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Abstract

We prove that a Moufang plane with the Fano property satisfies the
Newton property if and only if it is a Pappian projective plane.

1 Preliminaries

Throughout the paper we follow the conventions and notation of our earlier
paper [7], where the necessary background material concerning projective planes
is also summarized.

Let R be a set and +, · be binary operations on R such that

• (R,+) is a commutative group with zero element 0;

• a · 0 = 0 · a = 0 for all a ∈ R;

• (R\{0} , ·) is a loop;

• a · (b + c) = a · b + a · c (a, b, c ∈ R);

• (a + b) · c = a · c + b · c (a, b, c ∈ R);

• a · (a · b) = (a · a) · b (a, b ∈ R);

• a · (b · b) = (a · b) · b (a, b ∈ R).

Then (R,+, ·) is called an alternative division ring. In the following we will
write simply ab instead of a · b. We denote the unit of (R\{0} , ·) by 1. In
every alternative division ring for all a ∈ R\{0} there are a′, a′′ ∈ R such that
aa′ = 1, a′′a = 1, and a′ = a′′. This element is called the inverse of a and is
denoted by a−1.

By a difficult theorem of Bruck-Kleinfield [1] and Skornyakov [4], an alterna-
tive division ring either is associative or is a Cayley-Dickson algebra over some
field. From this it follows that in every alternative division ring we have the
inverse property
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a(a−1b) = (ba−1)a = b for all a ∈ R\{0} , b ∈ R,

since this holds in every Cayley-Dickson algebra.

The incidence structure (P,L, I), where

• P := {[x, y, 1], [1, x, 0], [0, 1, 0] | x, y ∈ R};

• L := {〈a, 1, b〉 , 〈1, 0, a〉 , 〈0, 0, 1〉 | a, b ∈ R};

• ([x, y, z], 〈a, b, c〉) ∈ I if and only if xa + yb + zc = 0

is a projective plane called the projective plane over the alternative division ring
R.

A projective plane is called a Moufang plane, if it satisfies the Little Desar-
gues Property, i.e., if two triangles ABC and A′B′C ′ are centrally perspective

from a point O, and the points
←−→
AB∩

←−−→
A′B′,

←−→
BC ∩

←−−→
B′C ′ and O are collinear, then

the triangles are also axially perspective. A projective plane is a Moufang plane
if and only if it can be coordinatized by an alternative division ring, i.e., it is
isomorphic to a projective plane over an alternative division ring. For a proof
see [3] or [6].

A Moufang plane is Desarguesian if and only if the coordinatizing alternative
division ring R is associative, i.e., a(bc) = (ab)c for all a, b, c ∈ R, and hence R
is a skewfield. A Desarguesian plane is Pappian if and only if the coordinatizing
skewfield K is commutative: for all a, b ∈ K ab = ba holds. By a theorem of Bruck
(see [5]) if an alternative division ring is commutative, then it is associative.
This implies that a Moufang plane is Pappian if and only if the coordinatizing
alternative division ring R is commutative.

The Artin-Zorn theorem ([3]) states that every finite alternative division
ring is a skewfield, so it follows that every finite Moufang plane is Desarguesian.
Also, by Wedderburn’s theorem, every finite skewfield is a field, therefore every
finite Moufang plane is Pappian.

It can be shown (see e.g. [6]) that the collineation group of a Moufang
plane acts transitively on four-points: if (A1, A2, A3, A4) and (A′1, A

′
2, A

′
3, A

′
4)

are quadruples of points in general position (i.e., no three of them are collinear),
then there is a collineation that sends Ai to A′i for all i ∈ {1, 2, 3, 4}. From this
it follows that for any Moufang plane the coordinatizing ring can be chosen such
that the coordinates of four given points in general position are [1, 0, 0], [0, 1, 0],
[0, 0, 1], [1, 1, 1].

The concept of cross-ratio is generalized to the case of Moufang planes in [2].
If A[a1, a2, 1] and B[b1, b2, 1] are points in a projective plane over an alternative

division ring R, then the points of the line
←−→
AB are of the form

[t(a1, a2, 1) + (1− t)(b1, b2, 1)] (t ∈ R)
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or [1, x, 0]. Thus the points of
←−→
AB can be identified by the elements of R∪{∞},

where [1, x, 0] is identified with (∞), and any other point of
←−→
AB is identified in

an obvious way with (t).
If A, B, C, D are collinear points identified by a, b, c, d ∈ R, then

(ABCD) := ((a− d)−1(b− d))((b− c)−1(a− c)).

If one of the points is identified by (∞), then the cross-ratio is defined as follows:

(∞BCD) := (b− d)(b− c)−1 ; (A∞CD) := (a− d)−1(a− c);

(AB∞D) := (a− d)−1(b− d) ; (ABC∞) := (b− c)−1(a− c).

In [2] it is shown that in a Moufang plane four collinear points form a harmonic
quadruple if and only if their cross-ratio is −1.

