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Abstract. The Brillouin theorem has been generalized for the coupling strength parameter (a) extended non-relativistic electronic 

Hamiltonian (HHne+aHee). The mathematical case a=0 generates an orto-normalized set of single Slater determinants which 
can be used as basis set for configuration interactions (CI) calculations for the physical case a=1, removing the known restriction 
by the original Brillouin theorem and opening a new way to practice. 

 
Keywords. electron-electron repulsion energy participation in ground and excited states, coupling strength parameter, totally 

non-interacting reference system, generalization of Brillouin theorem, single determinant basis set, configuration interactions 

 

INTRODUCTION: Coupling strength parameter as input 
 

The non-relativistic, spinless, fixed nuclear coordinate electronic Schrödinger equation for a molecular systems 
of M atoms and N electrons with nuclear configuration {RA, ZA}A=1,…,M in free space is 

H(a) yk (HHne+ aHee) yk(x1,…,xN) = enrgelectr,k yk(x1,…,xN) (1) 

where yk and enrgelectr,k are the kth excited state (k=0,1,2,...) anti-symmetric wave function (with respect to all spin-

orbit electronic coordinates xi ≡ (ri,si)) and electronic energy, respectively, as well as the electronic Hamiltonian 

operator contains the sum of kinetic energy, nuclear–electron attraction and electron–electron repulsion operators, 

the latter is extended with coupling strength parameter (a). Only a=1 makes physical sense (!), while the case a=0 

mathematically provides a good starting point to solve the case a=1. Most popular approximations [1, 2] are the 

expensive but (chemical) accurate CI method for ground and excited states, the less accurate but faster and less 

memory taxing Hartree–Fock self consistent field (HF-SCF) method for ground state with or without correlation 

corrections, and the density functional theory (DFT, using HF-SCF framework) [3]. The CI works for any nuclear 

geometry, while the HF-SCF is only for the vicinity of stationary points using a single Slater determinant. The “a” 

connects an unphysical system (H(a=0)) to the system treated at the mean-field HF level (H(a=1)) and above and its 

effect on ground and excited states. For example, a bit below unity “a” is capable [4] to correct the HF-SCF energy 

remarkably. 
The (yk(a),enrgelectr,k(a)) is the k-th eigenvalue pair of H(a), and we distinguish notations for a=0 as (Yk,eelectr,k) 

and for a=1 as (k,Eelectr,k). The S0 (generally s0(a)) is a single determinant approximation for 0 (generally for 
y0(a)) via HF-SCF/basis/a=1 (generally “a”) energy minimizing algorithm. Fundamental is that the yk(a=0)=Yk is a 
single determinant form solution, while yk(a≠0) is not. Eelectr,0(method) approximates Eelectr,0 by a certain method 
(HF-SCF, CI, etc.). The standard HF-SCF routine (Gaussian pre-package) was modified with a few simple program 
lines, which calls for the subroutine to calculate the <S0|Hee|S0>. Simply, the seed term rij

-1 was overwritten with arij
-

1, and the parameter “a” was programmed as input (see Appendix 1). 

 
DISCUSSION: The totally non-interacting reference system 

 

Similarly to a=1, for a=0 we ask Yk to be anti-symmetric and well behaving (vanishing at infinity and square-
integrable), normalized as <Yk|Yk>=1, calling “totally non-interacting reference system” (TNRS) in analogy to the 

corresponding anti-symmetric and well behaving k normalized as <k|k>=1. Certain theorems for a=1 hold for 
a=0 as well. Both are linear partial differential equations, the variation principle holds, and the 1st (“TNRS one-

electron density, (r2,TNRS), defines Y0 and the nuclear frame”) and 2nd (“variation principle for TNRS one- 
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electron density in its DFT functional) Hohenberg – Kohn (HK) theorems hold. The energetically lowest lying 

eigenvalue pair (eelectr,0,Y0) corresponds to (Eelectr,0, 0) and Eelectr,0 >> eelectr,0 for any molecular system (in stationer 

