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On the number of solutions of binomial Thue inequalities

By M. A. Bennett, I. Pink and Zs. Rábai

Abstract. Let a, b and n be positive integers with n ≥ 3 and consider the binomial Thue
inequality |axn−byn| ≤ 3. In this paper, we extend a result of the first author [10] and prove that,
apart from finitely many explicitly given exceptions, this inequality has at most a single solution
in positive integers x and y. In the proof, we combine lower bounds for linear forms in loga-
rithms of algebraic numbers with the hypergeometric method of Thue-Siegel and an assortment of
techniques from computational Diophantine approximation.

1. Introduction

A classical problem in number theory is the approximation of algebraic numbers by
rationals, underlying which one has a theorem of Liouville :

Theorem 1.1. (Liouville, 1844) If α is a given algebraic number of degree n ≥ 2,
then there exists an effectively computable constant c(α) such that, for every x

y ∈ Q with
y > 0, we have ∣∣∣∣α− x

y

∣∣∣∣ > c(α)

yn
.
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For applications to Diophantine equations, it is of utmost importance to reduce the expo-
nent n here, i.e. to deduce like inequalities with some exponent λ < n. In full generality,
the first such result was due to Thue [38] who proved the following theorem.

Theorem 1.2. (Thue, 1909) If α is an algebraic number of degree n ≥ 3, then,
given ε > 0, there exists an effectively computable constant c(α, ε) such that for all
integers x and y > 0 we have ∣∣∣∣α− x

y

∣∣∣∣ > c(α, ε)

y
n
2 +1+ε

.

From this result, Thue deduced that if F (x, y) ∈ Z[x, y] is an irreducible binary
form of degree n ≥ 3, and m is a fixed nonzero integer then the corresponding Thue
equation

F (x, y) = m (1.1)

has at most finitely many solutions in integers x and y. This result is, however, ineffective
in the sense that it does not provide any way to actually compute c(α, ε), and hence
cannot be applied to determine the solutions of the corresponding equations.

Whilst there is now a well-developed literature on effective solution of Thue equa-
tions, based upon a variety of techniques (including, for instance, lower bounds for lin-
ear forms in logarithms of algebraic numbers; see e.g. [4]), in the paper at hand, we
will concentrate on bounding the number of solutions to such equations, rather than their
heights. In this regard, it is known that the number of solutions to equation (1.1) in inte-
gers is bounded above in terms of only the degree of F and the number of distinct prime
divisors of m (see e.g. Bombieri and Schmidt [19]). We will restrict our attention to
what is, in some sense, the simplest possible case, that of binomial Thue equations and
inequalities. For these equations, the number of such solutions is bounded in terms of m
alone (see Mueller and Schmidt [33]). Despite the fact that the situation we will consider
is a very specialized one, we believe it is instructive to see what can be said explicitly,
as a test of the current state of refinement of computational and analytic techniques. As
a starting point, we note that, implicit in the techniques of [10] and [16] is the following
result.

Theorem 1.3. Let c be a positive integer. Then there exists an effectively com-
putable finite set Sc of triples of positive integers a, b and n with the property that if a, b
and n ≥ 3 are any positive integers for which the Diophantine inequality

|axn − byn| ≤ c (1.2)

has more than a single solution in positive integers x and y, then (a, b, n) ∈ Sc.
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The main result of [10] is that the set S1 is empty. In treating (1.2), we will have occasion
to consider the corresponding equation

|axn − byn| = c, (1.3)

where a, b and c are given positive integers, and x, y and n are unknown integers. Siegel
[37], refining earlier work of Thue, showed that if the coefficients a and b are large
enough compared to c and n, then (1.3) has at most one positive solution. Later, Ev-
ertse [21] was able to substantially sharpen Siegel’s theorem (see our Lemma 2.2). Both
results depend on the so-called hypergeometric method. Related work in this area, in-
cluding applications and generalizations to cases where a and b are taken to be S-units
rather than fixed, may be found in, for example, Mahler [30], [31], Baker [1], [2], [3],
Chudnovsky [20] and many, many other papers, including [5]. [6], [7], [8], [9], [10],
[11], [14], [17], [18], [22], [23], [24], [25], [26], [32] and [39].

