also be performed for more

than 1000 atoms with 45000 atomic orbitals using a single, 6-core CPU, about 100 GB

memory, and comparable disk space.

1 Introduction

The coupled-cluster (CC) method is one of the most reliable and accurate of our current

tools applicable to theoretical simulation of matter at the atomic scale. CC energies and

other properties are systematically improvable along the hierarchies of the CC wave func-

tion expansions and the single-particle orbital basis sets,1,2 which can also be exploited to

estimate the accuracy of the CC results. Assuming that a single-reference treatment is

sufficient, the CC model with single and double excitations (CCSD) augmented with pertur-

bative triples correction [CCSD(T)],3 is considered the “gold standard” of quantum chemistry

since CCSD(T) often provides an accuracy comparable to experiment within chemical ac-

curacy. Unfortunately, the steep, sixth- and seventh-power scaling operation count and the

fourth-power scaling data storage requirement are highly limiting even for the most advanced

conventional CCSD and CCSD(T) implementations.4–16

Due to the substantial progress in the field of reduced-cost approximate CC methods

local correlation based approaches are becoming competitive alternatives for accurate com-

putations of molecules also well above the 20-30 atom limit of conventional CC codes. The

vast knowledge accumulated in the field over the decades is greatly summarized in recent re-

views,17–19 and a somewhat more theory oriented introduction is also available in our related

reports.20–27 The common starting point of almost all the local methods is to exploit the

relatively rapid decay of electron correlation with the distance via switching to a localized

molecular orbital (LMO) basis. Many other commonly applied ideas date back to the pio-
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neering work of Pulay and Saebø.28–31 Pair approximations utilize that the pair correlation

contribution of distant LMO pairs can be cost-efficiently approximated or even neglected.

It is also beneficial to obtain such pair energies using a restricted, spatially close list of

correlating orbitals (domain approximation). Recent local methods also take advantage of

the sparsity of CC wave functions not only in real space but also in their orbital expansion

by employing some sort of natural orbitals (NOs) constructed at the level of second-order

Møller–Plesset (MP2) perturbation theory. One group of methods employ LMO pair specific

pair natural orbitals (PNOs) popularized recently by Neese, Valeev, Riplinger, Guo, Pinski,

and co-workers,32–37 and taken over also by Werner, Ma, and Schwilk38–42 as well as by Hät-

tig and Tew.43,44 Our methods make use of an alternative, LMO-specific NO set, the local

natural orbitals (LNOs)20–22,24,27 for the compression of both the occupied and virtual space

of the domains. The virtual LNOs can also be interpreted as weighted average of PNOs

corresponding to a specific LMO and all of its strongly interacting LMO pairs.27

The most challenging part of local CCSD(T) computations is the handling of the enor-

mous operation count and data storage requirement emerging already for medium-sized sys-

tems, in which aspect current solutions deviate the most. The latest PNO-based approaches

determine all the CCSD(T) amplitudes in a compressed LMO/PNO representation for the

entire molecule at once but have to bear the appearance of an extremely large amount of in-

termediates originating from the redundancy of the PNOs among different LMO pairs.37,41,44

An alternative group of local methods chooses to decouple the computation of the amplitudes

for different LMOs via fragmentation approximations20,21,45–56 allowing for an asymptotically

constant data storage requirement. A variety of such approaches have been developed up

to the CC level, including the cluster-in-molecule (CIM) method of Li, Li, Piecuch, Guo,

Gordon, and their co-workers,55–59 the divide-expand-consolidate scheme of Jørgensen et

al.,54 the divide-and-conquer method of Li and Li60 and Kobayashi and Nakai.,49,50 the

many-body expansion scheme of Herbert et al.,52 and the incremental schemes of Friedrich,

Dolg, and their co-workers.48,61 The source of high computational demands in fragmentation-
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based methods stems from the overlap of the fragments in real space and the consequent

high prefactor for the operation count of the independent CC calculations performed in the

fragments.

Our recent developments attempt to find a balanced combination of the above ap-

proaches.20–24,27 We introduced efficient, Laplace-transform based local MP2 (LMP2) and

(T) algorithms which are completely free from redundant amplitude evaluations.23,24 We

chose to employ LNOs and obtain the CCSD amplitudes for each LMO separately in or-

der to avoid the large intermediates appearing with the highly-redundant PNO basis. In

turn, extensive, overlapping domains emerge in our scheme for both the integral evaluation

part in the molecular orbital (MO) basis of LMP2 and in the CCSD amplitude determina-

tion. The negative effects of these drawbacks are mitigated by our extensively optimized,

integral-direct, in-core, and parallel integral transformation and CCSD(T) algorithms, which

optimally utilize the available computer power.23,27 The resulting LNO-CCSD(T) algorithm

is fully ab initio, i.e., free from real-space cutoffs, manual fragment definitions via input

atom lists, bond cutting, scaling parameters, etc., the domain construction is completely

automatic and adopts to the complexity of the wave function of the systems. The LNO-CC

algorithm was also extended to general order CC schemes, such as CCSDT(Q)62 [CCSD with

iterative triple and perturbative quadruple excitations].20,27

The current LNO-CCSD(T) implementation runs effectively on both moderate and high-

performance processors, it is OpenMP parallelized, benefits from point group symmetry

(even non-Abelian), restartable in the case of, e.g., power failure, especially memory eco-

nomic, and requires negligible hard disk space.27 For extremely large systems, LNO-CC cal-

culations can be embedded into the electrostatic potential of effective point charges via the

well established quantum mechanics/molecular mechanics (QM/MM) technique,63 and/or

a quantum mechanical embedding is also feasible where density functional theory (DFT)

is employed for the environment.25,26 On top of those layers, the correlation energy calcu-

lation can also be accelerated by combining higher-level methods for the most important
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regions [e.g., LNO-CCSD(T) or even LNO-CCSDT(Q)] with more cost-efficient choices for

the environment layer [e.g., LNO-CC with less accurate local approximations or LMP2].25,26

The previous, much less optimized version of LNO-CCSD(T) has already been successfully

applied to chemical problems by us64,65 and also by other researchers.66–68 For instance, in

a study aiming at accurate formation enthalpy, Paulechka and Kazakov benchmarked three

reduced-cost CCSD(T) implementations against canonical CCSD(T) references and found

even the previous version of our LNO-CCSD(T) approach to be the most accurate and

efficient.68

Besides the accuracy of the local approximations the relatively slow convergence of

CCSD(T) energies with the atomic orbital (AO) basis set size also has to be addressed

in realistic applications. Extrapolation towards the complete basis set (CBS) limit using

systematically improving AO basis set hierarchies was proven reliable to minimize the basis

set incompleteness error (BSIE)69 if the employed basis sets are sufficiently large (at least

triple- and quadruple-ζ quality). Alternatively, the BSIE of CCSD can also be decreased us-

ing explicitly correlated or F12 methods,70 which solution has also become available for some

of the recent local CC implementations.36,40,44,61 Besides the higher complexity of F12 meth-

ods from the perspective of the evaluation of local CC intermediates36,40,44 or gradients,71

the explicitly correlated treatment of the (T) contribution is also a not yet completely solved

issue.40,44,72 Nevertheless, the agreement of CBS extrapolated and explicitly correlated CC

results, as also found, e.g., in Sects. 5 and 6 of the present report, verifies the applicability

of both approaches.

The paper is organized as follows. Sect. 2 provides a summary of the LNO-CCSD(T)

method and its implementation, including the most recent algorithmic developments, fo-

cusing on the aspects relevant from the perspective of applications. The behavior of the

local approximations with the individual truncations and the presently introduced compos-

ite threshold sets is analyzed in Sect. 3. The accuracy of LNO-CCSD(T) is extensively

benchmarked against canonical CCSD(T) reference energies (Sect. 5) and comparisons are
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also provided with some of the most popular and efficient, alternative local CCSD(T) imple-

mentations.35–37,40 The systematic convergence of LNO-CCSD(T) energies with respect to

both the local approximations and the AO basis set completeness is in the focus of Sect. 6.

Sect. 7 provides a practical perspective collecting wall-time and other hardware requirement

measurements on the examples of a realistic application for an organocatalysis reaction in-

volving up to 90 atoms and for an entire protein system containing 1023 atoms and almost

45000 AOs.

2 Theoretical background

This section briefly introduces the theoretical background of our local correlation schemes fo-

cusing on the aspects relevant from the perspective of practical applications. For more details

regarding the theory, derivations, algorithms, etc., we refer to previous publications.22–24,27

2.1 The LNO-CCSD(T) approach

The correlation energy expressions considered in the context of our local methods are inspired

by the formulation of the CIM approach.56–59 In general, Ecorr [where corr = MP2, CCSD,

(T), CCSD(T), CCSDT, . . . ] are expressed as sums over occupied (and virtual) orbital

indices, hence the invariance of the sums to unitary rotations among the occupied (and

virtual) orbitals can be exploited. In the following the conventional canonical occupied

orbital indices (i, j, k, . . . ) will be replaced by localized MOs (i′, j′, k′, . . . ) in order to facilitate

the introduction of local approximations. For instance, the canonical CCSD(T) energy can

be exactly rearranged as

ECCSD(T) =
∑
i

δE
CCSD(T)
i =

∑
i′

δE
CCSD(T)
i′ , (1)
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where δECCSD(T)
i and δECCSD(T)

i′ are the correlation energy contributions of the ith canonical

and localized MO, respectively.

The CCSD and (T) terms of ECCSD(T), ECCSD and E(T), respectively, are also written

as sums of contributions of individual occupied orbitals. Using CCSD as an example, the

explicit form of the correlation energy contribution reads as

ECCSD =
∑
i′

δECCSD
i′ =

∑
i′

[
2
∑
a

fai′t
a
i′ +

∑
abj

Lab
i′j(t

ab
i′j + tai′t

b
j)

]
, (2)

where fai is an element of the Fock-matrix, tai and tabij are cluster amplitudes for single and

double excitations, respectively, and a, b, . . . are virtual orbital indices. The quantity

Lab
i′j = 2(ai′|bj)− (aj|bi′) (3)

is defined using (ai|bj), which is an electron repulsion integral (ERI) in the Mulliken notation.

Note that the δEcorr
i′ correlation energy contributions of individual LMOs can be analogously

expressed for MP2,22,23 (T),21,24 and higher-order CC methods as well.20,27

To reduce the scaling of the number of operations in the Ecorr expressions to asymptot-

ically linear the operation count for each δEcorr
i′ has to be asymptotically constant. Here

we assume that contribution δEcorr
i′ is computed for each LMO correlated in the calculation.

However, let us add that the scaling of the correlation energy evaluation can be further im-

proved to sublinear, e.g., by employing embedding and multi-level correlation techniques,25,26

where we can also limit the number of occupied orbitals for which δEcorr
i′ is evaluated at a

higher, LNO-CC level.

2.2 Local approximations and their implementation

In order to achieve asymptotically constant scaling for the individual δEcorr
i′ terms the sum-

mations over all occupied and virtual indices have to be restricted (in an i′ orbital specific
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manner) to an asymptotically constant number of terms. For instance, the summations over

indices j, a, and b in Eq. (2) are performed for less than the complete number of occupied

and virtual orbitals of the entire system. This is achieved in our LNO-CC method, and in

many other local correlation schemes,28,32,39 by introducing pair and domain approximations.

Our approximations are discussed in detail in Refs. 23, 24, and 27, while only a compact

summary is given in this section.

The occupied orbitals contributing to δELNO−CCSD(T)
i′ , the LNO-CCSD(T) analogue of

δE
CCSD(T)
i′ , at the CCSD(T) level are selected on the basis of pair correlation energy esti-

mates, δEi′j′ , obtained for all i′ − j′ LMO pairs. For that purpose sufficiently large, i′ − j′

specific pair domains (Pi′j′) are formed consisting of orbitals i′, j′, correlating orbitals in

the form of projected atomic orbitals (PAOs) surrounding i′ and j′, and AOs necessary to

span the MOs of Pi′j′ up to a certain threshold (99.9% by default).23,27 In those pair do-

mains MP2 pair correlation energy estimates [δEi′j′(Pi′j′)] are evaluated very efficiently and

accurately using multipole expansions including contributions up to octupole moments.23,27

After that only those strongly correlated pairs, or, in brief, strong pairs are kept for the

following CC calculations which have a pair correlation energy higher than a threshold (εw),

i.e., δEi′j′(Pi′j′) ≥ εw. The δEi′j′(Pi′j′) correlation energy contributions of the remaining

pairs, the so-called distant pairs [with δEi′j′(Pi′j′) < εw] are added to the total correlation

energy [see Eq. (5) below].

The length of the strong pair list of each LMO is independent of the size of the molecule

(for sufficiently large, non-metallic systems) due to the fast decay of the pair correlation

energies. To restrict the summations for the virtual indices in the δEcorr
i′ -type expressions

the domain approximation is employed. To that end a so-called extended domain (ED, Ei′)

is formed around each LMO i′, and the LMO i′ is called the central MO of its ED.23,27

The MO space of each ED consists of the central LMO, its strong pair LMOs, and PAOs

centered at the atoms of a domain (called PAO center domain, PCD) surrounding the centers

of the LMOs of the ED. The PCD is defined so that, even with the shortened PAO list, the
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ED’s MP2 correlation energy contribution [δEMP2
i′ (Ei′)] will be accurate allowing only a few

hundredths of a percent error. We have also showed that the necessary LMO-PAO three-

center ERIs of the ED can be accurately fitted using auxiliary functions (AF) centered on

the atoms of the PCD.23,27 Finally, the AO list of the ED is composed as the union of

LMO specific atom lists, governed by the TEDo threshold. The default TEDo = 0.9999 setting

ensures that the projection of each LMO onto the ED’s AO list is accurate up to 99.99%.