In a Desarguesian projective plane for any triple of distinct collinear points
(A,B,C) there is a unique point D, called the harmonic conjugate of C with
respect to (A,B), such that (ABCD) is harmonic. We call this property the
uniqueness of the fourth harmonic point. In [6] it is shown that it is not necessary
to suppose the Desargues property: in a projective plane the uniqueness of the
fourth harmonic point holds if and only if the plane is a Moufang plane with
the Fano property.

We recall that a projective plane satisfies the Newton property if the following
holds:

(N) Let abcd be a complete quadrilateral and l be a line. If P , Q and R are the
intersections of l and the diagonals of abcd, then the harmonic conjugates
of P , Q and R with respect to the corresponding vertices are collinear.

In our previous paper [7] we have proved that a Desarguesian plane satifying
the Fano axiom has the Newton property if and only if it is Pappian. Since the
uniqueness of the fourth harmonic point holds in every Moufang plane with the
Fano property, the Newton property has meaning in Moufang planes with the
Fano property. So it is natural to ask whether this theorem can be generalized to
Moufang planes. We answer this question affirmatively and prove the following
theorem.

Theorem 1.1 A Moufang plane with the Fano property satisfies the Newton
property if and only if it is Pappian.

2 Proof of the main theorem

In this section we will use the notation of the figure above. We have to prove that
P ′, Q′ and R′ are collinear if and only if the given Moufang plane is Pappian.
The Moufang plane can be coordinatized by an alternative division ring R. By
our previous remarks it is enough to prove that P ′, Q′ and R′ are collinear if
and only if R is commutative.
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Figure 1: The Newton property

We choose the coordinates such that A = [0, 0, 1], B = [1, 1, 1], C = [1, 0, 0],
D = [0, 1, 0]. Then easy calculations show that M = [0, 1, 1], N = [1, 1, 0]. The
point P is [k, 0, 1] and Q is [1, l + 1, 1] for some k, l ∈ R\{0}.

Next, we calculate the coordinates of the point R. This point lies on the line
←−→
PQ. The coordinates of

←−→
PQ are 〈a1, 1, c1〉 such that

ka1 + c1 = 0

and
a1 + (l + 1) + c1 = 0.

If k = 1, then for all l ∈ R, kl = lk = −1. Otherwise, from these equations we
get

a1 = (k − 1)−1(l + 1)

and
c1 = −k[(k − 1)−1(l + 1)],

thus
←−→
PQ is the line

〈
(k − 1)−1(l + 1), 1,−k[(k − 1)−1(l + 1)]

〉
. A simple calcu-

lation shows that the line
←−→
MN is 〈−1, 1,−1〉. So for the coordinates [r1, r2, 1]

of R we have the following system of equations:

−r1 + r2 − 1 = 0

r1[(k − 1)−1(l + 1)] + r2 − k[(k − 1)−1(l + 1)] = 0

}
.
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From this we find that R = [r1, r1 + 1, 1], where

r1 = (k[(k − 1)−1(l + 1)]− 1)[(k − 1)−1(l + 1) + 1]−1.

If (k− 1)−1(l + 1) + 1 = 0, then an easy calculation shows that k = −l, whence
kl = lk = −k2.

Now we want to calculate the coordinates of the point P ′. On the line
←→
AC

the points A, C and P are identified by (0), (∞) and (k), respectively. So P ′

is identified by (p′) such that (−p′)−1(−k) = −1. Thus p′ = −k, and therefore
P ′ = [−k, 0, 1]. Similarly we get that Q′ = [1, 1 − l, 1]. And finally, on the line
←−→
MN the points M , N , R, R′ = [r′1, r

′
1 + 1, 1] are identified by (0), (∞), (r1) and

(r′1), so

r′1 = −r1 = −(k[(k − 1)−1(l + 1)]− 1)[(k − 1)−1(l + 1) + 1]−1.

The Newton property holds if and only if P ′, Q′ and R′ are collinear. We

calculate the coordinates 〈a2, 1, c2〉 of the line
←−−→
P ′Q′. Since P ′ is on this line,

−ka2 + c2 = 0,

and Q′ is also on the line, so

a2 + 1− l + c2 = 0.

If k+ 1 = 0, then k = −1, thus for any l ∈ R, we have kl = lk = −l. Otherwise,

from this system of equations we obtain that the coordinates of
←−−→
P ′Q′ are〈

(k + 1)−1(l − 1), 1, k[(k + 1)−1(l − 1)]
〉
.

The point R′ = [r′1, r
′
1 + 1, 1] is on this line if and only if

r′1[(k + 1)−1(l − 1)] + r′1 + 1 + k[(k + 1)−1(l − 1)] = 0.

If 1 + [(k + 1)−1(l − 1)] = 0, then easy calculation shows that k = −l, thus
kl = lk = −k2. Otherwise, we get that P ′, Q′ and R′ are collinear if and only if

r′1 = −(1 + k[(k + 1)−1(l − 1)])(1 + [(k + 1)−1(l − 1)])−1.