The main result of the paper at hand is the following.

Theorem 1.4. With Sc defined as in the statement of Theorem 1.3, we have S3 ⊆
S∗3 ∪ T3, where

S∗3 = {(1, 2, 3), (2, 1, 3), (1, 3, 3), (3, 1, 3), (2, 5, 3), (5, 2, 3)}

and

T3 = {(1, 3, n), (3, 1, n), (2, 5, n), (5, 2, n) with 37 ≤ n ≤ 347, n prime } .

For (a, b, n) ∈ S∗3 , the solutions in positive integers to inequality (1.2) with c = 3 are, in
each case, (x, y) = (1, 1), and also

(a, b, n) (1, 2, 3) (2, 1, 3) (1, 3, 3) (3, 1, 3) (2, 5, 3) (5, 2, 3)

(x, y) (5, 4) (4, 5) (3, 2) (2, 3) (19, 14) (14, 19)

In case n = 3, this theorem represents a slight sharpening of a classical result of
Ljunggren [29], who considered equation (1.3) with n = 3 and c ∈ {1, 3}. It is very
likely that S3 = S∗3 (which should be provable with a finite but currently infeasible
amount of computation). We can, in any case, certainly prove a sharpened version of
Theorem 1.4, with T3 replaced by a somewhat smaller set, through more careful applica-
tion of the hypergeometric method; in our opinion the effort involved would somewhat
exceed the payoff.
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2. Some lemmata

In this section, we collect a number of lemmata that we use in the proof of Theorem
1.4. The first is a state-of-the-art lower bound for linear forms in the logarithms of two
algebraic numbers, due to Laurent (Theorem 2 of [28]). For any algebraic number α of
degree d over Q, we define as usual the absolute logarithmic height of α by the formula

h(α) =
1

d

(
log |a0|+

d∑
i=1

log max
(

1, |α(i)|
))

,

where a0 is the leading coefficient of the minimal polynomial of α over Z and the α(i)s
are the conjugates of α in the field of complex numbers.

Lemma 2.1. Let α1 and α2 be multiplicatively independent algebraic numbers, h,
ρ and µ be real numbers with ρ > 1 and 1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log ρ, H =

h

λ
+

1

σ

ω = 2

(
1 +

√
1 +

1

4H2

)
, θ =

√
1 +

1

4H2
+

1

2H
.

Consider the linear form Λ = b2 logα2−b1 logα1,where b1 and b2 are positive integers.
Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R]

and assume that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
, (2.1)

ai ≥ max {1, ρ| logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2), (2.2)

and
a1a2 ≥ λ2. (2.3)

Then

log |Λ| ≥ −C
(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
− log

(
C ′
(
h+

λ

σ

)2

a1a2

)
(2.4)

with

C =
µ

λ3σ

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

(2.5)

and

C ′ =

√
Cσωθ

λ3µ
. (2.6)
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The next lemma is a result of Evertse (Theorem 2.1 of [21]) and, as mentioned earlier,
represents a refinement of prior work of Siegel on the hypergeometric method.

Lemma 2.2. Suppose that a, b, c and n are positive integers with n ≥ 3. Define

Tn = 3−
n−2
n n

∏
p|n

p
1
p−1 , µ3 = T

11/2
3 , µn = T

max{ n+2
2(n−3)

, n
n−2}

n if n ≥ 4,

and

α3 = 9, αn = max

{
3n− 2

2(n− 3)
,

2(n− 1)

n− 2

}
if n ≥ 4.

Then the inequality (1.2) has at most one solution in positive coprime integers x and y
satisfying

max {axn, byn} ≥ µncαn .