or non-stationer geometry, because 1/rij ≥ 0 always). The ground state versus the energetically lowest lying state 
with an enforced spin multiplicity feature is also the same in HF-SCF/basis/a. However, if spin-spin interaction is 
not considered via Coulomb repulsion, Hund’s rule does not apply if a=0 but does if a≠0. There are major 

mathematical differences between a=0 and a≠0 aside from the visible inclusion vs. omitted operator Hee: It is 

responsible for the fact that a single Slater determinant S0 for 0 when a=1 (generally a≠0) is not enough for total 

accuracy, although in the vicinity of stationary points, it provides a good approximation, and it can provide many 
characteristic properties of the ground state eigenvalue. In contrast, a single Slater determinant form is adequate 
form if a=0 not only for the ground, but also for excited states, and the HF-SCF/basis/a=0 with basis set limit 

accurately calculates the eigenvalue pairs (eelectr,k, Yk) for ground and excited states. 

For Eq.1: Analytical solution exists for k≥0 if N=1 (Hee=0) and M=1, e.g. 0=c.exp(-Z1r1); If k≥0 single 

Slater determinant is a correct form if a=0, but incorrect if a=1. The HF-SCF/basis/a algorithm provides single Slater 
determinants for the two important cases (Y0 (a=0), S0 (a=1)), to approximate the solutions of Eq.1 for ground state 

k=0 (or lowest lying enforced spin multiplicity state) as well as excited states (k>0, Yk(a=0), Sk(a=1)) can be 
generated with “tricks”. The HF-SCF/basis/a algorithm owns the properties: Energy variation principle holds for any 

“a”. Surprisingly, Y0 is very close [5] to S0. kSk is “good” approx. for k=0 only. Y0 is not restricted to the vicinity 

of the stationary point, but S0 does (by 1/rij). If a=0 there is basis set error, but no correlation effect (notation Y 

only); if a≠0 there is correlation and basis set error (we distinguish and S to emphasize). Case a=0 provides a 
very rich pro-information for a=1 and faster (the need of SCF convergence by 1/r12 is eliminated). This new ortho-

normal basis set {Yk} provides simpler Hamiltonian matrix for different level CI calculations in its off-diagonal 

elements than the {Sk}, see Eq.4, along with an opportunity to avoid the restriction from Brillouin’s theorem [1, 5]. 

The un-coupled case a=0, i.e. (HHne)Yk= (-(1/2)i=1,…,Ni
2 -i=1,…,NA=1,…,MZA RAi

-1)Yk= i=1,…,Nhi= eelectr,kYk, 
decomposes to N one-electron equations as the coupled case a≠0 (in the Fock (HF) or Kohn Sham (KS) formalisms 

a=1), that is (h1+ aVee,eff(ri))i(ri)= i i(ri), where i(ri) are the ortho-normal molecular orbits (MOs, with <i|j>= 

ijKronecker delta), and e.g. Vee,eff(ri)= ∫(r2,KS) ri2
-1dr2 + Vxc(ri) is the effective potential from electron-electron 

repulsion: The operator seed 1/rij is reduced to the variable ri via performing the integrations, and virtually (!) all 
equations depend on one electron. It is in fact coupled, though virtually not coupled, so the 100% adequate anti-
symmetric solution for this equation system (but not for a=1 in Eq.1) is a Slater determinant, and this system is 
known as “non-interacting reference system”; if a=0 also holds (really un-coupled), we call it TNRS. The electronic 

energy is eelectr,k= i nii ,where ni is the population (0, 1 or 2), and i ni= N for ground and excited states in contrast 

to Eelectr,0(HF-SCF or KS/basis/a=1)≠ i nii for deepest possible filling in the single Slater determinant (some cross 

terms must be subtracted). For a value of N and multiplicity 2S+1= 2si+1 in the regular way, the HF-SCF/basis/a=0 

calculates the lowest lying N/2 or (N+1)/2 energy values (i) and MOs (i), the only error is the basis set error, while 

HF-SCF/basis/a=1 (or ≠0) optimizes an S0 (or s0) single determinant energetically, keeping MOs of S0 (or s0) ortho-
normal owning basis set and correlation error. The linear combination of atomic orbits (LCAO) coefficients of 
TNRS can be obtained in only one step with HF-SCF/basis/a=0, irrespective of system size (via eigensolving), while 
in the HF-SCF/basis/a=1 the LCAO coefficients for a real system (or the mathematical a≠0 cases) can only be 

obtained through many steps; operator aHee is responsible for this, and the number of steps dramatically increases 
with system size (N). 