We observed for large, 3D systems, such as proteins, that the average number of atoms in

the EDs saturates around 100-150 even if there are an order of magnitude more atoms in the

entire molecule.23,27 Naturally, the radius of a closely packed 3D system of about 100-150

atoms is in the range of 5-10 Ångströms, and the correlation of the electron pairs closer

than that distance has to be treated at a higher level. Nevertheless, several further efficiency

improving techniques have to be combined in order to obtain δEMP2
i′ (Ei′) for all LMOs in a

reasonable time and with affordable memory requirement in the range of tens of a gigabyte

(GB). Relying on those results in highly efficient calculations even if some of the EDs contain

all atoms of the entire molecule for 3D systems of below about 100 atoms. In brief, three-

center ERIs are evaluated in an integral direct manner in a pseudo-canonical LMO-PAO

basis, and only the absolutely necessary, non-redundant set of MP2 amplitudes is evaluated

using a Laplace-transform/Cholesky-decomposition based approach.22,23,27 The same MP2

amplitude list is also useful to construct MP2 natural orbitals, the LNOs of the ED. For

the rest of the domain calculation occupied and virtual LNOs having occupation numbers

smaller than εo and εv are kept frozen and not correlated at the CC level. The full LMO and

PAO bases of the ED are then compressed by transforming them to the truncated LNO list,

yielding the local interacting subspace (LIS, Pi′) of the central LMO. Since the LNO list is

highly-compressed compared to the LMO/PAO basis of the ED, the accurate density fitting

(DF) of the ERIs in the LNO basis requires much fewer AFs than those that are used for the

local DF in the EDs, that is, the AFs located on the atoms of the PCD. For that purpose the

so-called natural auxiliary functions (NAFs)73 are employed, which are, in a system specific
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manner, optimal for the fitting of the ERIs in the LNO basis.22,23,27 The NAF selection step,

in analogy with the LNO selection, is controlled by the εNAF threshold. On top of the above,

LNO- and NAF-based cost-saving approaches an operation count efficient scheme has also

been introduced recently for the construction of the still numerous two-external three-center

integrals of the compressed LNO and NAF basis.27

The final correlation energy contribution of each LMO includes the CCSD(T) and MP2

correlation energies computed in the LNO basis of the LIS, δECCSD(T)
i′ (Pi′) and δEMP2

i′ (Pi′),

respectively. The LIS MP2 and CCSD correlation energy is evaluated in the complete LNO

basis via conventional, DF-based formulations, however, the same approach would be de-

manding for the (T) part. For the latter, only a non-redundant list of triples amplitudes is

computed using our highly-optimized Laplace (T) code,24 which brings down the scaling of

the (T) correlation energy calculation from seventh to sixth power with the size of the LIS.

The accuracy of the Laplace-quadrature is governed by TLT as discussed in Ref. 24.

Once all the independent LIS CCSD(T) calculations are completed the total LNO-

CCSD(T) correlation energy is evaluated as

ELNO−CCSD(T) =
∑
i′

[
δE

CCSD(T)
i′ (Pi′) + ∆EMP2

i′

]
, (4)

where ∆EMP2
i′ corrects for the above pair, LNO, NAF, and other approximations at the MP2

level:

∆EMP2
i′ = δEMP2

i′ (Ei′)− δEMP2
i′ (Pi′) +

1

2

distant∑
j′

δEi′j′(Pi′j′) . (5)

We note that an accurate local MP2 correlation energy,

ELMP2 =
∑
i′

[
δEMP2

i′ (Ei′) +
1

2

distant∑
j′

δEi′j′(Pi′j′)
]
, (6)

also emerges from the above procedure, which can be useful, for instance, to obtain low-cost

basis set incompleteness corrections to LNO-CC energies at the LMP2 level.74
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2.3 Recent algorithmic improvements

On top of the algorithmic optimization summarized above and presented previously23,24,27

a significant amount of additional advances has been made since our latest report,27 which

are already available in the most recent release of the Mrcc program suite (release date

February 9, 2019).75 All of these developments are aimed to make the evaluation of the

above LNO-CC energies more efficient with less computational resources. In other words,

the LNO-CC Ansatz and the correlation energies remained the same as discussed in Ref.

27. The thorough description of these improvements would require an in depth introduction

of many aspects of our approach and algorithms and would be highly technical. For that

reason this is left to a theory oriented report, and here we only compile the features most

relevant for the application of the new algorithm in practice.

From the perspective of approaching the CBS limit of LNO-CC correlation energies for

large systems the most important task was to handle numerical challenges emerging from the

near linear dependency of the AO basis set. The redundancy in triple- and quadruple-ζ (or

even larger) basis sets can be severe for extended molecules, especially if diffuse functions are

also present. Unfortunately, the most common approach of near linear dependency removal,

the Löwdin canonical orthogonalization would require the mixing of the AO basis functions

with each other, which negatively effects the locality of the LMOs expanded in the atom-

centered AO basis. Our aim was to retain the full extent of the locality of the LMOs,

hence our solution was to work with the complete, possibly linearly dependent AO basis

and adjust those steps of the calculation that can be prone to numerical instabilities. The

resulting algorithm is proven to be quite stable even with extremely large, diffuse basis sets.

So far we were able to perform LNO-CCSD(T) calculations with diffuse, quadruple-ζ basis

sets for systems of up to 1000 atoms and with diffuse, quintuple-ζ basis sets with up to 100

atoms.74

The wall time required for LNO-CCSD(T) in OpenMP-parallel calculations was decreased

by enhancing the parallel efficiency of our DF-CCSD implementation. To that end, now
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a fully integral-direct, in-core DF-CCSD(T) implementation16 is employed for the CCSD

and Laplace-transform (T) calculations of each LIS. Hence, four-center LNO integrals are

not stored on disk any more, all the necessary integrals and intermediates are stored in

memory or recomputed when required. This solution eliminates many steps, such as the

input/output (I/O) of four-center integral lists, which cannot scale properly with the number

of available cores, and consequently it improves the parallel efficiency. Compared to our

previous CCSD implementation21 the scaling with the number of cores and also the wall

times have been improved by about a factor of 2 measured on a 6-core CPU. This new

DF-CCSD(T) implementation16 is superior over the previous one not only in wall times and

OpenMP scaling, but its minimal memory requirement is almost by a factor of 2 smaller,

and it uses negligible disk space. The latter is particularly useful to avoid extensive data

traffic if only network file systems are available as in many current computer clusters.

In order to also minimize the potentially slow disk use in the integral transformation

steps the order of operations has been rearranged. Previously, the three-center ERIs in the

LNO/NAF basis were evaluated first for each LIS, these compressed integral lists were stored

on disk, and finally the CCSD(T) calculations were performed in each LIS in a separate loop

for all LISs. In contrast, the current algorithm computes a set of LNO/NAF three-center

ERIs for a domain at a time, keeps it in memory, and immediately performs the CCSD(T)

calculation for that LIS. In this way neither any three-center nor the assembled four-center

LNO integrals are stored on disk, but they are kept in memory only as long as they are

needed and discarded as soon as the LIS calculation is completed.

Let us note that the in-core storage of the LNO/NAF integrals does not increase the

memory requirement of the integral transformation part since it is usually dominated by the

three-center LMO/PAO ERI lists of the ED. As it was illustrated in Table 11 of Ref. 27,

the memory use of our previous approach was already relatively small being in the range of

a few tens of GBs for average cases. In order to facilitate LNO-CCSD(T) calculations with

even smaller minimal memory requirement or for systems with very large, diffuse basis sets,
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we have also implemented alternative algorithms for the memory intensive operations in the

ED. If needed the minimal memory requirement can now be reduced significantly (depending

on the system by up to about a factor of 4) in exchange for slightly increased operation count

or for storing some of the large intermediates on disk.

3 Accuracy of local approximations

We have performed thorough investigations on the effect of all individual approximations

on the accuracy of both correlation energies and energy differences in the context of our

LMP2,23 LNO-dRPA,22 and LNO-CC20,21,24,27 methods. Additionally, default combinations

of these thresholds were identified which reproduce the results obtained with the canonical

methods with high accuracy. For instance, LNO-CCSD(T) with its default settings recovered

conventional CCSD(T) on the average within chemical accuracy in all the test cases studied

so far, where exact CCSD(T) results were available. Here we introduce a few additional,

pre-defined threshold combinations so that convergence tests utilizing the systematically im-

provable nature of our local approximations can be performed in a simple, black box manner.

For that purpose, first, we review the conclusions of the convergence studies performed by

changing one parameter at a time and devise parameter sets yielding balanced accuracy and

computational performance.

3.1 Threshold dependence of individual approximations

The thresholds determining the quality of the pair-energy estimates, namely the order of

the multipole expansion, the size of the pair-domains, etc. were analyzed by comparisons

to exact MP2 pair energies.23 The largest system in these tests contains 103 atoms and it

is about 28 Å long ensuring that a wide range of pair-energy values are assessed. We have

found that the cumulated errors of the above approximations lead to an error of lower than

0.02% in the total correlation energy if the pair-energies of distant pairs are added up to
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the default threshold of εw = 10−5 Eh, while the same error drops below 0.01% if a tighter

parameter, εw = 3 × 10−6 Eh is employed.23 Varying the strong/distant pair threshold, εw

effects the accuracy of the MP2 energy contributions of the EDs [δEMP2
i′ (Ei′)] in a larger

extent. Benchmarks performed on molecules containing more than 100 atoms and triple-ζ

basis sets revealed that even for such large systems correlation energy errors in the range of

only 0.03% to 0.08% can be attributed to the pair approximation with the default εw = 10−5

Eh value, while a factor of 2-3 improvement comes with the tighter εw = 3 × 10−6 Eh

setting.23,27 The good accuracy provided by the εw = 10−5 Eh choice is in accord with the

findings of independent studies. For instance, the above default value matches the default

close and weak pair separating threshold in the local PNO family of methods of Werner and

co-workers39 and is also equal to the strong and weak pair separating threshold employed

in the TightPNO variant of the domain-based local PNO (DLPNO) methods of Neese and

co-workers.76 The final threshold needed for the definition of the EDs, TEDo, which controls

the size of the atom and AO lists, has a smaller impact on the energetics. Correlation energy

errors of about 0.01% to 0.02% are caused when using the default TEDo = 0.9999 value and

the results are more than twice as good with the tighter TEDo = 0.99995 setting.23,27 The

combined effect of the above pair and domain errors is systematic, the absolute correlation

energy errors in the MP2 energy of the ED are positive (higher negative number due to

the exclusion of MOs from the ED energy expressions) and found to be below 0.1% for all

systems of a test set containing large molecules of 90-260 atoms and a wide range of basis

sets.23,27 The overall contributions of the pair and domain truncations to the error of LNO-

CCSD(T) energy differences are also sufficiently small, for the tested systems only 0.2-0.3

kcal/mol (< 1%) absolute (relative) deviations were found even for quite challenging, large

systems of up to 100 atoms and triple-ζ bases extended with diffuse functions.27

The remaining thresholds determine the quality of the correlation energies obtained in the

LIS. The cost of tightening the thresholds for the NAF truncation and the Laplace-transform

as far as achieving negligible errors turned out to be affordable when using the default or
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tighter LNO and pair truncation parameters.24,27 The additional benefit of choosing such

tight εNAF and TLT as default is that exploratory convergence studies can be started by

focusing on the effect of the dominant pair and LNO truncations. From the same perspective,

it was beneficial to tie together the occupation number thresholds for the occupied and virtual

LNOs since their behavior was found to correlate irrespective of the type of the investigated

molecules.21,27 We have also invested sizable resources to test the accuracy of the combined

LNO threshold on large systems and we have found rapid convergence for both correlation

and reaction energies. Considering average to relatively challenging cases of medium-sized

systems, compared to canonical references we measured relative errors of about 0.01-0.06%

with triple-ζ basis sets and somewhat larger, up to 0.07-0.09% errors with quadruple-ζ bases.

These correlation energy errors decrease below 0.02-0.03% for both basis set types when the

tighter, εv = 3×10−7 value is set.27 The correlation energy errors caused by discarding LNOs

were found to be almost as systematic as the pair and domain errors, but of the opposite

sign, hence LNO-CCSD(T) may also benefit from the partial compensation of those two

major error sources. The contribution of the LNO truncation to reaction energy errors is

usually acceptable but can get close to 1 kcal/mol for complicated systems with large reaction

energies, such as the ISOL4 reaction (Fig. 1). Nevertheless, we have found for the tested

systems that the tighter εv threshold of 3 × 10−7 can provide reaction energies which are

accurate up to a few tenth of a kcal/mol, and the relative errors in energy differences were

also excellent, below 1% already with the default choice.27

3.2 Composite truncation threshold combinations

Building on the numerical experience collected on the behavior of our local approximations

we determined a default threshold combination, hereafter referred to as the Normal thresh-

old set, leading to affordable and accurate LNO-CCSD(T) results.27 The performance of the

Normal set can be characterized by its satisfactory average correlation and reaction energies

of 0.07% and 0.34 kcal/mol, respectively, which were measured using a test set containing
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26 CCSD(T) correlation energies of medium-sized systems (CEMS26).27 The resulting set

collects molecules of 30-63 atoms and employs realistic, at least triple-ζ quality basis sets,

hence it is suitable to predict the accuracy of local CCSD(T) methods for average applica-

tions. However, not all the local approximations operate at full extent even on 3D molecules

of up to 63 atoms, therefore here we present additional benchmarks on larger molecules con-

taining 58–92 atoms. The examples of the present report are also suitable to characterize

the convergence of energies and energy differences towards the CBS limit and the limitations

and maximum expected errors of our method by analyzing its behavior on some of the most

complicated cases presented in the literature so far, the ISOL4 and AuAmin reactions and

the dimerization of coronene (Fig. 1).

Such tests are performed by exploiting that both the local approximations and the qual-

ity of the AO basis set are systematically improvable. Since there are numerous different

local approximations in our method, it is beneficial to package them together and perform

convergence tests by varying only a single, composite parameter. For that purpose, besides

the Normal set, Loose and Tight threshold sets were defined by balancing the performance

and accuracy of the various forms of truncations (see Table 1). Mainly for the purpose of

performing convergence tests when the exact reference is unavailable an even tighter combi-

nation is also introduced, which will be dubbed very Tight or vTight (see the corresponding

entry of Table 1). The improvement of the main truncation thresholds in Table 1 are roughly

exponential, i.e., there is about a factor of three improvement in the εo, εv, and εw thresh-

olds when going one step further. Thus large steps are made towards very small thresholds

ensuring the rapid and reliable approach of conventional CCSD(T).