The final three lemmata we will use are results of the first author [8], [9], [10] and [13].
To be precise, they are a combination of Theorem 5.2 of [10] with Theorem 5.2 of [13], a
special case of Theorem 1.1 of [8], and a special case of Theorem 1.1 of [9], respectively.
We will use them to treat inequality (1.2) for “small” values of n.

Lemma 2.3. Suppose b > a are coprime positive integers and m =
[
n+1
3

]
. Let n,

c1(n) and d(n) be as given in the following table.
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n c1(n) d(n) n c1(n) d(n) n c1(n) d(n)

17 8.93 13.06 107 83.55 50.84 227 201.15 116.91

19 9.40 15.46 109 84.18 58.97 229 202.11 100.61

23 13.03 17.66 113 89.22 77.93 233 207.50 102.49

29 17.39 29.95 127 100.47 72.61 239 213.74 105.66

31 17.92 30.55 131 105.34 71.51 241 214.95 95.14

37 21.2 − 137 111.44 79.94 251 226.83 115.64

41 25.83 36.08 139 112.15 77.27 257 233.75 113.23

43 26.62 33.95 149 122.53 85.82 263 240.15 119.49

47 30.46 40.16 151 123.41 89.04 269 246.54 124.75

53 34.78 35.37 157 129.07 81.61 271 247.72 134.21

59 39.18 48.34 163 134.80 93.64 277 254.62 119.17

61 39.96 55.93 167 139.95 82.87 281 260.46 116.79

67 44.76 43.56 173 146.07 87.71 283 261.67 118.21

71 48.36 54.80 179 151.40 83.92 293 274.23 129.73

73 52.83 48.11 181 152.20 91.69 307 289.00 124.89

79 58.27 54.65 191 163.78 84.40 311 294.70 130.14

83 62.70 49.64 193 164.81 91.51 313 296.38 130.18

89 67.56 60.29 197 170.17 104.53 317 302.73 134.63

97 73.71 62.14 199 170.80 110.41 331 317.41 147.69

101 78.29 50.36 211 183.12 124.02 337 324.63 139.95

103 79.16 60.85 223 195.74 112.93 347 338.02 133.98

If

(
m
√
b− m
√
a)mec1(n) < 1, (2.7)

then, for all x and y > 0 integers, we have∣∣∣∣∣
(
b

a

)1/n

− x

y

∣∣∣∣∣ > (C2(
m
√
b+ m
√
a)m)−1y−λ1 ,

where

C2 =

{
3.15 · 1024(m− 1)2nm−1ec1(n)+d(n) if n 6= 37

5 · 1075 if n = 37
,

and

λ1 = (m− 1)

{
1− log(( m

√
b+ m
√
a)mec1(n)+1/20)

log(( m
√
b− m
√
a)mec1(n))

}
.
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Lemma 2.4. Let c ∈ {1, 2, 3} and a be a positive integer which satisfies

8
(√
a+
√
a+ c

)2
> c4 · (κ(c))3, (2.8)

where

κ(c) =

{
3
√

3 for c = 1, 2√
3 for c = 3.

Then, for all positive integers x and y,∣∣∣∣ 3

√
1 +

c

a
− x

y

∣∣∣∣ > (4 · a · κ(c))−1
(
104y

)−λ3
, (2.9)

where

λ3 = 1 +
log
(
κ(c)
2 (
√
a+
√
a+ c)2

)
log
(

2
c2·κ(c) (

√
a+
√
a+ c)2

) .
Lemma 2.5. Let a be a positive integer, c ∈ {1, 2, 3} and n ∈ {4, 5, 7, 11, 13}. If

(√
a+
√
a+ c

)2(n−2)
> c2(n−1)

(
κ(c, n)

c2(n)

)n
, (2.10)

then for all positive integers x and y,∣∣∣∣ n√1 +
c

a
− x

y

∣∣∣∣ > 1

a
· (1010y)−λ4 , (2.11)

where

λ4 = 1 +
log
(
κ(c,n)
c2(n)

(√
a+
√
a+ c

)2)
log
(

c2(n)
c2κ(c,n)

(√
a+
√
a+ c

)2) , κ(c, n) =
∏
p|n

pmax{ordp(nc )+ 1
p−1 ,0},

c2(4) = 1.62, c2(5) = 1.84, c2(7) = 1.76, c2(11) = 1.67 and c2(13) = 1.65.

