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Abstract. Analytical solutions to integrals are far more useful than numeric, however, the former is not available in many 

cases. We evaluate integrals indicated in the title numerically that are necessary in some approaches in quantum chemistry. In 
the title, where R stands for nucleus-electron and r for electron-electron distances, the n, m= 0 case is trivial, the (n, m)= (1,0) 

or (0,1) cases are well known, a fundamental milestone in the integration and widely used in computational quantum 

chemistry, as well as analytical integration is possible if Gaussian functions are used. For the rest of the cases the analytical 
solutions are restricted, but worked out for some, e.g. for n, m= 0,1,2 with Gaussians. In this work we generalize the Becke-

Lebedev-Voronoi 3 dimensions numerical integration scheme (commonly used in density functional theory) to 6 and 9 
dimensions via Descartes product to evaluate integrals indicated in the title, and test it. This numerical recipe (up to Gaussian 

integrands with seed exp(-|r1|2), as well as positive and negative real n and m values) is useful for manipulation with higher 

moments of inter-electronic distances, for example, in correlation calculations; more, our numerical scheme works for 

Slaterian type functions with seed exp(-|r1|) as well. 

. 
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INTRODUCTION 
 

Below, we use common notations, abbreviations and definitions: CC= correlation calculations; CQC= 
computational quantum chemistry; DFT= density functional theory; GTO= primitive Gaussian type atomic orbits, 

the GAi in Eq.1; STO= primitive Slaterian type atomic orbits, that is, not RAi
2= |ri-RA|2 but RAi|ri-RA| in Eq.1; HF-

SCF= Hartree-Fock self consistent field; LC = linear combination; RA(RAx, RAy, RAz) or (xA, yA, zA)= 3 dimension 

position (spatial) vector of (fixed) nucleus A; RAB |RA-RB|= nucleus-nucleus distance; RAi |RA-ri|= nucleus-

electron distance; ri (xi,yi,zi)= 3 dimension position (spatial) vector of (moving) electron i; rij |ri-rj|= electron-
electron distance. 

For one-electron density, iri): Real3Real, the generally called one, two or three-electron Coulomb 

integrals (1)RC1
-nRD1

-mdr1, (1)(2)RC1
-nr12

-mdr1dr2 and (1)(2)(3)r12
-nr13

-mdr1dr2dr3 include the trivial case 

(n,m)=(0,0) reducing these to normalization ((1)dr1)i= Ni for i=1,2 and 3, resp., where N is the number of electrons 

in the system, and the well known and most important cases, (n,m)=(1,0) or (0,1) yielding the integrals (1)RC1
-1dr1 

and (1)(2)r12
-1dr1dr2 for main energy values nuclear-electron attraction and electron-electron repulsion, resp., 

(strictly these are called Coulomb integrals), as well as if is approximated with LC of GTO, analytical evaluation 
is possible [1-3]. For the rest of values among n, m= 0,1,2 along with using GTO, analytical evaluations are also 
possible [4-6], but for general values (non-integer or higher or even negative n and m or using STO) analytic 
evaluations are not known, and numerical integration is necessary and provided below. These integrals provide 
smaller but (mathematically) important energy (correction) values in CC, e.g. in the so called R12 theory among 
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many. As the analytical expressions are obviously different depending on (n, m) as well as the type (GTO, STO) 
used, the numerical integration scheme introduced is practically the same for integer, non-integer, positive or 
negative (n, m) as well as for GTO or STO. We test the numerical integration scheme for n, m=0,1,2 and GTO, 
where analytical integration is available [4-6], but the hypothesis is that the scheme works for all cases mentioned. 

Furthermore, integrals such as (1)(2)(3)(4)r12
-nr34

-mdr1dr2dr3dr4 break up to simpler elements 

((1)(2)r12
-ndr1dr2)((1)(2)r12

-mdr1dr2), etc. and fall into the cases discussed. 
The Coulomb energy between nuclei (index n) and electrons (index e) is calculated [1-3], for example, via DFT 

with integrals above using variable as Vne= NCZC(1)RC1
-1dr1 (an exact expression [2, 7] if is exact) and 

Vee(1/2)(1)(2)r12
-1dr1dr2, while the HF-SCF theory uses one real (non-imaginary) Slater determinant, S, 

as VneNCZCS2RC1
-1 and VeeS2r12

-1, where is for N spin-orbit full space dx1…drN., as well as similar 

expressions are used in configuration interactions methods [8]. (Notice that with W=1 from Eq.3: (N
2)S*Sdx1…dxN / 