An important link between a= 0 and 1 comes from <0|Hee|Y0>= <0|H(a=1) – (HHne)|Y0>= <0|H|Y0> – 

<0|(HHne)|Y0>= <Y0|H|0> –eelectr,0<0|Y0>= Eelectr,0<Y0|0> –eelectr,0<0|Y0> as 

Eelectr,0= eelectr,0 + <0|Hee|Y0>/<0|Y0> . (2) 

The ratios <0|Hee|Y0>/<0|Y0> and (Eelectr,0 - eelectr,0)/eelectr,0 are quasi-constants as a function of molecular frame 

seeded in operator Hne. (Compare to the virial theorem (Vnn+ Vne+ Vee)/T= –2= (Vnn+ vne)/t  (Vnn+ 

<Y0|Hne|Y0>)/<Y0|H|Y0> which holds exactly on atoms.) Difference is between Vee≡ <0|Hee|0>= (N(N-

1)/2)<0|r12
-1|0> and the corresponding <0|Hee|Y0>/<0|Y0>= (N(N-1)/2)<0|r12

-1|Y0>/<0|Y0>. The Etotal electr,0 -
etotal electr,0= Eelectr,0 - eelectr,0, because the nuclear-nuclear repulsion energy, Vnn, cancels. Between k and k’ excited 

states Eelectr,k= eelectr,k’ + (N(N-1)/2)<k|r12
-1|Yk’>/<k|Yk’>. The LCAO coefficients in S0 and Y0 are very close to 

each other (aside from phase factors, see Appendix 2) so from Eq.2 

Eelectr,0 ≈ Eelectr,0(TNRS) eelectr,0 + (N(N-1)/2)<Y0|r12
-1|Y0> . (3) 

Extension of the 1st Hohenberg-Kohn (HK) theorem: Y0(a=0) Hne 0(a=1), generally y0(a) Hne. 
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For excited states {Yk(a=0)}: 1.: One has to provide basis set adequate for higher i (i > N/2 or (N+1)/2) states, 
2.: Simply increase the N by e.g. 1 or 2 for the same nuclear frame in HF-SCF/basis/a=0. This {Yk(a=0)} 
determinant basis set can be used for CI calculations, as the {Sk(a=1)} in practice, the linear algebra is exactly the 

same, but the algebraic forms do differ a slightly. The orthogonal property is <i(r1)|j(r1)>= <Yi(x1,…, xN)|Yj(x1,…, 

xN)>= ij, where the integration means 3 and 4N dimensions, resp. in bra-kets; also, <k|k’>= <Yk|Yk’>= kk’ ≠ or 

<k|Yk’>. Normalization N<Yi|Yi>= i(r1,a=0)dr1= N also holds, as a conventional definition for ith excited state. 

From the hermetic and linear nature of the operators: jij= <i|h1|j>= <j|h1|i>= iji     and eelectr,jij= 

<Yi|HHne|Yj>= <Yj|HHne|Yi>= eelectr,iji holds for orbital {i(r1)} and determinant {Yk} sets, as well as 

<bi|h1|bj>= <bj|h1|bi> for basis set elements. A simple demonstration of this follows with ZA=N=10 and singlet 

(1+2si=1) hydrogen-fluorid molecule (MP2(full)/6-31G* geometry, Etotal electr,0(MP2 level)= -100.1841 Hartree), the 

HF-SCF/STO-3G/a=1 for (0S0, Eelectr,k), yields 
1CLOSED SHELL SCF, NUCLEAR REPULSION ENERGY IS 5.099731703 HARTREES 

0CONVERGENCE ON DENSITY MATRIX REQUIRED TO EXIT IS 1.0000D-05 

0 CYCLE ELECTRONIC ENERGY TOTAL ENERGY CONVERGENCE EXTRAPOLATION 

1 -103.453458282 -98.353726579 

2 -103.658442376 -98.558710673 4.81239D-02 

. . . convergence . . . 