4 Computational details and test systems

The above LNO-CCSD(T) and related approaches have been implemented in the Mrcc suite

of quantum chemical programs, and they are available in the latest release of the program
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Table 1: Threshold combinations defined in this study.a

Symbol Keywordb Loose Normal Tight vTight
εo lnoepso 3× 10−5 10−5 3× 10−6 10−6

εv lnoepsv 3× 10−6 10−6 3× 10−7 10−7

εw [Eh] wpairtol 3× 10−5 10−5 3× 10−6 10−6

TEDo bpedo 0.9999 0.9999 0.99995 0.99999
εNAF [Eh] naf_cor 10−2 10−2 10−2 10−3

TLT laptol 10−1 10−2 10−3 10−3

a The various threshold combinations can be set by the lcorthr keyword of the Mrcc
suite if keyword localcc is set to 2018. b Name of the corresponding Mrcc keywords.

suit.75 For comparison PNO-CCSD(T)-F12 results were collected from the literature.40,42

DLPNO-CCSD(T0) and DLPNO-CCSD(T) results computed with and without relying on

the semi-canonical triples approximation (T0)35,37 were obtained using the 4.0 and 4.1 ver-

sions of the Orca package.77

In the calculations presented here Dunning’s (augmented) correlation-consistent polarized

valence X-tuple-ζ basis sets [(aug-)cc-pVXZ, X = T, Q, and 5],78–80 and the triple- and

quadruple-ζ valence basis sets including polarization functions (def2-TZVP and def2-QZVP)

optimized by Weigend and Ahlrichs81 were used. Dunning’s (aug-)cc-pVXZ bases were

applied to the atoms of the reactants and products of the AuAmin reaction (see below in

Sect. 4.1), except for the phosphorus atom, for which the revised (aug-)cc-pV(X+d)Z set

was used,82 and for the gold atom, for which the augmented correlation consistent valence

triple-ζ pseudopotential (aug-cc-pVTZ-PP) basis set of Peterson83 was employed together

with the corresponding effective core potential (ECP) for the inner 60 electrons of the atom.84

For the sake of brevity, the basis set combination used for the AuAmin reaction will simply

be labeled by (aug-)cc-pVXZ throughout the text. If not indicated otherwise, for the above

AO basis sets the corresponding auxiliary bases of Weigend and co-workers were applied.85–87

To simplify the notation wherever clarity allows the (a)XZ shorthand is introduced referring

the to corresponding Dunning-type basis set of (aug-)cc-pVXZ.

For most of our calculations the DF approximation was also invoked at the HF calcula-

tions without further approximations (DF-HF), while for the protein calculation (Fig. 3) the
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exchange contribution in the DF-HF calculations was computed with local fitting domains

as described in Ref. 23. The core electrons were kept frozen in all the correlation calcula-

tions. In accordance with Ref. 40, 8 electrons were not correlated (on top of the 60 electrons

described via ECP) on the gold atom.

The CBS limit of the HF and correlation energies is approached via two-point extrapo-

lation techniques. The compact notation of (a)(X, Y )Z will be employed to denote extrap-

olation using the (a)XZ and (a)Y Z bases. For instance, extrapolated results based on the

aug-cc-pVTZ and aug-cc-pVQZ sets will be labeled by a(T,Q)Z. For the extrapolation of HF

energies the two-point formula suggested by Karton and Martin88 is used:

EHF
X(X−1) = EHF

X +
(EHF

X − EHF
X−1)(X + 1)

X exp
(
γ(
√
X −

√
X − 1)

) , (7)

where EHF
X is the HF energy obtained with the (a)XZ basis set and γ is 6.57 for X = 4 .88

Correlation energies are extrapolated using the formula introduced by Helgaker et al.69 as

Ecorr
X(X+1) =

X3Ecorr
X − (X + 1)3Ecorr

X+1

X3 − (X + 1)3
, (8)

with Ecorr
X being the correlation energy with the (a)XZ basis set.

The reported computation times are wall-clock times determined on a machine with 128

GB of main memory, a standard 7200 rpm hard disk, and a single 6-core 3.5 GHz Intel

Xeon E5-1650 v2 processor with a theoretical peak performance of 168 billion floating point

operations per second.

4.1 Benchmark sets and test systems

The accuracy of the LNO-CCSD(T) correlation, reaction, and non-covalent interaction en-

ergies was assessed on tests sets composed of small to medium sized systems of up to 63

atoms. The common characteristic of these tests is that the conventional CCSD(T) results
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were available as reference. First, the test set of Neese, Wennmohs, and Hansen (NWH)89

was studied, which is assembled from 23 reactions including molecules of up to 36 atoms. In

this case the relatively small system size allowed us to obtain the CCSD(T) reference with

both triple- and quadruple-ζ quality basis sets so the accuracy of the basis set extrapolated

results are also analyzed. Furthermore, weak interaction energies were tested for the dimers

collected in the S66 benchmark set of Řezáč and co-workers.90 Regarding the basis set limit

of interaction energies, it is not possible to perform quadruple-ζ CCSD(T) calculations for all

members of the S66 set, but recent benchmark data obtained with explicitly correlated meth-

ods are available for comparison.42,91 In the recently complied CEMS26 set well-reproducible

CCSD(T) reference energies were obtained with at least triple-ζ quality basis sets for as large

molecules as possible (see Fig. 6 of Ref. 27 for a pictorial representation of the entries of

CEMS26).

To illustrate the convergence with the local approximations and with the AO basis set

towards the CBS limit of DF-CCSD(T) six additional, larger, and more challenging systems

were selected, containing 58 to 92 atoms (see Figs. 1 and 2).

For such systems, of course, the exact CCSD(T) reference cannot be computed with

reasonable basis sets, and comparisons can only be made to results obtained with very tight

thresholds or to recent calculations performed with alternative local CCSD(T) schemes.36,40

Among these systems the formation of androstendione from its precursor is the simplest,

serving as a model of a one-step organic reaction.40 A much more challenging case is the

fourth reaction of the isomerization test set (ISOL4) of Grimme and co-workers,92 because

the two intermediate steps in the biosynthesis of cholesterol, lanosterol [ISOL4 educt] and

(S)-2,3-oxidosqualene [ISOL4 product] are markedly different, separated by many elementary

steps of the net reaction, hence one cannot rely on any error compensation between the educt

and product. The “AuAmin” (AuC41H45N4P) organometallic reaction was also introduced

by the Werner group as an especially hard case for local correlation methods,38 because of

the extensive correlation energy contribution of the numerous important but individually
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Figure 1: The reactions and dimers investigated in the convergence tests of Sect. 6: forma-
tion of androstendione,38 fourth isomerization of the ISOL test set92 (ISOL4), the AuAmin
reaction,38 and dimers of the guanine–cytosine complex and coronene taken from the L7 test
set.93

small non-covalent interactions to the reaction energy. We also considered two notoriously

complicated examples taken from the L7 test set of Hobza and co-workers,93 namely the
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Figure 2: Reactants (propanal and β-nitrostyrene), catalyst and cocatalyst (p-nitrophenol),
and the transition state of the C–C bond formation step (TSRS

CC · · · pnp) leading to the major
stereogenic product. See Sect. 7.1 and Ref. 64 for further details.

dimerization energies of the guanine–cytosine complex and coronene (GCGC and C2C2PD,

respectively), in order to assess the performance of the LNO-CCSD(T) method directly on

the most challenging type of non-covalent interactions, that is, on the example of extended

π-π stacking interactions.

A case study on a typical organocatalysis reaction will also be presented as an illustrative

example of the application of the LNO-CCSD(T) approach to realistic chemical problems.

The reactants, product, and transition state (TS) considered here for the Michael-addition

reaction of Ref. 64 are depicted in Fig. 2. Finally, large-scale calculations illustrating

the current capabilities of our LNO-CCSD(T) implementation will be presented for a lipid

transfer protein94 (LTP, PDB ID: 1N89) containing 1023 atoms and up to 44712 atomic

orbitals (see Fig. 3).

The structures of all the investigated molecules are available in the above cited reports.

The Cartesian coordinates of most of the systems and the employed (DF-)CCSD(T) reference

energies are collected in the Supporting Information (SI) of Ref. 27. The structure used for

the LTP calculations is provided in the SI.

For the statistical analysis the maximum absolute error (MAX), the mean absolute error

(MAE), and the standard deviation of these errors (STD) were applied. Relative energy

differences with respect to a reference energy (Eref) are obtained as (100%) ·(ELNO−CCSD(T)−
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Figure 3: Lipid transfer protein94 containing 1023 atoms, including its ligand of 79 atoms.

Eref)/Eref . Exact CCSD(T) or LNO-CCSD(T) correlation energies obtained with very tight

thresholds will be used as Eref .

5 Benchmarks for medium-sized systems

The most appropriate and precise assessment of the quality of local correlation energies and

energy differences is to compare them to exact (DF-)CCSD(T) references. The extremely

high cost of conventional CCSD(T), especially if sufficiently large, at least triple-ζ quality

AO basis sets are employed, does not allow such reference calculations to be performed on

systems larger than those in the CEMS26 compilation. Nevertheless, at least in this range

of up to 63 atoms one can benefit from the exact (DF-)CCSD(T) references in the given AO

basis sets, and a relevant portion of the chemical space can be sampled.

5.1 Reference energies for the benchmark sets

Correlation and reaction energies are tested first on the test set employed in one of the

local PNO studies of Ref. 89. The NWH set consists of 23 organic reactions of 47 differ-

ent molecules. All systems are below 36 atoms, which allowed us to perform conventional

CCSD(T) calculations using the cc-pVTZ, aug-cc-pVTZ, and also the cc-pVQZ basis set.27
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We showed in a detailed analysis27 that (at least for the NWH set) the DF-CCSD(T)/cc-

pVTZ correlation energies are systematically overestimated compared to CCSD(T)/cc-pVTZ

without DF by about 0.05%. Consequently, this deviation has to be taken into account when

comparing local CCSD(T) energies (including DF errors) to conventional CCSD(T) refer-

ences without DF, otherwise local errors in the usually underestimated correlation energies

would seem about 0.05% smaller due to the DF error present only in the former.27 To avoid

this bias we have chosen to minimize the DF error in the presented local CCSD(T) calcu-

lations [for LNO-CCSD(T) and both DLPNO-CCSD(T) variants] by fitting the integrals of

the (aug-)cc-pVXZ basis with auxiliary functions of the (aug-)cc-pV(X + 2)Z-RI basis. As

expected, the reference reaction energies are affected by the DF approach to a negligible

extent.27

Correlation and non-covalent interaction energies are benchmarked for the 66 organic

molecular dimers of the S66 compilation.90 We performed DF-CCSD(T) reference calcula-

tions with the aug’-cc-pVTZ basis set (aug-cc-pVTZ basis for non-hydrogen, cc-pVTZ for

hydrogen atoms)27 for all 3×66 species, containing at most 34 atoms. It was not pos-

sible to carry out DF-CCSD(T) for the entire set with larger basis sets, hence the CBS

extrapolated energies are compared to the most recent “SILVER” reference values of Martin

and co-workers, including half counterpoise (CP) corrected MP2-F12/aug-cc-pV(T,Q)Z-F12

improved by [CCSD(F12*) − MP2-F12]/aug-cc-pVTZ-F12 and [CCSD(T) − CCSD]/aug’-

cc-pV(D,T)Z corrections.91 This introduces, of course, a small uncertainty when CBS ex-

trapolated local CCSD(T) energies obtained with a’(T,Q)Z are assessed against the SILVER

values. Recently, Werner and Ma performed PNO-CCSD(T*)-F12/aug-cc-pVQZ-F12 calcu-

lations and found about 0.02 and 0.06 kcal/mol MAE and MAX deviations, respectively,

compared to the same SILVER reference.42 On the basis of that comparison the mean un-

certainty of the SILVER reference values can be estimated to be about 0.02 kcal/mol, which

is in good agreement with the uncertainty estimate of Martin and co-workers.91

For the species of the CEMS26 test set the available reference energies also include both
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CCSD(T) and DF-CCSD(T) values obtained from the literature or computed by us.27,95

Again, to avoid the potential bias of the DF error in the correlation energies, the “(X + 2)Z-

RI” type auxiliary basis sets were utilized in both the LNO and the DLPNO calculations

when the reference values were calculated without the DF approximation (see Table 8 and

the supplementary material of Ref. 27 for further details.)

5.2 Accuracy of correlation energies

Mean absolute and maximum correlation energy errors and the STD measures of LNO-

CCSD(T) results are collected for all three compilations in Table 2. The systematic conver-

gence of the LNO-CCSD(T) results can be observed when comparing the Loose, Normal,

Tight, and vTight LNO-CCSD(T) values with the canonical (DF-)CCSD(T) references. Gen-

erally, the convergence of all three error measures are monotonic and fast, both the average

absolute and maximum errors improve in almost all the cases by at least a factor of two

when switching to a better threshold set. This exponential rate of improvement in the accu-

racy observed with the tighter and tighter settings is in accord with the exponential rate of

decrease in the truncation thresholds (see Table 1). It is also highly satisfactory that, for a

wide range of molecules, concerning both the type and the size (2-63 atoms), and for a good

selection of medium to large basis sets the MAE for correlation energies is below 0.069%

already with the default, Normal settings. This MAE value is significantly better, below

0.029% for the smaller species of the NWH and S66 compilations with the (aug)-cc-pVTZ

basis sets. Since the orbitals are noticeably more spread when diffuse functions are added

to the AO basis set, it is challenging to design local approximations with balanced accuracy

for AO bases with and without diffuse functions. Considering the maximum errors, except

for 6 species, namely the [2.2]paracyclophane in the NWH set with cc-pVQZ basis, and for

the two porphyrin derivatives, the two (H2O)17 conformers, and octamethylsilsesquioxane

of the CEMS26 set, all correlation energy errors are below the 0.1% mark already with the

Normal settings. The Tight setting ensures that, for all studied systems and with any basis
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set considered, the LNO-CCSD(T) correlation energies are accurate to at least 99.9%. Even

the more challenging NWH/cc-pVQZ and the CEMS26 MAE values get below 0.028% with

the Tight thresholds on the average. The Normal and Tight STD values are in the range

of 0.022-0.044% and 0.009-0.019%, respectively, for all species and basis sets, hence some

beneficial compensation of errors can be expected when energy differences are formed from

chemically similar systems. Regarding the performance of the Loose settings, excluding for

a moment the NWH/cc-pVQZ case, both the MAE and the STD values are below 0.11%.