(1/2)12dr1dr2 = (N-1)/N.) The real (exact) or a physically realistic model ≥0 (e.g. the HF level ground 

state 1S2ds1dx2…drN) can be approximated with an LC of GTO functions, using a well chosen GTO set 
{GAi}, where 

GAi(a,nx,ny,nz)(xi-RAx)nx (yi-RAy)ny (zi-RAz)nz exp(-a|ri-RA|2) (1) 

are the primitive Gaussians with a>0 and nx, ny, nz ≥0 benefiting its important property such as 

GAi(a,nx,ny,nz)GBi(b,mx,my,mz) is also (an LC of) GTO; even more, derivatives of GAi also preserves the form 

(breaking into an LC of GTO). The Coulomb interaction energies for molecular systems are expressed finally in LC 

of the famous elementary integrals GA1RC1
-1dr1 and GA1GB2 r12

-1dr1dr2., i.e. the energy integrals above reduce to 
these, for which the analytic evaluation [1, 7, 9-10] has been fundamental and a milestone in the history of CQC. 
However, in CC (which estimates the error of HF-SCF via DFT, for example), one way [10] among the few famous 
and important ones [1-3] uses the integrals 

GA1GB2GC3 W(1,2,3) dr1dr2dr3 (2) 

with weight 

W(1,2,3) RC1
-nRD1

-m, RC1
-nr12

-m or r12
-nr13

-m (3) 

as indicated in the main title. 
Integrals in Eqs.2-3 belong mathematically to general manipulations in certain ways of CC, particularly to e.g. 

the so called “explicitly correlated R12 theories (ECT) of electron correlation”, which bypass the slow convergence 

of conventional methods [1-2] by augmenting the traditional orbital expansions with a small number of terms that 

depend explicitly on the inter-electronic distance r12. However, only approximate expressions are available for 

general evaluation, for example, Eq.52 in ref. [11] suggests for Eqs.2-3 that <ijm|r12
-nr13

-m|kml>  p<ij|r12
-

n|pm><pm|r12
-m|kl>, where the bracket notation [1-2] is used along without reducing product GTO to single GTO, as 

well as the GTO basis set {p} for expansion has to be a “good quality” for adequate approximation; (notice that, 
particularly in ECT, for example, m=-n=1, because integrals with two negative powers in the distant operator do not 
occur). For particular n, m= 0,1,2 integers in Eqs.2-3, the mentioned refs. [4-6] provide analytical solutions for some 
other CC theories. Integrals in Eqs.2-3 would occur, e.g. in evaluations of matrix elements of the square of the 
Hamiltonian, such terms may occur when computing lower bounds to the energy. Furthermore, if derivatives appear, 

such as ((r1)/x1)pRC1
-ndr1, ((r1)/x1)p(r2)qr12

-ndr1dr2 or many other algebraic possibilities frequently used in 

CC, and is given as LC of GTO, evaluation of integrals in Eq.2 are fundamental building blocks in calculations, 
since not only the products, but the derivatives of GTO in Eq.1 are also GTO. In summary, the numerical integration 
scheme introduced is useful and works for any positive or negative (but not extremely large absolute) real values of 

n, m. 
 

The extension of numerical integration scheme from 3 to 6 and 9 dimensions 
 

The origin of the numerical integration scheme comes from Becke’s recommendation for radial [12] and 

Lebedev’s method for spherical [13-14] distribution, as well as the concept of Voronoi polygons to portion the 

molecular frame. For one-electron density, having shape as LC of GTO in Eq.1, this scheme falls into the simple 

form 

f(1)dr1 k=1,…,L ck f((qk)) , (4) 

where the set {ck,qk} is a specially chosen characteristic weight and coordinates in 3 dimensional space to estimate 

accurately the integral in the left hand side. Typical choices for L=LrLs include Lr= 20,...,200 radial points (ala 

Chebyshev) and Ls=20, 86, 302 spherical points (ala Lebedev), and since these are known [12-14], the procedure for 
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numerical integration in Eq.4 is well defined, as well as widely tested in CC via DFT in CQC. The {ck,qk} is 
generated by a well defined algorithm [12-14] around all atoms (radially and spherically) in the molecular system. 