3. Proof of Theorem 1.4

We will consider the inequality

|axn − byn| ≤ 3 (3.1)
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in integer unknowns x, y, a, b and n which satisfy, without loss of generality,

b > a ≥ 1, n ≥ 3, x ≥ 1, y ≥ 1. (3.2)

We may further assume, again without loss of generality, that in (3.1) the exponent n is
either 4 or an odd prime. By Lemma 2.2, it follows that if

xn ≥ µn · 3αn ,

then (3.1) has at most one solution in positive integers x and y. This implies that, apart
from when n ∈ {3, 4, 5}, inequality (3.1) has at most one positive solution with x ≥ 2.
We may thus distinguish two cases.
Case I : The inequality (3.1) has (x, y) = (1, 1) as a solution. We thus have b = a + c

for c ∈ {1, 2, 3} and hence are led to consider the inequality

|axn − (a+ c)yn| ≤ 3, (3.3)

where c ∈ {1, 2, 3} and a, x, y and n are positive integers with n ≥ 3.

Case II : We have n ∈ {3, 4, 5}, b−a > 3 and inequality (3.1) has a solution in positive
integers x and y with x ≥ 2.

We first deal with Case I.

3.1. Linear forms in two logarithms. The main purpose of this subsection is to prove
the following.

Theorem 3.1. If there is a solution to inequality (3.3) in positive integers x and y
with (x, y) 6= (1, 1), then n ≤ 347.

To prove this, we will have use of the following technical lemma.

Lemma 3.2. If inequality (3.3) has a solution in positive integers (x, y) 6= (1, 1)

then x > na
c .

Proof of Lemma 3.2 : If x ≤ y and y > 1, then

|axn − (a+ c)yn| ≥ cyn > 3,

contradicting (3.3). We may thus suppose that x ≥ y + 1, which by (3.3) yields

axn − (a+ c)yn ≥ a(y + 1)n − (a+ c)yn.



Binomial Thue inequalities 9

By the binomial theorem, the right hand side of this is

nayn−1 + a

((
n

2

)
yn−2 + · · ·+

(
n

n− 1

)
y + 1

)
− cyn.

Since

a

((
n

2

)
yn−2 + · · ·+

(
n

n− 1

)
y + 1

)
> 3,

it follows from (3.3) that
nayn−1 − cyn < 0, (3.4)

which in turn implies that x > y > na
c . �

Proof of Theorem 3.1 Suppose that inequality (3.3) has a positive solution (x, y) 6=
(1, 1) with n > 347. By Lemma 3.2, it follows that x > na/c. We consider the linear
form

|Λ| =
∣∣∣∣log

(
1 +

c

a

)
− n log

(
x

y

)∣∣∣∣ . (3.5)

Since (3.3) is equivalent to the inequality∣∣∣1− (1 +
c

a

)(y
x

)n∣∣∣ ≤ 3

axn
,

and since, for every z ∈ C with |z− 1| < 0.795, we have | log(z)| < 2|z− 1|, it follows
that

|Λ| < 6

xn
. (3.6)

We write

α1 =
x

y
, α2 = 1 +

c

a
, b1 = n, b2 = 1, µ = 0.63, σ = 0.93155, D = 1,

ρ = 1 +
log(a+ c)

log(1 + c
a )
, and choose a1 = 2.003 log(x) and a2 = 3 log(a+ c).