6 -103.671950402 -98.572218699 5.80744D-06 

0AT TERMINATION TOTAL ENERGY IS       -98.572219 HARTREES 

1MOLECULAR ORBITALS                      5 OCCUPIED MO 

1 2 3 4 5 6 

EIGENVALUES--- -25.90153 -1.46601 -0.58015 -0.46365 -0.46365     0.61156 

1 1 F 1S 0.99472 -0.24986 0.08063 0.00000 0.00000 0.08298 

2 1 F 2S 0.02247 0.94095 -0.42420 0.00000 0.00000 -0.53979 

3 1 F 2PX 0.00000 0.00000 0.00000 0.28444 -0.95869 0.00000 

4 1 F 2PY 0.00000 0.00000 0.00000 0.95869 0.28444 0.00000 

5 1 F 2PZ      -0.00283 -0.08462 -0.70026 0.00000 0.00000 0.82101 

6 2 H 1S       -0.00558 0.15494 0.52694 0.00000 0.00000 1.07402 

 

while the HF-SCF/STO-3G/a=0 for (Y0, eelectr,k) yields 
1CLOSED SHELL SCF, NUCLEAR REPULSION ENERGY IS 5.099731703 HARTREES 

0CONVERGENCE ON DENSITY MATRIX REQUIRED TO EXIT IS 1.0000D-05 

0 CYCLE ELECTRONIC ENERGY TOTAL ENERGY CONVERGENCE EXTRAPOLATION 

1 -151.075395174       -145.975663471 

2 -152.831334744 -147.731603041 0.00000D+00 

0AT TERMINATION TOTAL ENERGY IS       -147.731603 HARTREES 

1MOLECULAR ORBITALS                      5 OCCUPIED MO 

1 2 3 4 5 6 

EIGENVALUES--- -40.59236 -9.55517 -8.81672 -8.72571 -8.72571 -4.49671 

1 1 F 1S 1.00121 0.23152 0.08800 0.00000 0.00000 0.03901 

2 1 F 2S       -0.00549 -1.03159 -0.35933 0.00000 0.00000 -0.40485 

3 1 F 2PX 0.00000 0.00000 0.00000 -0.03804 -0.99928 0.00000 

4 1 F 2PY 0.00000 0.00000 0.00000 -0.99928 0.03804 0.00000 

5 1 F 2PZ 0.00024 0.44410 -0.94971 0.00000 0.00000 0.26910 

6 2 H 1S 0.00188 0.20530 -0.09439 0.00000 0.00000 1.18497 

Notice the similar LCAO coefficients, the different energy values, the different phase factors, (e.g. sgn(0.94095) 

vs. sgn(-1.03159) in 2nd MO (2(a),2(a))), as well as case a=0 has only one convergence step (#2) after initial guess 

(#1). Calculating higher MO or i (for generating e.g. Y1) one simply has to increase N, e.g. adding -1 charge to the 

molecule (N=11), and using correct multiplicity (now 1+2si= 2): The HF-SCF/STO-3G/a=0 calculation yields 
exactly the same LCAO coefficients and energy eigenvalues as for the neutral (N=10) hydrogen-fluoride for the first 
5 MOs, because it is the TNRS (a=0) calculation; but instead of 5 doubly occupied MO (HOMO=5th, LUMO=6th), 
there are 5 doubly occupied MOs plus 1 singly occupied 6th MO (HOMO). In contrast, the HF-SCF/STO-3G/a=1 

