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Abstract

By the use of interval methods it is proven that there existsrestable periodic solution to the damped and periodically
forced pendulum around the upper equilibrium. Itis alsosprhthat this solution can be stabilized by a control which
does not need the knowledge of values of the state variabtex the unstable periodic solution.
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The mathematical pendulum is the most investigated dyrarsystem. (Google Scholar gives 184 tousend hits
for “mathematical pendulum”.) It has served as a simple rapidal model for important nonlinear phenomena from
oscillations to chaos. J. Hubbard stated that the dampeddanathematical pendulum is chaotic [7, 8]. Recently
it was proven that in fact this is the case [2, 4]. The presapep shows that its upper unstable limit cycle — that
bifurcates from to the upper unstable equilibrium pointhaf tinforced damped pendulum and that causes the chaos—
can be stabilized by a simple control that is based on the kreviodic limit cycle. This control does not depend
directly on the position and velocity of the pendulum.

1. The damped forced pendulum

1.1. The equation of motion

In this paper a pendulum damped by viscous friction is careid, which is a mechanical system with one degree
of freedom. A point like particle with the mass of hangs on a weightless, rigid rod with the lengthl ¢éee on
Figure 1). This means that the point like particle is able tivenalong a circle of radius of There are three forces
affecting the examined pendulum. One of them is the gravity thithacceleration constagt affecting vertically
downwards. The other one is the damping, the magnitude aftwikiproportional to the velocity of the point, and
it's direction is opposite to the direction of the velocity;> 0 denotes the damping dieient. The third force is a
periodic external forcé cost (A > 0 is a constant). According to Newton’s second law, undeirtfieence of these
forces the system can be described by a second orfileratitial equation:

mixX’ = -mgsinx — yIx’ + Acost, Q)

wherex is the angle of the pendulum measured from the vertical aottentvard anticlockwise, ang is the angle
velocity. The values of the parameters will be chosen sowleajet the equation

X’ = —sinx — 0.1x" + cost.
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Figure 1: The forced damped pendulum.

These parameters are those used in the original paper ofafaibishich allow the chaotic behaviour (see [7, 8]). This
will be the equation of interest of the present study. It iswn from previous results of the related literatures [7, 8]
that the numerical solutions of this kind of systems are @emysitive to perturbations in the initial values at certain
places of the state plain. Solutions started from similgiesand a little bit dferent angular velocities can be seen
in Figure 2.
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Figure 2: Some trajectories of the forced damped pendulum.

The above equation can also be rewritten into the system

X1 = Xo,

(2)

X, = —sinx; — 0.1%; + cost,

wherex; is the angle of the pendulum whilg is the angular velocity.

1.2. The Poincaré map and periodic solutions

The following lemma says that the forced damped pendulusd@hot have 2-periodic solutions of arbitrarily
large and small initial values of the velocity.

Lemma 1. Ift — (y1(t), ¥2(t)) is a 2n-periodic solution of(2), then|y,(0)| < 10.1.

Proor. By the formula of the variation of constants (see, e.g),\\# have

t
Yo(t) = €01y, (0) — e O f e*15(siny(s) — coss)ds  (teR),
0
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therefore or
(% — 1) y2(0) = - f e®15(siny(s) - coss) ds: 3)
0

Integration and the Wallis formula

X
feax cosbxdx = % (bsinbx+ acosbx) + const.

yield the estimate

' fo ” €*15(siny(s) — coss) ds‘ < (" -1) (10+ 1%11). (4)

From (3) and (4) we obtain the assertion. O
Definition 1. Consider a system of ordinaryffiirential equations

X = f(t,x), ()

wheref : R x R" —» R" is continuous2z-periodic with respect to t and glerentiable with respect t®; n is a natural
number. Let - Xx(t; to, &) denote the solution of5) satisfying the initial conditiox(to; to, £) = £. The map

P:R">R", P(p)=x(2r;0,p)
is called thePoincaré mapelonging to equatio(b).

In order to prove chaos, the Poincaré-map also needs tovba gtliably. To do this, we apply interval arith-
metic based computer assisted methods. The given provitigpshand the computational technique is typically well
applicable to similar dynamic problems. Since this mapmiagnot be represented by closed form, only one option
remains, tracking the trajectory within the, @] time interval. The Poincaré-map of a point is given by tlsiion
of the trajectory at thé = 2r moment of time. We choose VNODE (Validated Numerical ODH)][And INTLAB
[9] due to their straight-forward and easy usage and thelelyirecognized performance.

The package operates based on the calculation of Taylmssdts strength is that it chooses the step-size au-
tomatically, therefore taking smaller steps where it isassary. With this method, we can achieve higher accuracy.
Another advantage of this package is that it can track thedi@ries both forward and backward in time.

The only drawback of the program for us is that it can only dive position of the trajectory in such moments
that can be represented on a computer. Howevecalnot be represented on a computer in the Poincaré-map, an
therefore the system of equations is used with the followaglifications:

Yo =,
Y1 = 7ya,
Y, = m(—0.1y; — Siny1 + COSYo) .