Applying Lemma 2.1, one may readily check that (2.3) holds. We distinguish two cases
according to whether a ≥ 14 or a ≤ 13, respectively.

If a ≥ 14 then, by calculus, we find that there exist absolute constants c1, c2 such that

c1 σ log(a+ c) < λ < c2 σ log(a+ c) (3.7)
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Here we may choose c2 = 1.3646 if c = 1, c2 = 1.1835 if c = 2 and c2 = 1.1226 if c =

3. The corresponding values of c1 are c1 = 1 if c ∈ {1, 2}, (c1, a) = (0.96, 14), (0.98, 16),
or (0.99, 17), if c = 3 and 14 ≤ a ≤ 17, and c1 = 1 if c = 3 and a ≥ 18. Since n > 347

and x > na
c , it follows that log(a+c)

log(x) < 1 and, via (3.7),

log

(
n

3 log(a+ c)
+

1

2.003 log(x)

)
+ log(λ) + 1.81 < log

(c2σn
3

+
c2σ

2.003

)
+ 1.81.

Hence, for a ≥ 14, we may take

h = max
{

log
(c2σn

3
+

c2σ

2.003

)
+ 1.81, λ

}
.

Suppose first that h = log
(
c2σn
3 + c2σ

2.003

)
+ 1.81. Then, by (3.7) and the assumption

that a ≥ 14,

h

λ
+

1

σ
≤ A :=

log
(c2σn

3
+

c2σ

2.003

)
+ 1.81

σc1 log(a+ c)
+

1

σ
. (3.8)

Lemma 2.1 and (3.8) together imply that

log |Λ| > −Cλ2a1a2A2 −
√
ωθλA− log(C ′a1a2λ

2A2) (3.9)

and hence, comparing (3.6) and (3.9), we have

n < Cλ2A2 a1a2
log(x)

+
√
ωθ

λ

log(x)
A+

log(2cC ′a1a2λ
2A2)

log(x)
. (3.10)

Write C = µ
λ3σ C̃. Then, from the definitions of a1 and a2, and from (3.7), necessarily

Cλ2
a1a2

log(x)
<
C̃ 6.009µ

c1σ2
.

Since x > na/c and n > 347, we have log(a+c)
log(x) < 1. Combining this with (3.7) we

obtain that λ
log(x) < c2σ and, further,

log(2cC ′a1a2λ
2A2)

log(x)
< 0.421 log(A) + 1.858.

Inequality (3.10) thus implies

n <

(
µ

σ2c1
C̃ · 6.009

)
A2 + c2σ

√
ωθA+ 0.421 log(A) + 1.858. (3.11)
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Since in Lemma 2.1 we have H ≥ 1 + 1
σ , necessarily H > 2.0734, whence ω < 4.058

and θ < 1.27. Further, since λ√
a1a2

< c2σ√
6.009

and λ
(

1
a1

+ 1
a2

)
< c2σ

(
1

2.003 + 1
3

)
, we

have C̃ < 5.262 if c = 1, C̃ < 4.853 if c = 2 and C̃ < 4.735 if c = 3. By combining
these estimates with (3.11), we obtain, for a ≥ 14, that

n <

(
6.009C̃ · µ

σ2

1

c1

)
A2 + 2.271c2σA+ 0.421 log(A) + 1.858. (3.12)

To remove the dependence on a in this bound, we appeal to the inequalities log(a+ c) ≥
log(15) for c = 1, log(a + c) ≥ log(16) and a ≥ 14, log(a + c) ≥ log(21) for a ≥ 18

and c = 3 and log(a + c) = log(a + 3) for c = 3 and a ∈ {14, 16, 17}. Hence we
obtain n ≤ 347 for c ∈ {1, 2, 3} and a ≥ 14, provided h = log

(
c2nσ
3 + c2σ

2.003

)
+ 1.81.