It follows that in a Moufang plane the Newton property holds if and only if for
any k, l ∈ R\{0}

[k[(k − 1)−1(l + 1)]− 1][(k − 1)−1(l + 1) + 1]−1 =

= [1 + k[(k + 1)−1(l − 1)]][1 + [(k + 1)−1(l − 1)]]−1 (1)

holds. In the cases k = −l, k = −1, l = −1, and k = 1 mentioned above, the
commutativity holds trivially.

Let
a := (k − 1)−1(l + 1)
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and
b := (k + 1)−1(l − 1).

Then we get l + 1 = (k − 1)a and l − 1 = (k + 1)b, so

(k − 1)a− 1 = (k + 1)b + 1. (2)

If a = b, then

(k − 1)−1(l + 1) = (k + 1)−1(l − 1),

(k + 1)(k − 1)−1 = (l − 1)(l + 1)−1,

(k − 1 + 2)(k − 1)−1 = (l + 1− 2)(l + 1)−1,

(k − 1)(k − 1)−1 + 2(k − 1)−1 = (l + 1)−1 − 2(l + 1)−1,

(k − 1)−1 = −(l + 1)−1

shows that k = −l, so kl = lk holds. Otherwise, (2) gives

k = ((a + 1) + (b + 1))(a− b)−1. (3)

With our notation, equation (1) takes the form

(ka− 1)(a + 1)−1 = (kb + 1)(b + 1)−1.

From this we obtain

(ka)(a + 1)−1 − (a + 1)−1 = (b + 1)−1 + (kb)(b + 1)−1. (4)

Here, using the inverse property,

(ka)(a + 1)−1 = (ka + k − k)(a + 1)−1 = [k(a + 1)− k](a + 1)−1

= [k(a + 1)](a + 1)−1 − k(a + 1)−1 = k − k(a + 1)−1.

Similarly,
(kb)(b + 1)−1 = k − k(b + 1)−1,

so equation (4) is equivalent to the following:

k[(b + 1)−1 − (a + 1)−1] = (a + 1)−1 + (b + 1)−1.

If (b+ 1)−1− (a+ 1)−1 = 0, then a = b. As we have already shown, in this case
k = −l. Otherwise we get

k = [(a + 1)−1 + (b + 1)−1][(b + 1)−1 − (a + 1)−1]−1.

Taking (3) into account we find that

((a + 1) + (b + 1))(a− b)−1 = [(a + 1)−1 + (b + 1)−1][(b + 1)−1 − (a + 1)−1]−1.
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Introduce the notation s := a + 1 and t := b + 1. Then the Newton property is
equivalent to

(s + t)(s− t)−1 = (s−1 + t−1)(t−1 − s−1)−1, (5)

for all s, t ∈ R.
Taking into account that

(s + t)(s− t)−1 = (s− t + 2t)(s− t)−1 = 1 + 2t(s− t)−1,

and, similarly,

(s−1 + t−1)(t−1 − s−1)−1 = 1 + 2s−1(t−1 − s−1)−1,

it follows that (5) is equivalent to

t(s− t)−1 = s−1(t−1 − s−1)−1.

Multiplying both sides by s from the left and by (s− t) from the right we obtain

st = (t−1 − s−1)−1(s− t).

Multiplying both sides by (t−1 − s−1) from the right we get

(t−1 − s−1)(st) = s− t,

t−1(st)− s−1(st) = s− t.

By the inverse property s−1(st) = t, our last relation can be written equivalently
as follows:

t−1(st)− t = s− t,

t−1(st) = s,

and finally,
st = ts.

For all s, t ∈ R, there are a, b ∈ R such that s = a + 1 and t = b + 1: a = s− 1
and b = t−1. We verify that for all a, b ∈ R (a 6= b) there are k, l ∈ R such that

a = (k − 1)−1(l + 1)

and
b = (k + 1)−1(l − 1).

Indeed, our equations give

(k − 1)a = l + 1 (6)

and

(k + 1)b = l − 1. (7)
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Expressing l from both equations we get

(k − 1)a− 1 = (k + 1)b + 1,

k(a− b) = a + b + 2,

k = (a + b + 2)(a− b)−1.

Substituting k into (6) we find that

l = [(a + b + 2)(a− b)−1 − 1]a− 1.

We verify that the pair (k, l) so obtained also satisfies (7). Indeed,

[(a + b + 2)(a− b)−1 + 1]b = [(a + b + 2)(a− b)−1 − 1]a− 2,

[(a + b + 2)(a− b)−1](a− b) = a + b + 2,

and this holds by the inverse property.
Thus we conclude that every (k, l) ∈ R×R can be written in the form (s, t),

so from the proved equality st = ts, it follows that kl = lk, for all k, l ∈ R.
Therefore, we have shown that the Newton property is equivalent to the com-
mutativity of R, and hence, by our previous remarks, to the Pappos property.
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