(e.g. RHF) calculation yields different {i,,i} set for i=1,…,5 if N increases to 11. After the name “virtual” MOs, 
this tricking in TNRS with N can have the name “virtual” N. One must be aware of the basis set chosen at this point 
to be good enough for the new HOMO too (to avoid singularity). Recall the Brillouin theorem (stated for a=1): the 
CI basis set generation by HF-SCF/basis/a=1 restricts stopping at single excitation (double excitation is necessary at 
least), while via HF-SCF/basis/a=0 this restriction is removed, an important practical advantage beside the 

theoretically interesting generalization of Brillouin theorem with “a” below. Finally, generating a basis set {Yk} with 
a HF-SCF/basis/a=0 is simpler, faster (one step), more effective (larger k) and more convenient than generating set 

{Sk} with an HF-SCF/basis/a=1, although, the author knows perfectly well that the latter is effectively used and 

widely tested in practice. Additionally, in the case of a=1 the LUMO and up bear the properties of S0, passing it to 
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the ortho-normal basis set for the CI calculation it generates, but only S0 has a really close relationship to a=1 in 

Eq.1, while on the other hand, in the case of a=0 all Yk are the solution of case a=0 in Eq.1. The standard way of 

expanding anti-symmetric wave functions K of a=1 (most importantly to ground state K=0) using the ortho-normal 

N-electron determinant basis set {Yk} from a=0 is the linear combination of single, double, triple, etc. excited N-

electron Slater determinants: K= kck(K)Yk, as alternative to the conventional K= kdk(K)Sk; (K distinguished 
from k). By the principles of linear algebra, changing basis set should not be a problem, mainly from the point of 
slowly changing LCAO parameters in the range 0≤a≤1. (The textbook routine generation of basis sets, e.g. for 
singlet excitation, is taking 5 columns from the 6 for a 10x10 determinant Yk or Sk in the above table.) 

Standard linear algebra provides the set of eigenstates {K, Eelectr,K} for a=1 by expanding K in basis set {Yk}: 

One must diagonalize the Hamiltonian matrix <Yk’|HHne+ Hee|Yk> as the second main step. (The first main step is 
the diagonalization of <bi|h1|bj> for the set of eigenstates {Yk, eelectr,k} with HF-SCF/basis/a=0 with tricking (virtual) 
N if necessary.) Using general “a”, not only a=0 and 1, yields 

<Yk’|HHne+aHee|Yk>= eelectr,k <Yk’|Yk> + a<Yk’|Hee|Yk> . (4) 

The diagonal elements (k’=k) reduce to the generatization of Eq.3 for ground (k=0) and excited (k>0) states 

<Yk|HHne+aHee|Yk>= eelectr,k + a(N(N-1)/2)<Yk|r12
-1|Yk> ,                            (5) 

Eelectr,k ≈ Eelectr,k(TNRS)eelectr,k + (N(N-1)/2)<Yk|r12
-1|Yk> .                            (6) 

Approximation Eq.6 is pre-tested: Its k=0 case in Eq.3 is displayed on Fig.1. Ordering Eelectr,k as Eelectr,k≤ Eelectr,k+1 for 

k=0,1,2,…, it must be proved that Yk (case a=0) corresponds to k (case a=1), which is a plausible hypothesis and 
agrees with Eq.6. (The “≤” necessary in energy relation, the “<” is not enough, because TNRS can remove 

degeneracy gaps, manifesting in Hund’s rule extended with “a”, moreover, k can characteristically have 

degeneracy.) Algebraic theorem eigenvalues)= trace(diagonal elements) for symmetric matrices yields another 
relationship for terms in Eq.5. The off-diagonal elements (k’≠k) 

<Yk’|HHne+aHee|Yk> = eelectr, k or k’<Yk’|Yk> + a<Yk’|Hee|Yk> = a(N(N-1)/2)<Yk’|r12
-1|Yk> (7) 

show purely Coulomb electron-electron interaction terms to correct Eq.6 by eigensolving Eq.4. In practice, where 
not the {Yk} by HF-SCF/basis/a=0, but {Sk} by HF-SCF/basis/a=1 is used, the off-diagonal elements corresponding 

to Eq.7 contain orbital energies i of MOs too. The CI matrix in Eq.4 is diagonal if a=0, because the set of wave 
functions {Yk} is expressed trivially with itself. Neglecting off-diagonal elements (Eq.7), the matrix in Eq.4 
diagonalizes to Eqs.5-6, see Etotal electr,0(G3)-Etotal electr,0(TNRS) plotted with a solid line in Fig.1, which is remarkable 
but, far beyond chemical accuracy. The <Yk’|r12