The f in Eq.4 are special functions for CC [2-3, 7, 10] in current DFT methods, typically nonlinear in , so 
analytical integration is generally not available. However, Coulomb related energies as 

123W(1,2,3)dr1dr2dr3 = gGA1GB2GC3W(1,2,3)dr1dr2dr3 in R12 theories for CC (e.g. Eq.3) or the total 

Coulomb energy (W= RC1 or r12
-1) itself is linear in (i), wherein can be well approximated in post-HF-SCF theory 

with LC of primitive GTO using that GTO times GTO are also GTO, (g refers to this expansion including the 

coefficients), and it falls into terms in Eqs.2-3. But still, in this form, depending on W, analytical integrals are 
generally not available, except in some (n, m=0, 1, 2) cases [4-6, 9]. Even analytical form exists, the number of the 

GTO and computation steps in g can be huge [15] depending on  in spite of the many tricks [9, 15] used. 

However, in comparison to Eq.4 the k contains the same number of terms independently of , we say, the scheme 

introduced is practically the same for all W: The main idea of this work is the generalization of Eq.4 and test 

f(123)dr1dr2dr3 A,B,C cAcBcC f((qA),(qB),(qC)), (5) 

particularly, for 

f= 123W(1,2,3). (6) 
If W= W(1)W(2)W(3), most simply W=1 or e.g. W=RD1

-3RE2
4, etc., Eq.5 reduces to product of three ones in Eq.4. 

Eq.5 is the extension of Eq.4 from 3 to 9 dimensions, extension to 6 dimension case (f(12)dr1dr2) is 

obviously a back reduction of Eq.5 to sum A,B. 

Important is that set {ck,qk} in Eq.4 is the same kind (or exactly the same) in Eq.5, but combining each element 

to each as triplets, coming from the fact that iis the same 3 dimensional one-electron density for the 9 dimension 
integral in Eq.5. Simply, A, B and C run for the same 1,2,…,L points, so Eq.5 contains L2 terms (for case 

f(12)) or L3 (for case f(123)) to calculate. There are two reasons to choose different point sets {ck,qk} 

for the two (i=1,2) or three (i=1,2,3) variables ri: 1.: A choice is to reduce the computation task, that is, if L=LsLr is 

not the same, for example for r1 and r2, the larger point set (larger mesh) provides finer numerical integration for 
that variable in the integrand in Eq.5 if necessary, determined by f. 2.: Another reason is a must: Important technical 
issue is that if W contains reciprocal distance, e.g. r12

-n with n>0, as a frequent case, the r12=|qA-qB|=0 for some A=B 
indexes in the sum blows the reciprocal value up; (which is not problem if n≤0). In this case, two different kinds of 
point sets must be chosen. It means that, around an atom the same spherical mesh (ala Lebedev) is picked up in 
slightly different radius (ala Chebyshev) for r1 vs. r2, or two different spherical meshes with the same radius: 

Technically, the Ls value of spherical (or angular) points is picked automatically (from 20, 86 or 302) by the atom 
types (atomic number Z) as suggested by ref.[16] based on practical reasons in CQC, (although in principle it can be 
an independent choice, as well as Lr can also be made automatic [16]), so one can tackle with the value of Lr radial 

points, e.g. L=Ls(automatic)Lr(=20…200) can be chosen as L1= 200Ls(automatic) and L2= 190Ls(automatic), to 

generate the sets as {cL1
A,qL1

A} for r1 and {cL2
B,qL2

B} for r2, so possibly r12 ≠0 for any (A=B and A≠B) spatial point 

pair; if accidentally the overlap set is still not empty, that is {cL1
A,qL1

A}{cL2
B,qL2

B}≠ 0, one can tune Lr to 180, etc.; 

keeping in mind that larger Lr yields slightly more accurate numerical integration. 

We make a note on a first correction or factorization in relation to the important Eq.6 to improve the accuracy. 
Eqs.5 and 6 yield 

123W(1,2,3)dr1dr2dr3 A,B,C cAcBcC (qA)(qB)(qC) W(qA,qB,qC) (7) 
for the main title of this work. (If e.g. W=r12

4 r13
5 in Eq.3, then in Eqs.5-7 it means W=|qA-qB|4|qA-qC|5.) If W=1, 

Eq.7 reduces to N3= (1dr1)3= 123dr1dr2dr3 A,B,C cAcBcC (qA)(qB)(qC)= 

(A cA (qA))3 = (0.995 N)3= 0.985 N3, if the same mesh is used, as well as if we have in the far right that the 
numerical integral makes, let say, 1-0.995= 0.005= 0.5% error via Eq.4, and as a consequence, the final error 
increases to 1-0.985= 1.5% error via Eq.5. Dividing these two equation yields 