Thus the Loose setting serves its purpose of providing a very economic but still relatively

reliable estimate of the better converged LNO-CCSD(T) energies, at least for triple-ζ basis

sets. The higher errors of the NWH/cc-pVQZ energies with the Loose settings are explained

by the fact that the same, relatively loose LNO occupation number threshold truncates the

larger, quadruple-ζ basis more severely.

Finally, we also included the same error measures using the vTight settings for two pur-

poses. First, it is important to see that the exponential improvement in the correlation

energies continues when even better settings are employed. As we showed previously, follow-

ing this approach, i.e., using tighter and tighter settings for the individual truncations, the

conventional correlation energy can be recovered with arbitrary accuracy23,27 due to the fact

that all of our local approximations are systematically improvable. The results presented

here also support this statement. Second, we are aiming to employ the vTight results as

reference for larger systems, where it is impossible to carry out the canonical CCSD(T) cal-

culations. This is justified by the rapid convergence of the energies and the excellent overall

accuracy of the vTight setting with at most 0.02% MAE and 0.01% STD.

The analogous DLPNO-CCSD(T0) and DLPNO-CCSD(T) correlation energy errors ob-

tained using the same reference are included in Table S1 of the SI with both the Nor-

malPNO and the TightPNO settings.33 Concluding the detailed analysis of Sect. S1 of the

SI in brief, the (T0) approximation-free DLPNO-CCSD(T) is systematically, on the aver-

age by about 0.2% closer to the canonical reference than DLPNO-CCSD(T0). Still, both
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Table 2: Statistical measures for relative LNO-CCSD(T) correlation energy errors in percents
for the species of the NWH,89 S66,90 and CEMS2627 test sets with respect to canonical
CCSD(T) reference.

Threshold MAE MAX STD
NWH, cc-pVTZ

Loose 0.051 0.126 0.034
Normal 0.024 0.092 0.019
Tight 0.013 0.052 0.010
vTight 0.006 0.036 0.006

NWH, aug-cc-pVTZ
Loose 0.043 0.164 0.046
Normal 0.024 0.084 0.019
Tight 0.013 0.060 0.010
vTight 0.006 0.045 0.007

NWH, cc-pVQZ
Loose 0.214 0.364 0.104
Normal 0.069 0.143 0.036
Tight 0.028 0.094 0.016
vTight 0.019 0.073 0.011

S66, aug’-cc-pVTZ
Loose 0.046 0.134 0.031
Normal 0.029 0.094 0.022
Tight 0.017 0.046 0.009
vTight 0.007 0.018 0.005

CEMS26
Loose 0.109 0.364 0.090
Normal 0.067 0.145 0.044
Tight 0.026 0.065 0.019
vTight 0.014 0.033 0.008
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the MAEs of 0.12-0.24% and 0.04-0.10% obtained with the NormalPNO and TightPNO

settings of DLPNO-CCSD(T), respectively, are above the MAE of 0.02-0.07% provided by

LNO-CCSD(T) already with its Normal settings. This comparison of correlation energies

is mostly useful to make correspondence between the different composite threshold nomen-

clature of the two schemes. The characterization of energy differences, such as reaction,

interaction, and conformation energies (next section), is naturally of more interest from the

perspective of chemical applications.

5.3 Reaction, interaction and conformation energies

We have collected the same statistical measures for the deviations of LNO-CCSD(T) energy

differences with respect to the conventional CCSD(T) reference for the above three test

sets in Table 3. Additionally, the average and standard deviation of the signed errors are

depicted in the form of normal distributions in Fig. 4 and Fig. S1 of the SI. Looking at

Table 3 and Fig. 4 we again observe a systematic and rapid convergence when switching

to a better approximation set. The errors with the Normal settings are about 2-3 times

better than those obtained with the Loose combination, whereas the Tight results are about

1.5-3 times better than the ones with the Normal settings. The MAE values for the reaction

and interaction energies of the smaller species of the NWH and S66 sets are below 0.16

kcal/mol, which grows to 0.34 kcal/mol for the larger examples in the CEMS26 set. The Tight

setting ensures highly-accurate energy differences with MAE values below 0.12 kcal/mol

across the three studied benchmark compilations and with various, triple- and quadruple-ζ

bases. Maximum errors are also promising being below 1 kcal/mol for all but one studied

examples already with the default thresholds. The 1.01 kcal/mol error is obtained for the

complexation energy of Li+ with two 12-crown-4 molecules for which the CCSD(T) reference

value is 125.2 kcal/mol. This corresponds to a relative error of about 0.8% in this case

which is acceptable from the perspective of most applications. Nevertheless, the Tight

settings provide an excellent accuracy of below 0.46 kcal/mol for all of our examples. We
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again observe a slower convergence with the cc-pVQZ basis set, the largest errors of the

Tight threshold set are obtained for this case. However, if comparing the correlation and

reaction energy errors, especially for the Normal settings, one finds that the cc-pVQZ energy

difference deviations are comparable to the (aug-)cc-pVTZ ones even if the LNO-CCSD(T)

correlation energies are noticeably worse with the cc-pVQZ basis set. This can be at least

partly explained by the relatively low, 0.036% and 0.016% STD of the cc-pVQZ correlation

energy errors obtained with the Normal and Tight settings, respectively. In other words,

the CCSD(T) wave function is truncated in a larger extent using the same LNO occupation

number thresholds with the larger, cc-pVQZ basis, but the correlation energy appears to be

more sensitive to that truncation than the reaction energy. The STD of the reaction energy

errors with the Normal and Tight settings are found below 0.30 kcal/mol and 0.13 kcal/mol,

respectively, indicating that fast convergence can be expected also when differences between

reaction energies or barrier heights are of interest.

The MAE of Loose LNO-CCSD(T) results is acceptable if it is used to obtain a quick

estimate. For the reaction and interaction energies of the smaller species of the S66 and

NWH set a relatively good MAE of below 0.41 kcal/mol was found. The same Loose MAE

jumps to 1.5 kcal/mol for the more realistic CEMS26 set. The maximum errors being in the

range of 1.3-3.7 kcal/mol indicate that large deviations occur with the Loose settings, which

are probably most useful for exploratory calculations and convergence tests. Considering

the MAX errors of the NWH set for the Loose values, there is one outlier, the formation of

[2, 2]paracyclophane from two p-xylenes, which has by far the largest errors in the range of

2.6-2.8 kcal/mol. For the second worst case the largest errors do not exceed 1.4 kcal/mol

for any of the three basis sets and are thus more than twice better than for this complicated

example.

Considering also the vTight setting, one finds that, in spite of the significant improve-

ment in the correlation energies provided by the vTight setting over Tight, energy differences

are not improved at the same extent. This can be explained by looking at the difference of
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the correlation energy errors. For instance, the Tight and vTight correlation energy devia-

tions are 0.053% and 0.017% for the Mg-porphyrin and 0.049% and 0.014% for porphyrin,

respectively, thus correlation energies become better by about a factor of 3, but the reaction

energy error of the complexation of Mg with porphyrin only changes from 0.13 kcal/mol to

0.11 kcal/mol when switching to the vTight threshold set. In the case of the NHW set, there

is again an outlier, the challenging isomerization of 1,2,3,4,5,6-heptahexane to hepta-1,3,5-

triyne. The MAX errors of 0.24-0.35 kcal/mol for this example in all three basis sets are

about twice as large as the second highest absolute deviations of 0.12-0.15 kcal/mol. This

is explained by the markedly different electronic structure of the two isomers: 1,2,3,4,5,6-

heptahexane is a cumulene with six double bonds, while 1,3,5-heptatriyne has three triple

bonds. Both of these motives occur relatively rarely and can be considered challenging for

local methods due to the numerous unsaturated bonds. Nevertheless, the excellent overall

performance of the vTight energy differences (MAX error is below 1 kJ/mol for all examples

expect for the 1,2,3,4,5,6-heptahexane isomerization) validates our assumption that vTight

LNO-CCSD(T) results can reliably substitute canonical CCSD(T) if such reference is not

available.

The normal distribution plots of Fig. 4 (and Fig. S1 of the SI for NWH/aug-cc-pVTZ

and NHW/cc-pVQZ) based on the mean signed deviations of energy differences and their

STDs reveal some additional trends. For all three test sets and all AO basis choices, on

the average, the Loose and Normal energy differences are slightly underestimated, while the

Tight and vTight results are slightly overestimated. Looking at the individual cases over- and

underestimations can both occur with almost the same probability with all threshold com-

binations and basis sets. Nevertheless, the mean signed errors are fairly close to 0 kcal/mol,

and the convergence towards the exact CCSD(T) is again apparent from the narrower and

narrower distributions. The figures also indicate that chemical accuracy can be expected

in the majority of the cases already with the Normal settings, and the Tight results are

mostly located within the highlighted 1 kJ/mol error region. Despite of the relatively good

29



Table 3: Statistical measures for LNO-CCSD(T) deviations in kcal/mol for the reaction
energies of the NWH,89 the interaction energies of the S66,90 and the reaction and confor-
mation energies in the CEMS2627 test sets with respect to canonical CCSD(T) reference.
See section 5.3 for more details.

Threshold MAE MAX STD
NWH, cc-pVTZ

Loose 0.41 2.78 0.68
Normal 0.13 0.64 0.23
Tight 0.09 0.32 0.09
vTight 0.04 0.24 0.06

NWH, aug-cc-pVTZ
Loose 0.40 2.78 0.62
Normal 0.14 0.61 0.21
Tight 0.08 0.35 0.10
vTight 0.05 0.29 0.06

NWH, cc-pVQZ
Loose 0.38 2.63 0.57
Normal 0.13 0.63 0.23
Tight 0.09 0.46 0.12
vTight 0.05 0.35 0.07

S66, aug’-cc-pVTZ
Loose 0.32 1.34 0.36
Normal 0.16 0.58 0.15
Tight 0.05 0.20 0.05
vTight 0.03 0.07 0.02

CEMS26
Loose 1.50 3.70 1.32
Normal 0.34 1.01 0.30
Tight 0.12 0.19 0.03
vTight 0.11 0.18 0.05
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average performance of the Loose settings, the wide spread of the individual errors makes

this choice less reliable. From the perspective of practical applications for medium to large

systems both the Tight and the vTight LNO-CCSD(T) results can be basically considered

benchmark quality. The trends are very similar for the NWH set with all three basis sets,

thus the normal distribution plots for the aug-cc-pVTZ and cc-pVQZ bases sets are only

provided in the supplementary material (see Fig. S1 of the SI).

Although the main focus of the present report is to benchmark the accuracy of the LNO-

CCSD(T) method, for which the presented Normal, Tight, etc. threshold compositions were

designed, it might also be interesting to consider the CCSD and (T) terms separately. It is

well-documented, that CCSD in itself is often insufficient for chemical accuracy, and there is

no practical reason to stop at the LNO-CCSD level, because an LNO-CCSD(T) calculation

takes only about 30% more time than that of LNO-CCSD. Thus we recommend to always

perform LNO-CCSD(T) instead of LNO-CCSD. Nevertheless, the same error measures are

also evaluated and analyzed for LNO-CCSD in Sect. S6 of the SI. In brief, since the MP2

correction of Eq. (5) systematically overcorrects the CCSD energies,21,27 we found that an

equal distribution of ∆EMP2
i′ to the CCSD and (T) terms drastically improves the accuracy

of LNO-CCSD. While about one step tighter settings are needed for LNO-CCSD including

the total MP2 correction to match the accuracy of LNO-CCSD(T), i.e., Tight LNO-CCSD

is comparable to Normal LNO-CCSD(T), LNO-CCSD with 0.5 ∆EMP2
i′ is as good as LNO-

CCSD(T) even if the same thresholds are used.

Returning to the normal distribution plots of Fig. 4 and Fig. S1 of the SI, and to the

statistical measures of Tables 3 and S2 of the SI, these data collections are also useful to

compare LNO-CCSD(T) with the DLPNO-CCSD(T) variants against the same reference in

a given AO basis set. The detailed discussion of the above data is provided in Sect. S3

of the SI, the conclusions are briefly summarized here. While the NormalPNO DLPNO

results with the two (T) variants are found almost identical, at least for the studied reaction

energies only DLPNO-CCSD(T) with iterative triples treatment was able to fully benefit from
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Figure 4: Normal distribution of the LNO-CCSD(T), DLPNO-CCSD(T0), and DLPNO-
CCSD(T) deviations from the reference CCSD(T) energy differences in kcal/mol for the
NWH89 set using the cc-pVTZ basis, for the S6690 set using the aug’-cc-pVTZ basis, and
for the CEMS2627 set. The ± 1 kJ/mol error region is highlighted in the middle.

32



the accuracy of the TightPNO setting. Accordingly, for both the NWH and the CEMS26

sets the Normal LNO-CCSD(T) distributions of Fig. 4 are apparently narrower than both

the “T0, NormalPNO” and the “T0, TightPNO” curves. The widths of the “TightPNO”

curves are comparable to that of the Normal LNO-CCSD(T) for the aforementioned two

test sets but exhibit up to almost 0.4 kcal/mol larger centroids. In the case of the S66

set, both “TightPNO” curves are situated about halfway between the Normal and Tight

LNO-CCSD(T) ones. According to the analysis of Sect. S6 of the SI the performance of

the two local methods are more comparable for the case of CCSD. NormalPNO DLPNO-

CCSD is close to Normal LNO-CCSD with full MP2 correction, while TightPNO DLPNO-

CCSD achieves excellent accuracy outperforming Tight DLPNO-CCSD(T) on the average

and matching Tight LNO-CCSD with half MP2 correction.

5.4 Extrapolation to the basis set limit

In this section, we investigate the convergence of LNO-CCSD(T) towards the CBS limit

of CCSD(T). For that purpose, as before, the local approximations will be improved sys-

tematically, and the AO basis set limit will be approached via conventional extrapolation

techniques [see Eqs. (7) and (8) of Sect. 4]. As reference, for the NWH test set our canonical

CCSD(T)/(T,Q)Z results are available to assess the effect of local approximations on the

extrapolated reaction energies. Since the (a’)QZ calculations are not feasible for the entire

S66 test set, here we cannot employ the analogous CCSD(T)/a’(T,Q)Z reference. Thus the

recent F12-based values of Martin and coworkers91 are used for comparisons. This choice

will introduce some uncertainty, because, in contrast to the case of the NWH set, for the

interaction energies of S66 the local and basis set incompleteness errors cannot be completely

separated. The benchmark calculations in Ref. 91 for the S66 and in Ref. 27 for the NWH

set are very close to the limit of what is currently feasible with state of the art conventional

CC implementations, thus obtaining such references for larger systems, e.g., for those in the

CEMS26 compilation seems out of the question, at least in the near future.
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Table 4: Statistical measures for CBS extrapolated LNO-CCSD(T) deviations in kcal/mol.
References: canonical CCSD(T)/(T,Q)Z for the reaction energies of the NWH89 set and the
“SILVER” reference value of Ref. 91 for the interaction energies of the S6690 set. See section
5.4 for more details.