-1|Yk> terms generate many products, but the orthogonality of MOs 

in {Yk} makes many cancellations; the spin related properties and manipulations are exactly the same in both, {Yk} 
and {Sk}. To avoid eigensolving Eq.4, Eq.6 can be corrected e.g. with Lth order power series expansion as Eelectr,0≈ 

Eelectr,0(TNRS)+ (a1t+ b1vne+(c1-1)z)+ j=2…L(ajtj+ bjvne
j+ cjzj), where the pre-calculated t <Y0|H|Y0>, 

vne<Y0|Hne|Y0> and za<Y0|Hee|Y0> integrals are used, etc.. 
Eq.6 contains only one single determinant, so its spin state is obvious, however for any kind of CI correction the 

spin situation must be taken into account. Eq.1 does not contain spin coordinates, hence both total spin operators 

(Sop
2 and Sop,z) must commute with it as [H+ Hne+ aHee, Sop

2 or Sop,z]= 0. The k (exact not-single determinant 
eigenfunction, a=1) and single determinant Yk (a=0) are also eigenfunctions, for the latter Sop

2Yk= S(S+1)Yk and 

Sop,zYk= MSYk, where S and MS are the spin quantum numbers as S= i=1…N si. As usual, e.g. for a singlet state 

molecule, those Yk determinants must be eliminated from the determinant expansion which are not singlets (MS≠0). 
The spin algebra [1] is the same for {Yk} and {Sk}. For example, the two simplest spin-adapted cases for even N in 

Y0 obtained from HF-SCF/basis/a=0: the doubly excited singlet Yp()p()
r()r(), wherein () electron pair from p 

orbital below LUMO are promoted to r orbital over HOMO with the same () spin configuration as indicated in 

brackets, and the singly excited singlet configuration is 2-1/2(Yp()
r() + Yp()

r()), in the latter the two terms alone are 
also diagonal elements, but not pure spin states. 

 
Generalization of Brillouin’s theorem with coupling strength parameter 

 

Conditions from above: The yk(a) is the exact kth ground (k=0) or excited (k>0) state solution of Eq.1 yk(a=0) 

has single determinant form, while yk(a≠0) does not; the kyk(a=1) are the physical wave functions of a molecular 

system. The single determinants Ykyk(a=0) are exact solutions from HF-SCF/basis/a=0 (w. basis set error), and 

HF-SCF/basis/a=1 provides the famous energy optimized single determinant approximation S00 (w. basis set and 
correlation error), along some lowest lying (crudely estimated) excited states Sk. The s0(a) single Slater determinants 

from HF-SCF/basis/a calculation provides y0(a) s0(a), particularly, y0(a=0)= s0(a=0)Y0 and 0 s0(a=1) S0 
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holds. From lowest lying state Y0 or S0, one can make singly excited Slater determinant [1] basis elements by 
replacing a spin-orbital HOMO level or below (call it b) to a spin-orbital LUMO level or higher (call it r), denoted 
as Y0,b

r and S0,b
r, resp.. 

Brillouin’s theorem (1934) states that <S0|H(a=1)|S0,b
r>= 0 as a consequence of the HF-SCF/basis/a=1 algorithm 

[1]. For this reason, extending S0 with only singly excited determinants to improve for 0 or improve for 0 and 

estimate 1 is impossible, the doubly excited determinants S0,bc
rs are necessary and are the most important 

corrections to 0, more exactly the {S0, {S0,b
r}, {S0,bc

rs}} basis set. (Although these Brillouin matrix elements are 

zero, the singly excited S0,b
r do have an effect on 0 via Hamilton matrix elements as <S0,b

r|H(a=1)|S0,bc
rs>.) 