123W(1,2,3)dr1dr2dr3

[1dr1/AcA(qA)]3 A,B,CcAcBcC(qA)(qB)(qC)W(qA,qB,qC). (8) 

For the right side, the 1dr1 can be evaluated analytically in practice, because it is LC of GTO in Eq.1, more it is 

generally normalized to N. In the square bracket the ratio is 1 if Eq.4 is 100% accurate, (as well as if W=1 in Eq.8, it 
becomes trivially equal). One must keep in mind that Eq.8 supposes that same mesh is used for all three variables. If 

three different meshes are chosen (see above), more, three different densities (distinguished by indexes as in 
the test Table 1 below), the factor is 

[ 1dr1 1dr11dr1 /( AcA(qA) BcB(qB)CcC(qC) )], (9) 
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where the indexes A, B and C represent the three (generally different) meshes for variables r1, r2 and r3. Since the 
triple sum increases the number of points to calculate, see L3 above, this factorization may allow reducing the value 
for L (or particularly for one or two among L1, L2 and L3). The reduction of 9 dimension (Eqs.8-9) to 3 

(1W(1)dr1) and 6 (12W(1,2)dr1dr2) dimension is straightforward. 
Jumping from 3 (Eq.4) to 6 and 9 dimensions (Eqs.5-6) increases the time of computation (L to L2 and L3 terms 

in sum). An approximate reduction from 9 to 6 is as follow: ABf(A)g(B)= Af(A)Bg(B) cannot be done if f and g 

are coupled via a W, so e.g. approximation in ref.[11] can be formulated here as e.g. 123r12
nr13

m dr1dr2dr3 

 F(12r12
ndr1dr2 F(13r13

m dr1dr3, etc., where F should be wisely chosen (e.g. F= 1/2), a rougher 
approximation than the relatively accurate mesh {ck,qk} which is used for the product in right side, but the 
computation is not to sum up L3 terms but only 2L2. 
 

Test of the numerical integration scheme for 6 and 9 dimensions 
 

We test the accuracy of Eqs.5-8 for 1.: Elementary cases in Eqs.2-3, where analytical integral formulas are 

known [4-6, 9]. This is a very strong test in view of Eq.6, because in that case f is linear in i, and is also about 
LC of the primitive GTO in Eq.1, so the left hand sides of Eqs.5-8 reduce to Eq.2 in accuracy test. 2.: HF-SCF/basis 

optimized Slater determinant, S=S0, and ground state one-electron density, =0,HF, yields Vee
HF(N(N-1)/2)S*S r12

-

1  Vee
DFT,main term(1/2)12r12

-1dr1dr2, both approximates the true electron-electron repulsion energy with 
correlation and basis set error, but in principle they are not equal; the analytical evaluation of the former correlates 
to the numerical evaluation of the latter. Notice that with normalization properties and without weight W=r12

-1, the 

ratio (N(N-1)/2)S*S / (1/2)12dr1dr2 = (N(N-1)/2)/ ((1/2)N2)= (N-1)/N 1 if N . One can test for value 

(N-1)/N with Vee
HF (with S from HF-SCF/STO-3G and analytical Eq.2) vs. Vee

DFT,main term (with from HF-
SCF/STO-3G and numerical Eqs.5-8), both with W=r12

-1. Positive tests validate the scheme or procedure in Eq.5 for 
the main title of this work. 

Numerical integration scheme in Eq.4 is widely used in DFT integration. When f(1) is (LC of) primitive GTO 

(Eq.1), and analytical integral is available for the left side of Eq.4, the numerical integration (right side of Eq.4) 

follows it up to many decimal digits, and the hypothesis is that if f(1) functions are nonlinear functions of and 

analytic integration is not available, the Eq.4 still works, as experienced in CQC for CC. In our case, our hypothesis 
is the same for Eq.5, even though we have tested Eq.6 only. 