If h = λ, inequality (3.12) actually implies a stronger bound upon n.
For a ≤ 13 and c ∈ {1, 2, 3}, we omit the general estimates and use exact values for

a. We will provide details in case a = 3 and c = 2; the other cases proceed in a similar
fashion. We first note that direct calculation of the bounds in Lemma 2.1 with the same
parameters as previously, and with a = 3, c = 2, x > 347a/c, yields an initial upper
bound for n of the shape n < 446. For each prime n between 347 and 446 we apply
an algorithm of Pethő [35] (essentially nothing more than an analysis of convergents in
the infinite simple continued fraction expansions to n

√
b/a) to search for solutions to our

Thue inequality with x ≤ 10500. After a short computation, we find that the only such
solution is (x, y) = (1, 1). We may thus assume that x > 10500. Using this, (3.10) now
yields n ≤ 326, as desired. �

3.2. The hypergeometric method. Theorem 3.1 leaves us with only finitely many fixed
exponents to treat in (3.3). In this subsection, we will assume that n is either 4 or an odd
prime between 3 and 347. We first apply Lemma 2.2 to (3.3). Observe, that

max {axn, (a+ c)yn} ≥ a,

so if
a ≥ µncαn ,

then (3.3) has at most one solution. Put a0(n) = µn3αn . We remark here, that a0(3) =

22678753, a0(4) = 23943 and a0(n) ≤ 1103 for all other values of n. We thus need
consider (3.3) only with a ≤ a0(n). Note that (3.3) implies the inequality∣∣∣∣ n√1 +

c

a
− x

y

∣∣∣∣ ≤ 3

anyn
. (3.13)

To deduce an upper bound for y in (3.3) we combine (3.13) with Lemmata 2.3, 2.4 and
2.5. We thus have
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• for n = 3 :

y <

(
12 · κ(c) · 104λ3

n

) 1
n−λ3

,

• for n ∈ {4, 5, 7, 11, 13} :

y <

(
3 · 1010λ4

n

) 1
n−λ4

,

• for 17 ≤ n ≤ 347 :

y <

(
3C2

(
m
√
a+ c+ m

√
a
)m

an

) 1
n−λ1

.

If we assume that
(a, c) 6∈ {(1, 1), (1, 2), (1, 3), (2, 3)},

routine computations in MAPLE show that these bounds are less then 101000, except for
some “small”’ values of a and n, where we can appeal to PARI/GP to solve the corre-
sponding Thue equations directly. By a well known theorem of Legendre, we have that
in (3.3) the ratio x/y is a convergent in the continued fraction expansion of n

√
1 + c

a .
We can thus apply the aforementioned algorithm of Pethő [35] to compute all solutions
of the occurring inequalities. The exceptional cases here which do not satisfy the re-
quirements of Lemmata 2.3, 2.4 and 2.5 (again, all with “small” values of a and n) may
also be treated via PARI/GP. It remains to deal with the pairs

(a, c) ∈ {(1, 1), (1, 2), (1, 3), (2, 3)},

for n = 4 or prime n, 3 ≤ n ≤ 347. In case (a, c) = (1, 1), the desired result is an
immediate consequence of Proposition 5.1 of [13]; we find an additional solution with
n = 3 and (x, y) = (5, 4). Suppose next that (a, c) = (1, 3). The Diophantine equations

xn − 4yn = ±1,±2

can be shown to have no solutions in positive integers for n ≥ 3 by combining work of
Ribet [36] with elementary arguments, while

xn − 4yn = ±3

has no solutions in integers x and y with |xy| > 1, provided n has a prime divisor p ≥ 7

(see Theorem 1.2 of [15]). It remains, therefore, to treat inequality (3.3) with (a, c) =
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(1, 2) or (2, 3) and n ∈ {3, 4, 5, 7, 11, 13, 17}, and (a, c) = (1, 3), n ∈ {3, 4, 5}. We
appeal to PARI/GP and find no further nontrivial solutions to (3.3), unless (a, c, n) =

(1, 2, 3) (where there is the additional solution (x, y) = (3, 2)) or (a, c, n) = (2, 3, 3)

(where we have (x, y) = (19, 14)). This completes the proof of Case I.