Threshold MAE MAX STD
NWH, cc-pVTZ

Loose 0.59 2.79 0.68
Normal 0.48 2.50 0.55
Tight 0.49 2.48 0.57
vTight 0.47 2.46 0.55

NWH, cc-pVQZ
Loose 0.24 0.96 0.25
Normal 0.20 0.84 0.20
Tight 0.20 0.83 0.21
vTight 0.19 0.82 0.20

NWH, CBS (T,Q)Z
Loose 0.37 2.51 0.54
Normal 0.14 0.68 0.20
Tight 0.09 0.56 0.14
vTight 0.06 0.44 0.09

S66, aug’-cc-pVTZ
Loose 0.66 2.97 0.72
Normal 0.51 2.38 0.53
Tight 0.41 1.90 0.41
vTight 0.41 1.84 0.38

S66, aug’-cc-pVQZ
Loose 0.44 1.91 0.49
Normal 0.30 1.41 0.31
Tight 0.14 0.77 0.16
vTight 0.13 0.68 0.13

S66, CBS (a’T,a’Q)Z
Loose 0.33 1.36 0.35
Normal 0.18 0.84 0.18
Tight 0.05 0.19 0.04
vTight 0.04 0.14 0.03
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Statistical measures for the reaction and interaction energy deviations for the NWH and

S66 sets are collected in Table 4. The corresponding normal distribution plots are provided

in Fig. 5. Let us first compare the effect of local approximations on the basis set extrapolated

case with the results obtained with the TZ and QZ bases (Table 3). This is an important

indicator because the local and especially the NO approximation with the same thresholds

might have unbalanced effect with different AO basis sets, as it is the case to some extent for

the correlation energy errors calculated with the TZ and QZ bases for the NWH set (Table

2). However, the reaction energies formed from the extrapolated LNO-CCSD(T) energies

(third block of Table 4) are almost exactly as accurate (compared to the corresponding

conventional CCSD(T) results) as the reaction energies of Table 3 obtained in the TZ and

QZ bases. In other words, the accuracy of reaction energies in the given basis set is preserved

upon extrapolation. Additionally, in the extrapolated case the rate of convergence of the

local approximations closely follows that observed for the TZ and QZ basis sets. For instance,

the MAE values (in kcal/mol) of Table 4 in the series of Loose to vTight read 0.37, 0.14, 0.09,

and 0.06, while the analogous error measures are within 0.04 and 0.02 kcal/mol of those in

the TZ and QZ bases, respectively. The corresponding extrapolated MAX and STD values

resemble similarly well the TZ and QZ counterparts, the agreement here is somewhat better

with the QZ results.

The relatively slow convergence of the conventional CC energies is well-documented in

the literature, at least for small molecules. The situation is not different in the case of

local CC methods, and it is perhaps even more pronounced as larger and larger systems

become accessible. In the first two blocks of Table 4, we compare LNO-CCSD(T) results

obtained with TZ and QZ basis sets to the CCSD(T)/(T,Q)Z reference. Apparently, the

BSIE dominates the deviation of both the TZ and the QZ results from the (T,Q)Z reference

since the errors hardly change when better and better thresholds are employed for the local

approximations. The sizable BSIE in CC energies, even with triple- or quadruple-ζ basis,

is, of course, expected and well-known. However, as local correlation methods have become
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more popular in recent years a growing number of reports appear in the literature where only

triple-ζ or occasionally even smaller AO basis sets are employed. Thus we find it important

to highlight here as well that the intrinsic accuracy of local correlation methods can only be

utilized if a sufficiently large basis set is used. Conversely, as long as only at most triple-ζ

basis sets are employed for any local CC method (computed without F12 contributions), the

accuracy of the results will be determined by the BSIE and will hardly be affected by the

threshold set governing the local approximations.

Looking at the analogous results presented for the S66 set the main trends are very similar.

The LNO-CCSD(T)/(a’T,a’Q)Z results (last block of Table 4) are converging rapidly and

monotonically towards the “SILVER” reference of Ref. 91. The accuracy of the extrapolated

LNO-CCSD(T) interaction energies is again unaffected by the local approximations, i.e., the

rate of convergence towards the local approximation-free reference is similar for the a’TZ

(Table 3) and for the (a’T,a’Q)Z cases. This indicates that our local approximations are

comparably suitable for both the a’TZ and a’QZ bases, at least also for interaction energies.

There is one difference to observe compared to the case of the reaction energies above, which

difference originates from the fact that it is not possible to use DF-CCSD(T)/(a’T,a’Q)Z

values as reference. This difference is that the deviations of the vTight results from the

reference are not as much better than those of the Tight ones as in the case of the a’TZ results,

where the DF-CCSD(T)/a’TZ reference was available. This deviation is mostly caused by the

remaining BSIE in the (a’T,a’Q)Z results compared to the “SILVER” reference. Indeed, we

observe an even better agreement characterized by a MAE (MAX) of 0.04 (0.14) kcal/mol

with respect to the “SILVER” reference when the interaction energies are CP corrected

and/or calculated from LNO-CCSD(T)/(a’Q,a’5)Z results.74 Additionally, we computed the

DF-CCSD(T)/(a’T,a’Q)Z reference for the benzene-pyridine complex (1290 basis functions,

see Fig. 6), for which the deviation of vTight LNO-CCSD(T)/(a’T,a’Q)Z is one of the largest

with respect to the “SILVER” reference, that is, 0.094 kcal/mol. The same error is much

smaller compared to the DF-CCSD(T)/(a’T,a’Q)Z reference, namely 0.037 kcal/mol. The
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issue of the remaining BSIE will be addressed in detail in our forthcoming report,74 using

CP correction and/or (a’Q,a’5)Z extrapolation. Nevertheless, the MAE (MAX) errors of

0.18 (0.84) kcal/mol and 0.05 (0.19) kcal/mol obtained with the Normal and Tight settings,

respectively, and with (a’T,a’Q)Z extrapolation are probably sufficient for most practical

purposes.

Let us briefly look at the a’TZ and a’QZ deviations (fourth and fifth blocks of Table 4)

compared to the “SILVER” CCSD(T) reference. The results again demonstrate that the BSIE

dominates the a’TZ results, the accuracy with respect to the close to basis set limit reference

cannot be improved by tightening the thresholds of the local approximations. In the case of

a’QZ the local and BSIE errors become comparable, hence some improvement is observed

when more accurate thresholds are employed. Nevertheless, the a’QZ accuracy is also limited

by the BSIE with all four investigated threshold combinations, and the convergence pattern

of the a’TZ errors of Table 3 is only approached with the (a’T,a’Q)Z extrapolated results.
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Figure 5: Normal distribution of the LNO-CCSD(T), DLPNO-CCSD(T0), and DLPNO-
CCSD(T) deviations from the reference CCSD(T) energy differences in kcal/mol.
CCSD(T)/CBS(T,Q) was employed as reference for the NWH89 set, while the “SILVER”
reference of Ref. 91 was used for the interaction energies of the S6690 set. The ± 1 kJ/mol
error region is highlighted in the middle.

The above trends are depicted in the form of normal distribution plots on Fig. 5. The

extrapolated results for the NWH set are similar to the analogous plots of Fig. 4 and

Fig. S1, the distributions indicate fast convergence with the local approximations, and the

curves are centered very close to 0 kcal/mol. Chemical accuracy can already be expected
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with the Normal setting, while the Tight and vTight accuracy levels provide errors within

the highlighted 1 kJ/mol error range for most of the cases. The S66 plots do not follow

the trends of the a’TZ curves of Fig. 4 as closely as in the case of the NWH set, again,

because the DF-CCSD(T)/(a’T,a’Q)Z reference is unavailable. The accuracy of the Loose

and Normal results is comparable to the a’TZ case because the local errors are still larger

than the remaining BSIE for these settings. The Normal errors are still mostly within the

0.5 kcal/mol vicinity of the reference, and there is again a significant improvement with

the Tight settings. However, the Tight and vTight distributions are slightly shifted from

the center towards positive deviations indicating that the (a’T,a’Q)Z results are generally

overestimated compared to the “SILVER” reference, which is assumed to be closer to the

CBS limit.

Fig. 5 and Table S3 of the SI display the error measures for the corresponding CBS(T,Q)-

extrapolated DLPNO reaction and interaction energies. Our results are in parallel with

the study of Liakos et al., where the local errors of the DLPNO-CCSD(T0)/(D,T)Z results

were not affected by the extrapolation.33 The trends regarding the relative accuracy of the

DLPNO energies with different threshold settings, (T) terms, and the comparison with LNO-

CCSD(T) are thus almost identical to the ones discussed for the NWH/TZ, NWH/QZ, and

S66/a’TZ cases. For that reason we do not repeat the conclusions of Sect. 5.3 and Sect. S3

of the SI here.

The above S66 results can also be compared to the recent PNO-CCSD(T)-F12 inter-

action energies of Ma and Werner.42 The detailed discussion presented in Sect. S5 of the

SI concludes that, for the S66 set, against the respective canonical reference the default of

PNO-CCSD(T)-F12 is somewhat more accurate than the default of LNO-CCSD(T), while

tighter PNO-CCSD(T)-F12 interaction energies are better than the Tight and compara-

ble to the vTight LNO-CCSD(T) results. On the example of one of the largest species of

S66 (uracil dimer), using almost identical processors and 20 cores wall times measured for

Normal LNO-CCSD(T)/(a’T,a’Q)Z and default PNO-CCSD(T)-F12/aTZ-F12 or for Tight
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LNO-CCSD(T)/(a’T,a’Q)Z and PNO-CCSD(T)-F12/aTZ-F12 were found basically identi-

cal within the uncertainty level of these timing measurements. Since these implementations

and algorithms have different benefits and drawbacks which are also highly system specific,

one cannot assume that the compared methods will yield similar accuracy and computational

efficiency in all circumstances, but it is out of the scope of the present report to provide such

a broad level comparison.

6 Convergence tests for larger systems

This section is devoted to larger examples where it is impossible to carry out conventional

CCSD(T) calculations. Since this is the situation for most practical applications of any local

CCSD(T) method, we find it important to show how the accuracy of the LNO-CCSD(T)

energies can be improved or estimated via convergence tests along both the local approxi-

mation and the basis set completeness axes. We also define energy and error bar estimates

for the LNO-CCSD(T) energies by utilizing the systematically improvable property of our

individual approximations and the trend that the monotonic convergence of the energies is

preserved in most of the cases even with the composite threshold combinations.

Figs. 6–10 show the convergence of LNO-CCSD(T) energy differences (reaction energies

and barrier heights) as a function of the truncation thresholds and the AO basis set. Let us

note that the AO basis set effect includes also the basis set dependence of the HF reference,

which is, however, much smaller than that of the correlation energy contribution. All data

are made available in Sect. S7 of SI which are necessary to reproduce the figures or decouple

the basis set dependence of the HF reference and the correlation energy.

6.1 Introduction and verification of the error estimates

The potential of such convergence studies is illustrated first on two examples from the NWH

and S66 sets, where the CBS estimated reference is available. The isomerization energy of

39



 1.15

 1.25

 1.35

 1.45

Loose Normal Tight vTight

re
a
c
ti

o
n

 e
n

e
rg

y
 [

k
c
a
l/
m

o
l]

CCSD(T)/TZ

CCSD(T)/QZ

CCSD(T)/CBS(T/Q)propyne ➙ allene

cc-pVTZ

cc-pVQZ

CBS(T,Q)
−4.3

−4.1

−3.9

−3.7

−3.5

−3.3

−3.1

Loose Normal Tight vTight

in
te

ra
c
ti

o
n

 e
n

e
rg

y
 [

k
c
a
l/
m

o
l]

CCSD(T)/a’TZ

CCSD(T)/a’QZ

CCSD(T)/CBS(a’T,a’Q)

benzene−pyridine

aug’−cc−pVTZ

aug’−cc−pVQZ

CBS(a’T,a’Q)

Figure 6: Convergence of LNO-CCSD(T) energies with systematically improving both the
local approximations and the AO basis sets. The propyne → allene isomerization reaction
energy of the NWH set is plotted on the left, while the benzene-pyridine interaction energy
(No. 49 in the S66 set) is studied on the right side of the figure. Horizontal lines represent the
exact (DF-)CCSD(T) reference in the AO basis set indicated by the nearby labels. The values
depicted by smaller-sized symbols and the corresponding error bars represent an estimation
for the next step in the local approximation hierarchy assuming systematic convergence. See
Sect. 6 for further explanation.

propyne to allene (Fig. 6, left panel) and the interaction energy of the benzene–pyridine

complex (Fig. 6, right panel) both exhibit rapid convergence towards the corresponding

conventional reference (dashed horizontal lines) with the local approximations for both the

(a’)TZ and the (a’)QZ basis sets, and consequently also for the extrapolated energies. Let us

point out that the vertical range of the plots is relatively spread, but actually the difference

between the Normal and the vTight (or the exact) values is only about 0.1 kcal/mol for

the propyne–allene and about 0.2-0.3 kcal/mol for the benzene–pyridine cases. Let us also

observe the general trend that the convergence curves from Loose to vTight of the (a’)TZ

and (a’)QZ type basis sets are reliably parallel, especially starting from the Normal set-

tings. This parallelity can be exploited to design cost-efficient BSIE corrections, e.g., the

BSIE of Tight LNO-CCSD(T)/TZ energies can be effectively improved by adding a Nor-

mal LNO-CCSD(T)/(T,Q)Z based correction term. Our forthcoming study will construct

and benchmark a wide selection of such accurate and inexpensive LNO-CCSD(T)-based

CCSD(T)/CBS approximating schemes.74 The previously mentioned trend that the local
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errors are somewhat smaller with the TZ basis than with the QZ basis are also apparent in

Fig. 6, hence the remaining local errors of the extrapolated energies are reminiscent of the

ones with the QZ basis sets. The fact that the local errors with even the Loose settings are

smaller than the BSIE of any of the (a’)TZ results is also obvious from the plots, and it is

in agreement with the general trend analyzed in Sect. 5.4.