A trivial extension of Brillouin’s theorem for cases HF-SCF/basis/a (which approximates y0(a) by single 
determinant s0(a)) is formally the same, that is 

<s0(a)|HHne+aHee|s0,b
r(a)>= 0 , (8) 

the proof is the same as for a=1 [1]. Eq.8 for a=0 and its generated {Yk} eigenfunction set (as a newly introduced 

candidate basis set for CI treatment) tells only triviality such as <Y0|HHne|Y0,b
r>=0, and the more general 

<Yk’|HHne|Yk>= 0 is in Eq.7 with a=0 for k’≠k, where indices k and k’ count the ground (Y0), singly (Y0,b
r), 

doubly (Y0,bc
rs), … n-touply excited Slater determinants as well, because Yk‘s are orto-normal eigenfunctions. Like 

Hund’s rule annihilates at a=0 (not detailed here), Brillouin’s theorem becomes a triviality, because s0(a=0) becomes 
equal to Y0, that is, an approximate form becomes an exact form. Eq.8 for eigenvalues trivially yields 

<yk’(a)|HHne+ aHee|yk(a)>= 0 also for the wider range k’≠k, because yk(a)’s are orto-normal eigenfunctions. The 
Brillouin theorem (the original, wherein a=1 in Eq.8) and its extension (here, with a≠1 in Eq.8), wherein “a” can be 

any tells us more, because s0(a) and s0,b
r(a) are not eigenfuntions of HHne+aHee, yet (and this is the point in 

Brillouin theorem) these matrix elements are still zero, a characteristic property from the HF-SCF/basis/a algorithm. 
The right hand side of Eq.7 is zero if a=0, or zero if Yk’ or Yk differ in three or more spin-orbits [1]. For example, 

with a≠0 in Eq.7, the Y0,bcde
rspq and Y0,bcde

rsvw differ in only two spin-orbits, and do not yield zero for the right hand 
side of Eq.7. In this way, Eq.8 reduces to sub-cases of Eq.7 if a=0, but Eq.7 with a≠0 tells us even more than Eq.8, 
the reason being that the operator in Eq.8 and in wave functions have the same “a” values, while in Eq.7 the operator 

contains a value of “a”, but the wave function is Ykyk(a=0) for k and k’ i.e., two different “a” values are involved. 

An important consequence of this is that, for Eq.1, the {Y0, {Y0,b
r}} truncated basis set generated by a=0 (using the 

minimal, singly excitated ones) can already be used as a basis to estimate 0 better than e.g., Eq.3, even to estimate 

1 also by the eigenvectors of the Hamiltonian matrix. This means that, it can provide the large part of correlation 
energy, and the doubly excited determinants do not have to be calculated to save computer time and disc space 
unless one needs more accurate results or higher excited states. Again, in the literature the CI calculation is based on 
HF-SCF/basis/a=1 generated {S0, {S0,b

r}, {S0,bc
rs}} or a higher basis set to solve Eq.1 with a=1, while here, we are 

talking about the HF-SCF/basis/a=0 generated {Y0, {Y0,b
r}} or higher basis set to solve Eq.1 with a=1. 

 

Appendix 
 

1.: The (1% non-negligible) error, Ecorr, of HF-SCF stems from the use of one single Slater determinant (S0) to 

approximate the ground state wave function (0) originating from a(≠0 particularly 1)/rij, and it includes the 

exchange (x, Fermi hole) error and correlation (c, Coulomb hole) error (Ecorr:= Exc<0) in calculating electron-

electron repulsion as <0|Hee|0><S0|Hee|S0>. We note that there is another error stemming from the use of S0 in 

calculating the kinetic energy as <0|H|0> <S0|H|S0>, that is about a magnitude less than Exc and has an 

opposite sign. Furthermore, physicists divide this problem as Ecorr:= Ex+Ec <0, where the Ex>0 accounts for the error 

from <S0|H|S0> and Ec (<-Ex<0) from <S0|Hee|S0>. 
2.: For even further relations, one can start from the variation principle: Let the normalized solution Y0 be a trial 

for Eq.1 at a=1: Eelectr,0 ≤ <Y0|H(a=1)|Y0>= <Y0|Hee|Y0> + <Y0|HHne|Y0>= <Y0|Hee|Y0> + eelectr,0. The reverse 

situation, when 0, the solution at a=1, is a trial function for a=0, one gets the simpler eelectr,0 ≤ <0|HHne|0>. 