Case II can be handled similarly. We can assume, for the remainder of the proof, that
for any positive solution (x, y) of (3.1), we have x ≥ 2. Denote by (x0, y0) a known
solution of (3.1). As previously, we may conclude from Lemma 2.2 that if max(x0, y0) is
larger than a computable constantXn, then the only positive solution of (3.1) is (x0, y0).
Hence, we have only to consider (3.1) with n ∈ {3, 4, 5} and with a given finite set X
of the pairs (x0, y0). By way of example, if a = 1 and n = 3, we have 2 ≤ x0 ≤ 283,
and determine by30 by factoring ax30 + t for t ∈ {±1,±2,±3}. In general, applying
Lemma 2.2 to our set of pairs X , we arrive at a finite set of possible pairs (a, b), with
corresponding finite set of Thue inequalities (really, in this case, equations) to solve. In
most cases, we can carry this out easily via the hypergeometric method. Assume that
(x0, y0) is given and that axn0 − byn0 = −t, with t ∈ {±1,±2,±3}. Then b can be
written as axn0 +t

yn0
and, after substituting this into (3.1), we find that∣∣∣∣axn − axn0 + t

yn0
yn
∣∣∣∣ ≤ 3.

Applying Lemmata 2.4 and 2.5, we are led to inequalities of the shape

c1
(x0y)λ

<

∣∣∣∣∣xy0x0y
− n

√
1 +

t

axn0

∣∣∣∣∣ ≤ 3 · yn0
a(x0y)n

,

where the constant c1 can be deduced from the statements of Lemmata 2.4 or 2.5. This
yields, in a similar fashion to Case I, that y is bounded by some absolute constant (usually
around 10500). From (3.1), ∣∣∣∣∣xy − n

√
b

a

∣∣∣∣∣ < 3

anyn

and hence, via Legendre’s theorem, we have that x/y is a convergent in the simple con-
tinued fraction expansion of n

√
b/a. Thus, we may again apply Pethő’s algorithm [35] to

compute all solutions of the corresponding inequalities. Repeating this procedure for all
(x0, y0) ∈ X , and using PARI/GP for some exceptional equations with small coefficients
which we are unable to handle via the hypergeometric method, we conclude that (3.1)
has at most one solution for each triple (a, b, n) in Case II. This completes the proof
of Theorem 1.4. Full details of these computations are available from the authors upon
request.
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4. Concluding remarks

Due to the limitations of the hypergeometric method and lower bounds for linear
forms in logarithms, it was necessary for us to solve a number of Thue equations of rela-
tively high degree (up to 31). We would like to express our thanks to Guillaume Hanrot
who wrote an extension of PARI which contains a new treatment of Thue equations based
on his paper [27]. In this paper, he showed that the knowledge of a subgroup of finite
index in the unit group is actually sufficient to solve Thue equations. With this software
we were able to solve Thue equations of quite high degree in a reasonable amount of
time and obtain a result independent of the Generalized Riemann Hypothesis.

It is worth noting that extremely careful application of the techniques of [10] would
enable one to replace the upper bound of n ≤ 347 in the definition of the exceptional set
T by n ≤ 53. To carry this out would be of practical interest only in the event that the
remaining lower degree Thue equations could be explicitly solved without dependence
upon the GRH to certify the putative fundamental units in the number fields encountered.

As a final note, the first author would like to acknowledge that Theorem 2.1 of [12],
which claims that (in the notation of the current paper) S2 is empty, overlooks the family
of equations of the shape xn−3yn = 2 which contribute to our set T3. This mistake was
due to an incorrect conductor calculation of a corresponding Frey curve. The first author
regrets any confusion caused by this.
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