Let us finally look at the energy and error estimates of Fig. 6 denoted by the small-sized

symbols and attached error bars. These values, for a given threshold set, are obtained from

the energy differences evaluated with the actual and the one level lower composite thresholds

and estimate the value and uncertainty of the one level higher energy difference assuming

monotonic convergence with the local approximations. For example, the small symbol and

error bar depicted above the Normal values indicate that the Tight result is estimated to

be in the region surrounded by the error bar. The small symbol in the middle of the error

bar is placed to the Tight_estimate = Normal + (Normal - Loose)/2 position, and the

endpoints of the error bar are at Tight_estimate ± (Normal - Loose)/2. Fig. 6 reveals that

the vTight and also the exact results are indeed within the estimated region obtained from

the Normal and Tight results. Also the Tight results are mostly within the range estimated

by the Loose and Normal results, except for the TZ curve of the propyne–allene case and

the CBS curve of the benzene–pyridine example, but these estimates miss their target by

the very small margin of 0.02 kcal/mol and 0.04 kcal/mol, respectively. It is also worth

noting that the convergence of the LNO-CCSD(T) energies is not necessarily monotonic

towards the exact CCSD(T) value, and consequently in such cases the above simple, two-

point extrapolation based energy estimates should be used with caution. If non-monotonic

convergence is observed in a relatively small interval, then the convergence is often almost

reached. In the rare case of pronounced non-monotonic convergence the best choice is to rely

on the result obtained with the tightest settings or extrapolate from the two best converged

results.

The relatively small size of the above two examples is probably not representative of the
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Figure 7: Convergence of LNO-CCSD(T) reaction energies with systematically improving
both the local approximations and the AO basis sets for the formation of androstendione from
its precursor (see Fig. 1). Available PNO-CCSD(T)-F12/cc-pVTZ-F12 results of various
threshold settings are indicated by the purple bar in the bottom left corner. See Sect. 6 and
the caption of Fig. 6 for further explanation.

common applications of local CC methods, hence we also looked at more extended systems,

first the formation of androstendione from its precursor (Fig. 1). This reaction including

medium-sized molecules is a good example of such organic reactions where the reactants

and products are chemically similar, i.e., where rapid convergence of local errors can be

expected. Indeed, there is only about 0.1-0.3 kcal/mol difference between the Loose and

the vTight results with all three levels of basis sets (Fig. 7), indicating the convergence

of LNO-CCSD(T) energy differences up to this accuracy. It is not possible to test the

accuracy against the exact reference any more, but the deviation of the LMP2 and the

exact DF-MP2 energies can give some indication at least about the accuracy of the domain

and pair approximations. The Tight and vTight LMP2/aTZ reaction energies differ from

DF-MP2 by 0.32 and 0.12 kcal/mol, respectively, while the same deviations with the aQZ

basis is only 0.12 and 0.09 kcal/mol (see Table S12 of the SI). Both the LMP2 and the

LNO-CCSD(T) correlation energies still change noticeably, by about 0.02-0.05% and 0.01-

0.02%, respectively, when going from Normal to Tight and Tight to vTight settings, while

the vTight LMP2 correlation energies are accurate to at least 99.993%.

Lacking the exact CCSD(T) reference comparisons to results obtained with alterna-
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tive local CCSD(T) methods can yield additional information about the accuracy of LNO-

CCSD(T). Ma and Werner presented PNO-CCSD(T)-F12/TZ-F12 reaction energies for the

same reaction using multiple strategies for estimating the basis set limit of the triples con-

tributions.40 Their default settings yield 4.90–4.94 kcal/mol, while the use of tighter do-

main thresholds resulted in 5.07–5.11 kcal/mol. This is in good agreement with our LNO-

CCSD(T)/(aT,aQ)Z results since 4.93, 4.94, and 4.83 kcal/mol were obtained with our Nor-

mal, Tight, and vTight settings, respectively. Additionally, about the third of the difference

between the two local methods comes from the different reference energies: our HF/(aT,aQ)Z

value is about 0.06 kcal/mol smaller than that of Ref. 40.

6.2 Convergence tests for challenging systems

This section collects four cases from the literature which have been established as especially

challenging from the perspective of local correlation calculations. Thus these examples will

indicate the limits of the accuracy that can be expected from our method in the worst-case

scenario.

The first of such hard problems is the ISOL4 isomerization (Fig. 1), where the reactant

and products are markedly different. Hence the source of the complication is that the local

errors appearing for the quasi-linear product and for the much more compact educt are not

canceled. The system size of 81 atoms also indicates that larger deviations from CCSD(T)

can be expected solely on the basis of the extensivity of the local errors. Looking at the left

panel of Fig. 8, it is promising to find the usual, satisfactory convergence pattern with the

improving local approximations, although the difference of the Normal and vTight results is

now about 0.8-0.9 kcal/mol, or about 1% in relative terms for all three basis sets. Here we

find the Loose results outside of chemical accuracy, but both the Loose–Normal and Normal–

Tight based error estimates operate perfectly. The Loose–Normal based interval completely

covers both the Tight and the Normal–Tight based error bar, and similarly the Tight–

vTight based intervals are the subsets of the Normal–Tight based ones. The small deviation
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of the LMP2 reaction energies with respect to exact DF-MP2 changes as 0.41–0.72 kcal/mol,

0.13–0.20 kcal/mol, and 0.08–0.10 kcal/mol when the Normal, Tight, and vTight settings

are employed, respectively, which indicates the excellent precision of the domain and pair

approximations (see Table S12 of the SI). We again find our 67.56 kcal/mol (Tight) and 67.35

kcal/mol (vTight) LNO-CCSD(T)/(aT,aQ)Z results in agreement with the PNO-CCSD(T)-

F12/TZ-F12 isomerization energies, which are 67.53–67.73 kcal/mol with the default and

67.80–67.99 kcal/mol with the tighter settings.40 In this case the HF contributions of the

reaction energies agree more closely [18.65 kcal/mol with HF/(aT,aQ)Z and 18.69 kcal/mol

in Ref. 40]. Considering the relatively narrow, 0.1 kcal/mol error bars with our vTight

settings and the fact that the LNO-CCSD(T)/(aT,aQ)Z and the PNO-CCSD(T)-F12/TZ-

F12 results are getting further from each other when the tightest thresholds are used, a large

part of the difference between the two methods can probably be attributed to remaining

basis set errors. The LNO-CCSD(T)/aug-cc-pV5Z calculations would be certainly feasible,

but those are not yet available to us and will be presented elsewhere. More importantly,

this example illustrates well the capabilities of the very economical Normal energies and

Loose–Normal based energy estimates, and the high accuracy of the Tight settings, at least

if (aT,aQ)Z is used. Otherwise, without the basis set extrapolation the BSIE of the aTZ

values being almost 10 kcal/mol or the BSIE of aQZ being still 3.5 kcal/mol would ruin the

intrinsic accuracy of CCSD(T).

The next reaction, the dissociation of AuAmin (Fig. 1), can be characterized as one of

the most notorious reactions in the local correlation literature due to the numerous, individ-

ually very small but collectively significant intermolecular interactions among the ligands.41

Additionally, the less favorable locality of the wave function around metal atoms also makes

transition-metal systems harder for local methods.41 Moreover, the large size of the AuAmin

complex (92 atoms) and its dissociation into two smaller species of comparable size (34 and

58 atoms) result in the most pronounced local correlation and basis set superposition error

among the test cases of the present report. Nevertheless, in the right panel of Fig. 8, we
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Figure 8: Convergence of LNO-CCSD(T) reaction energies with systematically improving
both the local approximations and the AO basis sets for the ISOL4 (left) and AuAmin
(right) reactions (see Fig. 1). Available PNO-CCSD(T)-F12/cc-pVTZ-F12 results of various
threshold settings are indicated by the purple bars in the bottom left corners, while the
experimental reaction energy of AuAmin is indicated by the orange bar in the bottom right
corner of the plot. See Sect. 6 and the caption of Fig. 6 for further explanation.

again find the convergence pattern of the LNO-CCSD(T) reaction energies as satisfactory

as before. The Normal results are within 1 kcal/mol of the vTight ones for both aTZ and

aQZ, whereas the Tight reaction energies are only 0.3 kcal/mol apart from our most accu-

rate values. Again, the Loose–Normal estimates closely envelope both the Normal–Tight

and the Tight–vTight error bars. Both the Loose–Normal (47.94 ± 0.83 kcal/mol) and

Normal–Tight (47.66 ± 0.37 kcal/mol) estimates and both the Tight (48.03 kcal/mol) and

vTight (47.59 kcal/mol) LNO-CCSD(T)/(aT,aQ)Z reaction energies match closely the PNO-

CCSD(T)-F12/cc-pVTZ-F12 alternatives, which are 47.26–47.55 kcal/mol and 47.70–47.99

kcal/mol with the default and the larger domain settings, respectively.40 The HF/(aT,aQ)Z

reaction energy of 21.88 kcal/mol is also very close to the 22.03 kcal/mol value computed

by Ma and Werner.40 Aside from this difference of 0.15 kcal/mol in the HF contribution

the correlation energy contributions obtained by the two local CCSD(T) schemes are almost

exactly match with only a few tenth of a kcal/mol difference. Note also that both methods

are in excellent agreement with the reaction energies of 47.0 ± 2.7 kcal/mol obtained from

gas-phase measurements from which zero-point corrections were subtracted.41
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It has been shown in Sect. 5.3 that interaction energies are described generally very well

by the LNO-CCSD(T) method, the average absolute (MAX) errors are below 0.2 kcal/mol

already with the Normal (Tight) settings for the S66 set. The next two examples are the

dimers of guanine–cytosine base pairs (GCGC, Fig. 9, left panel) and of coronene (C2C2PD,

Fig. 9, right panel), which include π–π interactions of extended aromatic systems. They

represent two of the most difficult intermolecular interaction cases that have been known so

far for local methods. The complication in these cases lies in the fact that a crucial amount

of the interaction energy comes from the correlation energy contribution. The numerous

individually small contributions of such LMO pairs are especially important where the two

LMOs are localized on different fragments. The key to accurate π–π interaction energies,

since MP2 tends to overestimate them, is the proper selection of strong and distant pairs

which are treated at the CCSD(T) and MP2 levels, respectively.
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Figure 9: Convergence of LNO-CCSD(T) interaction energies with systematically improv-
ing both the local approximations and the AO basis sets for the guanine–cytosine (left)
and coronene (right) dimers. Available DLPNO-CCSD(T)-F12/cc-pVDZ-F1236 and PNO-
CCSD(T)-F12/aug’-cc-pVTZ41 results obtained with both default and tighter threshold set-
tings are indicated by the purple bars in the top left corners of the plots. See Sect. 6 and
the caption of Fig. 6 for further explanation.

Analogously to the case of the S66 benchmarks, we find for the GCGC and C2C2PD

dimers that the Loose setting leads to large errors, even the Normal setting is about 1.3–1.9

and 4.0 kcal/mol away from the vTight ones, for the GC and coronene dimers, respectively.

46



Nevertheless, the Tight values and the Normal–Tight based estimates are acceptable even for

such extreme cases: those deviate from the vTight results by about 0.3–0.5 and 0.2 kcal/mol

for the GC dimer. The deviations of the Tight and vTight results are about 1.1 kcal/mol for

the coronene dimer, but the Normal–Tight estimates are again within about 0.4 kcal/mol

of the vTight results. Considering the slower convergence of these interaction energies we

invested extensive resources to verify the quality of the vTight reference by performing even

more accurate calculations. The “vvTight” label on the horizontal axes of the two plots of Fig.

9 refers to the configuration one step better than the vTight one following the exponential rule

for the improvement of the individual thresholds (εo = 3×10−7, εv = 3×10−8, εw = 3×10−7

Eh, and the vTight setting for the remaining thresholds). Such vvTight calculations were

only performed with the aTZ basis set, the dashed lines and smaller symbol sizes for the

aQZ and (aT,aQ)Z curves represent that the vTight basis set corrections were added to the

vvTight aTZ results. For GCGC the vvTight LNO-CCSD(T) result is almost identical to

the vTight one. This does not mean exact convergence, individual contributions, such as

∆EMP2
i′ of Eq. (5), still change on the tenth of a kcal/mol scale. For the coronene dimer the

difference of vvTight and vTight is not negligible but is convincingly small, 0.3 kcal/mol or

about 1%.

Testing LMP2 against DF-MP2 reveals again the accuracy of the pair and domain ap-

proximations. For both dimers Normal LMP2 is accurate to about 1 kcal/mol, while the

deviation drops below 0.5 kcal/mol and 0.2 kcal/mol with the Tight and vTight settings,

respectively, as shown in Table S12 of the SI. The vvTight LMP2 energies are basically

exact, they deviate from DF-MP2 by 0.003 and 0.06 kcal/mol for GCGC and C2C2PD,

respectively.

As these two dimers are elements of the popular L7 set,93 a larger number of high-

level correlated calculations are available for comparison. For the GCGC dimer the re-

cent TightPNO (-14.51 kcal/mol) and VeryTightPNO (-13.69 kcal/mol) DLPNO-CCSD(T)-

F12/DZ-F12 results of Pavošević et al.36 are shown in Fig. 9, the latter of which agrees
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very closely with our Tight (13.98 kcal/mol) and vTight (13.47 kcal/mol) results. The most

recent local CCSD(T) coronene dimer interaction energy estimates are collected in Table 5.