Another extension is that, 1.: If not GTO, but STO is used, the analytical evaluation is far more difficult for Eq.2, 

almost impossible, except for very elementary cases. A simple escape route is to use the approximation exp(-p|r1-

RP|)(i)ciGP1(ai,0,0,0), which is well known in molecular structure calculations, see the idea of STO-3G basis sets 
[3] and higher levels in which one does not even need many terms in the summation, so GTO are evaluated 
analytically if possible instead of STO, but in fact in this way, one loses the full analytical evaluation of the original 
task, however for full numerical integration this is obviously unnecessary. In summary, focusing on the practically 

important Eqs.3, 5 and 6: a.: If  is LC of STO, then analytical integration is almost impossible, b.: If  is LC of 

GTO, then analytical integration is available for integer n, m=0,1,2 [4-6, 9], c.: If is LC of STO or GTO, then the 
numerical scheme in Eqs.7-9 works for any positive or negative real value n and m, (of course, for very large |n|, |m| 
>> 2-4 values, the radial and spherical schemes reported in refs.[12-14] are not high level enough and needs to be 

evaluated for). 2.: For our numerical integration the n and m can be negative in Eq.3 as well. (Notice that, if W= r12
-n 

in Eq.3 Eq.2 factorizes to three for easy analytical evaluation if n=-2, but do not if n=-1, for example, etc.) 

Eqs.7-9 work if is an LC (more, a product of LC’s, since STO does not preserve the form of product) of either 

GTO or STO. We make a note on the opportunity to use STO via Eqs.7-8 in post HF-SCF calculations as alternative 

to GTO. (In HF-SCF, 1.: The W= RC1
-1 and r12

-1 multipliers and differential operators (, /x1) come up only in the 

integrals, 2.: In CQC the STO is more realistic than GTO, 3.: GTO is used because GTO preserves the form of 

products, but STO does not, so analytical integration is possible with GTO. However, with Eqs.7-9 all the HF-SCF 

integrals can be evaluated numerically for both, STO and GTO. 4.: In the concept of e.g. STO-3G, 6-31G**, etc. 

basis sets, the STO is approximated with 3, 6, etc. GTO.) If all analytical integrals are replaced with numerical via 

the 3 and 6 dimension versions of Eqs.7-9, smaller basis set could be enough. It provides fewer LCAO parameters 

and smaller Hamiltonian matrix, which reduces the computation time and increases the computation stability, 

finally, allowing for calculating larger molecular systems. 
In the test we have chosen the magnitude of GTO exponents from STO-3G basis set of hydrogen (H, 

3.4252509D+00,     6.2391373D-01,     1.6885540D-01)     and     carbon     (C,     7.1616837D+01,     1.3045096D+01, 
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3.5305122D+00) atoms, that is, p, q:=0.3, 1, 3, 15, 70 with RPQ:= bond (1 A), van der Waals (4 A) and far away (10 

A) magnitude lengths ( 2, 8, 20 bohr) and RP:=(0,0,0). The STO exponents have come from atomic orbits 
containing exp(-Z|r1|/n) with Z=1, 6 for H and C with quantum numbers n=1-3, i.e. p, q:= 0.3, 1, 3, 6 scans Z/n. 

Boys functions [4-6]: FL(v)(0,1) exp(-vw2)w2Ldw, L=0,1,2,…, v>0 or v≤0 and 2vFL+1(v)= (2L+1)FL(v) – exp(-v). 
High (Lr=100, 102) medium (50, 52, 54) and low (20, 22, 24) radial meshes were tested for (r1, r2, r3) on a 1400.000 
MHz CPU machine. 

 

TABLE 1. Comparison of analytical and numerical integration 
_________________________________________________________________________________________ 

 

100(1-(numerical/analytical))= % error by Eqs.7-9 using 

any of RQ= (d,0,0) and RS= (0,d,0) with d= 0, 2, 8, 20, 

and any of p, q, s = 0.3, 1, 3, 15, 70 for GTO 

or any of p, q = 0.3, 1, 3, 6 for STO. 

|% error| 

by Eq.7: 

Lr=20, 22, 24 

Lr=50, 52, 54 
Lr=100, 102 

Integral value 

|% error| 

by Eqs.8-9: 

Lr= 20, 22, 24 

Lr= 50, 52, 54 

Lr=100, 102 

__________________________________________________________________________________ 

Trivial case: product of primitive spherical GTO and W=1 

(R6) exp(-p RP1
2) exp(-q RQ2

2) dr1dr2 = 

(R3) exp(-p RP1
2)dr1 (R3) exp(-q RQ2

2)dr2 = 

/(pq)3/2 (=/p3 if p=q) vs. Eqs.7-9. 

10-1-10-4 

10-6-10-9 

10-6-10-10 

103-10-4 

0.0 (trivial) 

0.0 (trivial) 

0.0 (trivial) 

Trivial case: product of primitive spherical STO and W=1 

(R6) exp(-p RP1) exp(-q RQ2) dr1dr2 = 

(R3) exp(-p RP1)dr1 (R3) exp(-q RQ2)dr2 = 

64/(pq)3 (=64/p6 if p=q) vs. Eqs.7-9. 