Equality holds for both in the trivial case N=1, because there 0(N=1)= Y0(N=1), since the Hee=0. From Eq.1: 

<0|H(a=1)|0>= <0|HHne|0> + <0|Hee|0>= Eelectr,0, and the right hand side is majored by the first one as 

<0|HHne|0> + <0|Hee|0> ≤ eelectr,0     + <Y0|Hee|Y0>, and with second, one obtains <0|Hee|0> ≤ 

<Y0|Hee|Y0>.The counterpart comes with an extension as eelectr,0 + <0|Hee|0> ≤ <0|HHne|0> + <0|Hee|0>= 

<0|H(a=1)|0>= Eelectr,0 which is Eelectr,0 ≥ eelectr,0 + <0|Hee|0>. In summary the full relation is 

eelectr,0 << (eelectr,0+<0|Hee|0>) ≤ Eelectr,0= (eelectr,0+<0|Hee|Y0>/<0|Y0>) ≤ (eelectr,0+<Y0|Hee|Y0>), (9) 

which extends as <0|Hee|0> ≤ <0|Hee|Y0>/<0|Y0> ≤ <Y0|Hee|Y0>. 
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One other expression stemming from the variation principle has to be emphasized: The S0 from HF-

SCF/basis/a=1 for Eq.1 is energetically better than Y0 from HF-SCF/basis/a=0, when one uses this Y0 for Eq.1 at 
a=1, that is, 

Eelectr,0 = <S0|H(a=1)|S0> + Ecorr < <S0|H(a=1)|S0> ≤ eelectr,0 + (N(N-1)/2)<Y0|r12
-1|Y0>, (10) 

where the equality may come up when small e.g., STO-3G basis set is used. The error (correlation energy) of the 

middle part in Eq.10 with S0 stems from the fact that 0 is approximated with incorrect wave function form, namely 

with single determinant S0; but at least the LCAO coefficients vary slowly between Y0(a=0) and S0(a=1). (Again, the 

LCAO parameters in correct functional form Y0 come from solving Eq.1 at a=0 numerically, while in the incorrect 

functional form S0 the LCAO parameters come from the energy minimization of <S0|H(a=1)|S0> for Eq.1, restricted 
by the known ortho-normalization for MOs in both.) 
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FIGURE 1. The 150 neutral test 

molecules from the G3 set are chosen 

as increasing N, e.g. 1: H2, 10: OH 

radical, 20: CO, 30: C2H5 radical, 40: 

allene     (C3H4),     50:     aziridine,     60: 

(CH3)2NH, 70: glyoxal, 80: acetone, 

90: methyl ethyl ether, 100: twist 

C5H10, 110: n-pentane, 120: N-methyl 
pyrrole, 130: 3-methyl pentane, 140: 

CH3CH2CH(CH3)NO2,147: C2F6, 148: 

naphthalene,149: azulene (C10H8). 

The shape of the curve itself has no 

particular mean, the important message 

is that the two curves (black squares 

and open circles) run together like the 

same fingerprint. 

 
 

The related curve for open circles in Fig.1 with larger 6-31G** basis set would yield lower energy values by about 

2% (basis set error improvement), and would be almost at the same position for eyes, not plotted. Solid line is the 

deviation Etotal electr,0(G3) - Etotal electr,0(TNRS) via first approximation in Eq.3 which brings the open circle values (a=0 

in Eq.1 with small basis set error) remarkably back to black square ones (a=1 in Eq.1 with G3 estimation), it is also 

the approximate error of the (1,1) element of the CI matrix in Eq.5. 
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