LNO-CCSD(T)/(aT,aQ)Z and PNO-CCSD(T*)-F12/a’TZ results are available both with

and without the CP correction. The complexity of this example is immediately appar-

ent from the fact that there is a difference of about 1.1 (1.4) kcal/mol between both our

Tight and vTight as well as the default and tight PNO-CCSD(T*)-F12 results obtained

without (with) CP correction. The increment between the TightPNO and VeryTightPNO

DLPNO-CCSD(T)-F12/DZ-F12 results is also sizable, 2.2 kcal/mol. Besides this the no-

ticeable difference between the uncorrected and the CP-corrected results for both LNO-

CCSD(T)/(aT,aQ)Z and PNO-CCSD(T*)-F12/a’TZ indicates that neither the F12 meth-

ods with DZ-F12 and a’TZ bases nor the plain (aT,aQ)Z extrapolation yield fully converged

results regarding the basis set completeness. For the same reason the original QCISD(T) ref-

erence of the L7 set is probably too overbound. Indeed, our preliminary calculations indicate

much better basis set convergence at the LNO-CCSD(T)/(aQ,a5)Z level, the difference of

about 1.6 kcal/mol between the CP-corrected and uncorrected (aT,aQ)Z interaction energies

decreases to about 0.4 kcal/mol with (aQ,a5)Z extrapolation. Further analysis of this issue

will be in the scope of a forthcoming study.74 Let us also add that the local errors, at least

with the vTight setting, seem to be smaller than the basis set error at the (aT,aQ)Z level as

indicated by the vvTight results. Since only vvTight LNO-CCSD(T)/aTZ is available, the

vvTight (aT,aQ)Z can only be estimated by adding a BSIE correction at the vTight level,

leading to the -19.04 (-20.73) kcal/mol estimate for the uncorrected (CP-corrected) vvTight

LNO-CCSD(T)/(aT,aQ)Z.

7 Illustrative examples and computational requirements

The last two sections assessed the accuracy of LNO-CCSD(T) for a significant number of

small- and medium-sized molecules (Sect. 5) and for a handful of especially tough larger
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Table 5: CCSD(T) interaction energy estimates for the coronene dimer in kcal/mol. See
Sect. 6.2 for explanation.

Method Basis
LNO-CCSD(T) CBS (aT,aQ)Z Tight vTight

-20.46 -19.37
LNO-CCSD(T) CBS (aT,aQ)Z (CP) Tight vTight

-22.47 -21.01
PNO-CCSD(T*)-F1241 a’TZ default domopt=tight

-19.09 -20.46
PNO-CCSD(T*)-F1241 a’TZ (CP) default domopt=tight

-18.87 -19.97
DLPNO-CCSD(T)-F1236 DZ-F12 TightPNO VeryTightPNO

-21.31 -19.14
QCISD(T)/a"DZ+∆MP2/CBS (D,T)Z93 -24.36

molecules (Sect. 6). In this section the performance of LNO-CCSD(T) is characterized on

the realistic example of an organocatalysis reaction from the perspective of the practical

applications of the method. Additionally, the results of wall-clock time measurements and

the hardware requirements are also analyzed.

7.1 Organocatalysis reaction

We selected an organocatalytic Michael-addition in which the reaction of propanal and β-

nitrostyrene is facilitated by a diphenylprolinol silyl ether catalyst and a p-nitrophenol (pnp)

cocatalyst (Fig. 2). A similar model reaction for the Michael-addition was already investi-

gated with a less optimized, two-year-old version of our LNO-CCSD(T) program.64 With the

current implementation LNO-CCSD(T)/a(T,Q)Z can be routinely obtained for the largest

species along the reaction path, that is, the transition state of the carbon–carbon bond for-

mation reaction step (TSCC) leading to the RS stereoisomer (TSRS
CC · · · pnp, 90 atoms). With

the current version vTight LNO-CCSD(T)/a(T,Q)Z calculations are also feasible, thus the

convergence with the composite local threshold can be analyzed as above. A Gibbs free en-

ergy profile of the overall reaction mechanism was obtained by our coworkers by combining

kinetic measurements, kinetic simulations, and Gibbs free energy calculations, which is in
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accord with the experimental observations available in the literature.64 Consequently, com-

parison can be made with these reaction Gibbs free energies (∆G) labeled by “experiment

& kinetics & DFT” in Fig. 10. The ∆G values of Fig. 10 were evaluated by replacing

the ωB97X-D/6-311++G(3df,3pd) electronic energies of Ref. 64 with LNO-CCSD(T) and

keeping the original thermal, entropic, and solvent corrections of Ref. 64.
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Figure 10: Convergence of LNO-CCSD(T) results for the ∆G and the barrier height of the
Michael-reaction (see Fig. 2). See Sect. 7.1 and the caption of Fig. 6 for explanation.

The reactants and the product are of smaller size including at most 28 atoms. Corre-

spondingly, the convergence of the Gibbs free energy of reaction with the local approxima-

tion is rapid (left panel of Fig. 10), the Normal (Tight) results are already within 0.5 (0.15)

kcal/mol of the vTight values. The error estimates turn out to be useful again, for instance,

vTight-quality results can be estimated utilizing the Normal and Tight energies. The com-

putation of the barrier height is proven to be much more challenging. Since TSRS
CC · · · pnp is

the complex of three species (β-nitrostyrene, p-nitrophenol, and the enamine product of the

condensation reaction between propanal and the main catalyst) the barrier height measured

from the infinitely separate reactants and the complex of the two catalysts consists of the con-

densation reaction energy and non-covalent interaction energies of significant size. The latter

are an important driving force of the stereochemistry of the overall reaction mechanism, thus

their accurate description is crucial.64 To illustrate the importance of accurate correlation

energies the total LNO-CCSD(T)/a(T,Q)Z electronic energy difference of -4.1 kcal/mol can
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be decomposed to the HF and correlation contributions of 39.2 kcal/mol and -43.3 kcal/mol,

respectively. Moreover, the (T) contribution alone is also surprisingly significant being about

-7.8 kcal/mol (18 %) out of the -43.3 kcal/mol LNO-CCSD(T)/a(T,Q)Z correlation energy

contribution. In other words, not only MP2 [being about 12.7 kcal/mol below CCSD(T)]

but CCSD in itself is also insufficient for the realistic description of this particular barrier

height.

Returning to the analysis of Fig. 10, the convergence of the barrier height with the local

approximations is again very satisfactory: the Normal (Tight) energies are less than 0.7

(0.3) kcal/mol apart from the vTight ones with all three basis choices. It is also apparent

that for both the reaction energy and the barrier height the CCSD(T) energies have to

be extrapolated to the CBS limit using large basis sets in order to get realistic results

within chemical accuracy. For instance, the ∆G based on the ωB97X-D/6-311++G(3df,3pd)

electronic energy is 15.9 kcal/mol for the barrier height, which is at least as good as or perhaps

even better than the vTight LNO-CCSD(T)/aQZ result. In other words, a balanced choice of

sufficiently large basis sets and local approximations is needed for LNO-CCSD(T) to provide

more useful information than a well-selected density functional approximation.

We also computed the same reaction energy and barrier height using the DLPNO-

CCSD(T)/aTZ scheme to obtain additional information from a separate source. Reaction

Gibbs free energies computed with the default and tighter settings of the two schemes agree

convincingly both with each other and with the -9.87 kcal/mol vTight LNO-CCSD(T)/aTZ

result. In more detail, using the respective loose, normal, and tight settings the DLPNO-

CCSD(T)/aTZ results are -10.35, -9.94, and -9.68 kcal/mol, while LNO-CCSD(T)/aTZ

yields -10.18, -10.19, and -9.92 kcal/mol. The deviation is more pronounced for the barrier

height: compared to the vTight LNO-CCSD(T)/aTZ result of 10.9 kcal/mol NormalPNO

(LoosePNO) DLPNO-CCSD(T)/aTZ yields 12.3 (14.6) kcal/mol, while the Loose, Nor-

mal, and Tight LNO-CCSD(T)/aTZ barrier heights are found to be 9.3, 11.0, and 11.1

kcal/mol, respectively. Unfortunately, it was not possible to perform TightPNO DLPNO-
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CCSD(T)/aTZ or any DLPNO-CCSD(T)/aQZ calculation with our hardware, which could

probably provide valuable information about the source of this larger difference between the

two barrier heights.

7.2 Scaling and performance for large molecules

Wall-clock times of this section were measured using a single, five-year-old, 6-core processor,

thus these timings can be illustrative also for those users who do not necessarily wish to

employ the latest hardware for local CC calculations. Besides the examples presented in this

section, additional wall-time measurements are presented for all entries of the CEMS26 set

in Table 11 of Ref. 27, which were obtained with a less optimized, previous LNO-CCSD(T)

version.

Detailed timings are given in Table 6 separately for the HF, LMP2, two-external integral

transformation, and the LNO-CCSD(T) calculation performed in the LIS. Using the DF

approximation makes the HF calculation affordable for systems below a few hundred atoms

even if a quartic-scaling algorithm is employed. Looking at the example of the TSRS
CC · · · pnp

system first, DF-HF took only 0.27 and 0.86 days with the aug-cc-pVTZ and aug-cc-pVQZ

bases, containing 3155 and 5742 AOs, respectively. Our current Boys localization96 algo-

rithm is cubic-scaling, but the computation of the LMOs only takes seconds for this system.

Besides the very fast PAO construction and pair-energy computation steps all the remain-

ing operations in our LMP2 and LNO-CCSD(T) codes are asymptotically linear-scaling.

Looking at the dimensions of the EDs in Table 6, it is obvious that we are far from that

asymptotic limit for the TSRS
CC · · · pnp system. Most of, and in particular cases all the atoms

are included in the EDs, because of the relatively extended nature of the diffuse functions

in the selected basis sets. Consequently, in average more than a third (half) of the LMOs

(PAOs) are put into the EDs already with the Normal settings, while more than half of the

LMOs and almost all PAOs are needed with the Tight threshold.

The LMP2 timings of Table 6 are very competitive being only about 1-2 (2-4) times longer
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Table 6: Average (maximum) domain sizes, orbital space dimensions, DF-HF and correlation
energies, wall-clock times in days (lower panel, obtained with a 6-core CPU), and memory
requirements for LNO-CCSD(T) computations for large molecules.

Molecule TSRS
CC · · · pnp TSRS

CC · · · pnp LTP
No. of atoms 90 90 1023
Basis aug-cc-pVTZ aug-cc-pVQZ def2-TZVP def2-QZVP
Total AOs 3155 5742 19067 44712
Total AFs 7001 11362 47093 101297
Total LMOs 123 123 1340
Thresholds Normal Tight vTight Normal Tight Normal Normal
Strong pairs [%] 39 53 67 39 53 3.6 3.7
Atoms in ED 78 (90) 84 (90) 89 (90) 76 (90) 83 (90) 123 (268) 121 (267)
LMOs in ED 49 (88) 66 (105) 83 (112) 49 (88) 66 (105) 53 (89) 54 (91)
PAOs in ED 1678 (2645) 2046 (2832) 2396 (2897) 2071 (4107) 3592 (5157) 889 (1594) 1984 (3793)
Occupied LNOs 29 (62) 42 (81) 56 (92) 29 (62) 42 (81) 28 (51) 29 (50)
Virtual LNOs 134 (273) 203 (413) 284 (563) 154 (300) 238 (465) 108 (202) 137 (241)
EDF−HF [Eh] -2328.083841 -2328.207262 -28235.5178 -28236.9430
ELNO−CCSD(T) [Eh] -8.9503 -8.9515 -8.9524 -9.3412 -9.3358 -101.4099 -108.8656
HFa+localization 0.27 0.86 10.4 38.4
LMP2 0.38 0.62 1.4 1.6 3.4 1.1 6.9
Integral trf. 0.55 1.3 3.3 2.2 6.1 0.91 7.4
LNO-CCSD(T) 0.62 5.6 35.1 0.86 10.4 2.2 3.9
Total LNO-CCSD(T) 1.6 7.5 39.8 4.6 19.9 4.2 18.1
Memory [GB]b 7 (26) 19 (36) 22 (43) 11 (67) 25 (74) 20 (20) 98 (98)

aCanonical DF-HF for TSRS
CC · · · pnp, DF-HF with local fitting domains employed for the exchange part23 for LTP. The initial

guess for the HF calculation was the density obtained with the corresponding basis set with a cardinal number of lower by 1,
e.g., the aug-cc-pVQZ calculation was started from the aug-cc-pVTZ density, etc. bMinimal (optimal) memory requirement

than the DF-HF ones when the Normal (Tight) settings are used. Compared to LMP2 the

integral transformation step takes similar, at most twice as much effort. The LNO-CCSD(T)

part is just as manageable, at least with the Normal settings. This is explained by the fact

that the LNO approximation compresses the MO space of the ED very efficiently, e.g., the

number of virtual orbitals is cut on the average by about an order of magnitude for such

extended systems. Switching to the Tight settings is not much more demanding concerning

the operations in the ED, because the EDs formed with the Normal thresholds were already

almost as large as the entire system. However, the joint effects of the Tight thresholds, the

use of diffuse functions, and the numerous long-range intermolecular interactions lead to

large LIS dimensions containing in average (up to) 245–280 (494–546) LNOs. Due to the

sixth-power scaling of the CCSD(T) calculations in the LISs with the number of LNOs, the

CCSD(T) calculations performed in the LISs of TSRS
CC · · · pnp were about 9–12 times more

expensive with the Tight setting than with the Normal one. Consequently, the runtimes

for “Total LNO-CCSD(T)”, i.e., the entire correlation energy calculation are about 4.5 times
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longer with the Tight settings.

For the sake of completeness Table 6 also collects vTight data. However, we would like

to highlight that, if performed at all, vTight calculations should almost always serve the

purpose of assessing the local error in a small number of convergence tests, because the

Tight or Normal-Tight calculations yield highly satisfactory accuracy except for the most

extreme cases (e.g., coronene dimer). In brief, vTight settings in combination with diffuse

basis sets result in the inclusion of a very high percentage of atoms and MOs into the EDs

in this example. This would not be the case for larger systems or without diffuse functions.

Nevertheless, the LNO approximations still compress the MO spaces effectively, the average

LNO dimensions are about only twice as large as the ones obtained with the Normal settings.

Consequently, the cost of the LNO-CCSD(T) calculation in the LISs increases by about

a factor of 56 (almost exactly 26) compared to the Normal settings, which is costly but

manageable even with this moderate processor. The accuracy of the Normal LNO-CCSD(T)

is again apparent since its difference with respect to the vTight result is only 0.02%.

To better illustrate the trends in the computational costs with varying basis and thresh-

old sets the “Total LNO-CCSD(T)” wall times are also depicted for TSRS
CC · · · pnp in Fig.