1-10-5 

10-3-10-9 

10-4-10-9 

106-10-9 

0.0 (trivial) 

0.0 (trivial) 

0.0 (trivial) 

Elementary case: one-electron spherical GTO 

(R3) exp(-p RP1
2) RQ1

-1 dr1= (2/p) (0,1) exp(-p RQP
2 w2)dw =(2/p)F0(v), 

vp RQP
2, [9] vs. Eqs.7-9. 

1-10-4 

1-10-7 

10-2-10-8 

20-5*10-4 

1-10-8 

1-10-10 

10-2-10-10 

Elementary case: one-electron spherical GTO 

(R3) exp(-p RP1
2) RQ1

-2 dr1= (23/2/p1/2) (0,1) exp(p RQP
2 (w2-1))dw= 

(23/2/p1/2)e-vF0(-v), vp RQP
2,[4-6] vs. Eqs.7-9. 

0.5-10-2 

0.1-10-3 

0.1-10-3 

20-2*10-5 

0.5-10-3 

0.1-10-3 

0.1-10-3 

Elementary case: two-electron spherical GTO 

(R6) exp(-p RP1
2) exp(-q RQ2

2) r12
-1 dr1dr2= 

(2/(pq)) (0,c) exp(-pqRPQ
2 w2)dw, c(p+q)-1/2, [9] vs. Eqs.7-9. 

4-10-4 

4-10-8 

4-10-9 

5*102-5*10-6 

4-10-10 

4-10-10 

4-10-9 

Elementary case: two-electron spherical GTO 

(R6) exp(-p RP1
2) exp(-q RQ2

2) r12
-2 dr1dr2= 

23(pq)-1/2(p+q)-1(0,1) exp(v(w2-1))dw = (23(pq)-1/2(p+q)-1)e-vF0(-v), 

vpqRPQ
2/(p+q), [4-6] vs. Eqs.7-9. 

5-10-5 

5-10-6 

5-10-6 

5*102-10-5 

5-10-6 

5-10-6 

5-10-6 

Elementary case: two-electron spherical GTO 

(R6) exp(-pRP1
2) exp(-qRQ2

2) RS1
-1r12

-1dr1dr2= 

(4/q)(0,1)F0(|pRP+qu2RQ –gRS|2)g-1exp(-f/g)du, 

fpqRPQ
2u2 and gp+qu2, [4-6] vs. Eqs.7-9. 

5-0.01 
5-0.001 

5-0.001 
5*102-10-6 

5-0.01 

5-0.001 

5-0.001 

Elementary case: three-electron spherical GTO 

(R9) exp(-p RP1
2) exp(-q RQ2

2) exp(-s RS3
2)r12

-1r13
-1 dr1dr2dr3 = 

(4/(qs))(0,1)(0,1) g-3/2exp(-f/g)dudt, 

fpqRPQ
2u2+psRPS

2t2+qsRQS
2u2t2, gp+qu2+st2, [4-6] vs. Eqs.7-9. 

1-10-4 

- 
- 
8*103-10-9 

1-10-5 

- 

- 

_________________________________________________________________________________________ 

 
Conclusion from the Table 1: Few radial points (Lr=20) compete with larger ones in numerical integration, good 

for reducing computation time, but notice that, the analytical expression is one equation with a few operations in 
contrast to (LrLs)m in numerical integration by Eqs.4-9 (m=1,2,3). The W in Eq.3 can deform the angular and radial 
symmetry if W≠1 in ways that may decrease the numerical accuracy, however, the situation is the same in general 
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FIGURE 1. From the 1st, 5th and 6th lines of 

the Table 1 with RPQ=0 (F0(0)=1), the 

analytical expressions in the range n[0,2] are 

(R6) exp(-p RP1
2) exp(-q RP2

2) r12
-n dr1dr2= 

(pq)-3/2      if n=0, 2(pq)-1(p+q)-1/2 if n=1 and 

23(pq)-1/2(p+q)-1 if n=2. Other values can be 

calculated numerically with Eq.7 as plotted with, 

let say, (p, q)= (0.3,70) and Lr = 20, 22. 

 

 

CC via Eq.4. Most importantly, the numerical integration scheme above is acceptable until analytical integration is 

not available and recommended e.g. in CC. Figure 1 shows some intermediate values for exponents in Eq.3. 
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