11. It is apparent from the plot, that, even if the HF is performed with an efficient DF

implementation, the Loose LNO-CCSD(T) calculations are always feasible, taking less than

twice as much time as DF-HF. Compared to Loose (DF-HF) the Normal LNO-CCSD(T)

requires about 3 (6) times more effort for both basis sets. The Tight option is also useful

because, at about 3–5 times the cost of Normal, the convergence of local approximations can

be tested and the local errors can be estimated for a group of chemically similar systems.

The most expensive, larger basis set Tight calculations can also be circumvented by adding

cost-effective BSIE corrections to the lower-basis Tight LNO-CCSD(T) results.74

It is also interesting to look at the corresponding timings obtained by other local CCSD(T)

methods. Compared to the 37.5 h (11.9 h) runtime of Normal (Loose) LNO-CCSD(T),

using the same hardware and 6 parallel threads, the LoosePNO DLPNO-CCSD(T)/aTZ
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calculation took 21 h for TSRS
CC · · · pnp, while the NormalPNO DLPNO-CCSD(T)/aTZ run

required 19.6 days, which is however comparable to the wall time (19.9 days) of the Tight

LNO-CCSD(T)/aQZ calculation.
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Figure 11: Wall-clock times (using a 6-core CPU) required for the HF and LNO-CCSD(T)
calculations for TSRS

CC · · · pnp containing 90 atoms and 3155/5742 AOs with the aTZ/aQZ
basis sets. The vTight LNO-CCSD(T)/aug-cc-pVQZ calculations were performed on a dif-
ferent hardware, the values with smaller symbol size and dashed line display the estimated
wall-times for the same 6-core CPU.

Let us note that the wall times in Table 6 were determined for HF and LNO-CCSD(T)

calculations exploiting the efficient DF approach. Thus the conditions for which our con-

clusions hold differ from the conditions under which the calculations of Ref. 34 were carried

out, where HF and DFT wall times were compared to the times measured for DLPNO-

CCSD(T0) calculations. To the best of our knowledge the HF and DFT wall times were

measured without the DF approach in Ref. 34, where NormalPNO DLPNO-CCSD(T0) was

found to be more accurate than the investigated density functional approximations (DFAs)

at about twice as much cost for test sets containing small systems of at most 30–40 atoms.

Obviously, HF (or DFT methods including HF exchange) without the DF approach, espe-

cially with aTZ or aQZ basis sets, would be rather costly for systems of increasing size, and

it would not be possible to perform HF/aQZ for TSRS
CC · · · pnp, at least on our modest hard-

ware. Thus we also find it important to compare our wall times with those for HF (or DFAs)

accelerated by DF, in which case the Normal (Loose) LNO-CCSD(T) turned out to be less
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than 6 (2) times more expensive than DF-HF even with the aTZ and aQZ basis sets. In other

words, the computational expenses of LNO-CCSD(T) or other local CCSD(T) schemes are

generally not yet as low as those of efficient DF-based HF/DFA implementations, especially

if the faster convergence of DFAs with the AO basis set is taken into account. However, our

comparison shows that, even for systems of about 100 atoms, the CCSD(T)/CBS limit can

be closely approached at about an order of magnitude higher costs than those required for

DFT calculations.

In turn, considering the long-range nature of the Coulomb interaction it is more com-

plicated to break down the scaling of HF than that of the electron correlation methods.

Because of that it is challenging to accelerate DF-HF in the region of 100–1000 atoms if the

system is three-dimensional. On the other hand, the linear-scaling region of LNO-CCSD(T)

is reached for systems of around 500 atoms, at least this is suggested by our experience

gained for 3D protein systems.27 This trend is also followed by LTP: using both triple- and

quadruple-ζ basis sets the average (maximum) domain sizes are below 123 (268) atoms (see

Table 6). Thus, the size of the EDs becomes independent of the size of the entire molecule,

and consequently the computational cost becomes proportional to the number of occupied

MOs above a certain system size. Even if local approximations are employed also for the

construction of the domains of fitting functions at the evaluation of the HF exchange, the

crossover of the compute times required by our third-power scaling DF-HF implementation23

and the linear-scaling LNO-CCSD(T) is inevitable. This crossover point should be around a

few hundred atoms, because DF-HF (with local DF) already takes more than twice as much

time as Normal LNO-CCSD(T) for the 1023-atom LTP with both the def2-TZVP and the

def2-QZVP bases. It is also worth noting that the acceleration of the HF exchange calcu-

lations with large, diffuse basis sets received relatively small attention in the literature for

systems in the thousand atom region. Perhaps alternative basis sets other than Gaussian

bases, such as multiresolution97,98 or projected augmented wave99 based unconventional ap-

proaches could offer more operation count economic solutions to approach the basis set limit
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of HF in the near future.

Continuing with the discussion of Table 6, in spite of the larger ED sizes of LTP compared

to TSRS
CC · · · pnp and the additional diffuse functions present for TSRS

CC · · · pnp the number of

strong pair LMOs and occupied LNOs are almost identical for the two systems with the

Normal setting because of their similar, organic chemical composition and 3D structure.

The PAO/virtual LNO dimensions are, of course, somewhat, about 10–30 % larger with the

larger and more diffuse Dunning-type basis sets. The case of LTP is far past the crossover

point, where the LMP2 calculation becomes extremely efficient taking less than the time of

two iterations of the HF wave function optimization. An additional computation time of

about 2–3 times as long as the LMP2 calculation is required for Normal LNO-CCSD(T). As

shown in Table 6, for the 1023 atoms of LTP the HF and LNO-CCSD(T) calculations took,

respectively, 10.4 and 4.2 days with the def2-TZVP basis and 38.4 and 18.1 days with the

def2-QZVP basis. The latter 4.2 and 18.1 days contain all steps besides the HF and Boys

localization, including the respective LMP2 parts taking only 1.1 and 6.9 days with the two

basis sets.

One of the most advantageous features of our algorithms is their especially low memory

and disk space requirements, at least in comparison to other CC implementations. Currently,

both our DF-HF implementation and the local correlation algorithm up to the pair energy

evaluation require the storage of 6 n2
AO-sized arrays, where nAO is the number of AOs. In

this respect the formal scaling of the memory requirement of our LMP2 and LNO-CCSD(T)

implementation is quadratic, but because of its small prefactor the 6 arrays take up only

about 89 GB of memory even for our largest example with nAO = 44712. Following the pair

energy evaluation, only two n2
AO-sized arrays remain in memory, but their sparse storage

would also be manageable if needed. On top of those two arrays, the size of all other ED- or

LIS-specific quantities is asymptotically linear scaling. As a result of our recent optimization

efforts, if there is sufficient memory available, almost all of these ED- and LIS-specific arrays

are sorted in memory. Currently, hard disk use is limited to the storage of the DIIS vectors
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appearing in the LNO-CCSD iteration of the LIS. The DIIS vectors are usually of negligible

size with average LNO dimensions; e.g., the size of the 12 vectors is still below 64 GB for the

largest LIS of the TSRS
CC · · · pnp Tight LNO-CCSD(T)/aQZ calculation containing 81 (465)

occupied (virtual) LNOs.

Considerable efforts were devoted to minimize the memory use of the ED and LIS cal-

culations, and we also implemented alternative algorithms which can utilize disk if memory

bottlenecks emerged for the largest domains of extended systems computed with tighter

settings and large AO basis sets. The last row of Table 6 shows the minimum memory re-

quirement of LNO-CCSD(T) if the disk-based algorithms are executed, whereas the values

in parenthesis denote the memory usage of the in-core algorithms. Clearly, even the largest

calculations require easily manageable storage resources, e.g., the TSRS
CC · · · pnp Tight LNO-

CCSD(T)/aQZ calculation can be performed using about 25 GB memory, and the optimal

algorithms requiring the lowest I/O can be invoked with about 74 GB memory allocation.

We note that the out-of-core algorithms require the I/O of about twice as much data as the

difference of the memory requirement presented in Table 6 with and without the parenthesis,

which is in the worst case still in the 100 GB range. The additional benefit of our current

OpenMP parallelization strategy is that the largest arrays are shared among the threads,

thus the minimal memory requirement only marginally grows with the number of OpenMP

threads. The LTP/def2-QZVP example is somewhat an outlier, because the 6 n2
AO-sized

array needed for DF-HF and the pair energy calculation overgrow the memory need of the

ED/LIS calculations, but their size still remains below 100 GB.

We also found these memory demands quite representative for systems of similar size. For

instance, the memory need for the noticeably more complicated AuAmin molecule (92 atoms)

is only about 10 (20) % larger than that of TSRS
CC · · · pnp with the aTZ (aQZ) basis set for both

the Normal and the Tight settings. In comparison, the default PNO-CCSD(T)/cc-pVTZ-

F12 calculation of Ref. 41 performed for the same AuAmin system with 120 cores of 6 nodes

took about 5 GB/core node-specific memory, an additional shared memory of about 300 GB
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distributed among the nodes, and about 280 GB of disk space distributed over the local disks

of the 6 nodes. The total storage use of the default PNO-CCSD(T)/cc-pVTZ-F12 calculation

being roughly 1 TB was thus over an order of magnitude larger than that of the Tight LNO-

CCSD(T)/aQZ calculation. In turn, the runtime of the default PNO-CCSD(T)/cc-pVTZ-

F12 calculation in Ref. 41 is about 0.27 days on 120 cores. The corresponding wall time

measurement for the Normal (Tight) LNO-CCSD(T)/aQZ calculation performed on the 6

cores of our two-generation-older processor is about 6 (15) days. Since the conditions of

these computations could not be more different, more comparable measurements would be

desirable to make more realistic comparison of the performance of the various local CCSD(T)

implementations.

8 Summary and conclusions

We have presented a wide range of chemically relevant benchmark examples to illustrate

the accuracy and efficiency of the LNO-CCSD(T) method23,24,27 and introduced composite

threshold sets to facilitate black box like convergence studies. The Loose, Normal, Tight,

and vTight hierarchy largely retains the systematically convergent property of the individual

local approximations. We have performed about 3400 benchmark calculations to assess the

accuracy in comparison to exact CCSD(T) references. The default (Normal) settings of

LNO-CCSD(T) provide excellent correlation energies: the mean absolute error (MAE) for

the NWH and S66 test sets with the (aug-)cc-pVTZ bases is below 0.03%, while with cc-

pVQZ or for the CEMS26 set containing larger and more complicated examples the MAE

values are still below 0.07%. The Tight settings ensure that correlation energies are more

accurate than 99.9% for every tested case. The energy differences are also highly reliable:

the MAEs of the default LNO-CCSD(T) reaction energies and interaction energies for the

moderate-sized test systems are below 0.18 kcal/mol even if the results are extrapolated to

the basis set limit, while the MAE is still only 0.34 kcal/mol for the more challenging CEMS26
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set. The Tight settings yield maximum errors below 0.46 kcal/mol for all the tested cases.

Using the same test systems and basis sets Normal LNO-CCSD(T) is found more accurate

than the DLPNO-CCSD(T0)35 method even with its TightPNO settings. The NWH and

S66 energy differences of TightPNO DLPNO-CCSD(T) (including also an iterative triples

treatment37) and Normal LNO-CCSD(T) are almost identical on the average, the MAE of

Normal LNO-CCSD(T) for the CEMS26 set is still better by about 44%.

The sizable BSIE of CCSD(T) even with medium-sized basis sets is well-known at least for

small molecules, and we have shown that the issue is even more pronounced for larger systems

containing dozens of atoms. The deviation of local CCSD(T) compared to CCSD(T)/CBS

is often dominated by the BSIE even with (a)TZ and (a)QZ bases. Compared to this BSIE

the local errors of LNO-CCSD(T) are negligible already with the Normal settings. The ex-

trapolation using the aTZ and aQZ bases reliably approaches the CBS limit of CCSD(T).

Since the improved algorithm handles large and diffuse basis sets efficiently and can over-

come the numerical complications appearing in severely near-linear dependent AO basis sets,

CBS(T,Q) extrapolations of LNO-CCSD(T) energies become feasible for systems of up to

about 1000 atoms, which is currently a unique capability of our implementation.

In order to establish the accuracy limits of our method we have shown that benchmark

quality LNO-CCSD(T)/CBS(aTZ,aQZ) energies can be obtained with extremely tight set-

tings for up to 92 atoms even for some of the most challenging systems studied in the context

of local correlation to date. When canonical CCSD(T) is not available as reference, the Nor-

mal, Tight, etc. hierarchy of truncation thresholds provides a systematically improvable way

both to estimate the remaining local error and to decrease it well below chemical accuracy.

Relying on both the AO basis set and threshold hierarchies the CBS limit of CCSD(T) can

be systematically approached, and a well estimated error bar can be assigned to the LNO-

CCSD(T) results. We recommend to perform such convergence tests and error estimation

at least for a small number of representative examples before large scale production runs.

Our Tight LNO-CCSD(T)/CBS(aTZ,aQZ) energies also agree with most recent, tight PNO-
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CCSD(T)-F1241 results within 1-2 kJ/mol, which difference is comparable to the cumulative

uncertainties originating from the remaining BSIE and local errors of the methods. The par-

allel decrease of the local errors with improving threshold sets in various AO bases indicates

the generally balanced nature of our approximations and can be exploited to design cost-

effective composite methods, such as Tight LNO-CCSD(T)/aTZ augmented with Normal

LNO-CCSD(T)/CBS(aTZ,aQZ) BSIE correction.74

On the example of an organocatalytic Michael-reaction (including 90 atoms) we have

demonstrated that it is fairly simple to perform well converged LNO-CCSD(T)/CBS(aT,aQ)Z

calculations for realistic, three-dimensional systems at only about an order of magnitude

higher cost than that of an efficient DF-HF calculation. Consequently, the performance of

LNO-CCSD(T) is expected to be superior to DFAs above rung three implemented without

DF, but more importantly the LNO-CCSD(T) electronic energy calculations would not be

rate limiting in the frequently employed thermochemistry protocols including geometry op-

timizations and harmonic frequency evaluations performed using DFAs with HF exchange

content. The presented LNO-CCSD(T) calculations were performed with a few tens of GBs

of memory and a modest, 6-core CPU which has a performance comparable to a current

mid-range laptop. Due to reaching the linear scaling regime at around a few hundred atoms

even for three dimensional systems, such as proteins, LNO-CCSD(T)/CBS(T,Q) can even

be more efficient than the preceding DF-HF calculations and can be performed for systems

including more than 1000 atoms with an easily accessible hardware requirement.
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