With this method, the Poincaré-map is achieved inttke2 moment of time. The inverse of the Poincaré-map can
be reached in dt= —2. The values of these two functions on a two-dimensionalia | are denoted aB(l) and
PX(1).

Obviouslyx(:; 0, p) is a 2r-periodic solution of (5) if and only ip is a fixed point ofP, so if we search for periodic
solutions of (5), then we have to find fixed pointsffi.e., solutions of the equatiof(p) = p. We will need the
derivative matrixD® at a fixed poinp.

It is known [6] that the solutiorx(:; to, &) of (5) is differentiable with respect to the initial valugsand the
derivative matrixD:x(; to, £) satisfies the variational system to (5) belonging to thatsmh x(-; to, £):

(Dex(t 10, €))" = Dyf(t X(t 10, £))DeX(ti to, €).  Dex(to; to. €) = E. (6)

Settingé = p, to = 0,t = 27 we get



Lemma 2. Suppose that is a fixed point o, and denote by : R — R™" the fundamental matrix of the variational
differential system t¢5) belonging to the&r-periodic solutiorx(-; 0, p):

¢'(t) = Duf (6, x(t; 0, P))¢(t),  ¢(0) =E,

where Ee R™" is the unit matrix. Then
DP(p) = ¢(2n). (7)

A fixed pointp of the mappP is calledstableif for every e > 0 there exists & > 0 such that for arbitrary with
Ix - pll < 6 we have|P¥(x) - p|| <  for all k € N, where]| - || denotes an arbitrary norm &' and®X is thek-th iterate
of P. A fixed point isunstableif it is not stable.

Theorem 1. There exists an unstable fixed point of the Poincaré @apthe interval
I3 := [2.6342722.634274]x [0.026042940.02604485 R2.
In other words, there exists a poifiin this interval such that the solutiot(-; 0, ¢) of (2) is 2z-periodic and unstable.

Proor. For finding periodic points, a simple and reliable Branald-8ound method was used [5]. The area of search
is the initial interval
(x,X) € [0,27] x [-10.1, 10.1].

The B&B method generates two dimensional interdalsom the initial interval to which either of the following
statements is true: either tiheinterval does not have a common point with at least on(bj andP~1(l;), or thel,
interval is small (the size is set by the user), and it has compoints with bottP(I;) andP~1(l;).

The periodic points can only lie in an interval of the secorpt In the next step, intervals from this group having
common points are merged into bigger intervals. This predgsepeated until only pointwise disjunct intervals
remain. The number of these remaining intervals is likelyad¢o the number of periodic points of the system, and
guaranteed bounding is achieved for all of them. In our aasly,two disjoint two-dimensional intervals were found:

l, = [2.6342722.634274]x [0.026042940.02604485] (8)

l2 =[4.2368934.236894]x [0.39269640.3926973] 9

Computer simulations suggest that the first interval maytaioran unstable fixed point. At the time being we only
know that if there are fixed points in [Br] x R, then they are contained in the two intervals above. We prove
simultaneously that; contains a fixed point and that the fixed point is unstable.

Consider the variational systems to (2) belonging to thetamnis starting fromgs, &) € 11:

Zfl =2,
Z, = —sinz - 0.1z + cost, 71(0) = &1, 2(0) = &;

Z =2,
z, = —cosz(t; 0,41, £2)23 — 0.1z,

(10)

Letg(:; €) (¢(0;¢) = E) denote the fundamental matrix of the system of the two lqgagons of (10). We determined
the matrix reliably by INTLAB:

(@ (%, X)) = [169.634765210320169640780599679] [16890375683430168796219219783]
Plem (% X)1) = [152.951345297963152974187177693] [152931159858561522157752030937

and generated guaranteed bounding intervals for the eagjgasi’, A2 of this matrix by the Eig command of INTLAB:

At €[321.82623768476521854884155379]

11
1% €[-0.0131164758325%.01643163463737] (1D
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If we solve the eigenvalue equation directly, we obtain aempyecise result:

A} € [321.83633218368]
A3 €[0.0014210.001894]

By (7) this shows thal; may only contain unstable fixed points. It just remains tovprthatl; does contain a
fixed point, which will be done by the Miranda-Vrahatis thewr[11]. Define the map

F:R?>R?% F(p):=P(p) - p.

Thenp is a fixed point ofP if and only if #(p) = 0. The Miranda-Vrahatis theorem says that if the compondn#s o

in an appropriate decomposition are of opposite signs alemgpposite parallel sides of a parallelogram in the plane,
then this parallelogram contains at least one solution@g&tjuatiory (p) = 0. It is natural to guess that one needs to
decomposé into the directions of the eigenvectors®f i.e., of . With the similar technique that was applied in
[5] we determined the parallelogram with centel6@1273; 00260435). We searched for the directions and lengths
of the sides of the parallelogram as parameters to be opini&/e applied the objective function form as it was used
in [5]. We obtained parallelograms whose sides have thetitires

u :=(0.762635288220068.689712810960316);

12
v = (-0.703207789832756;011758944192742) (12)

The reliably generated parallelogranASCD, where

A = ([2.6272950252879@.62729502528791]
[0.03315291430138.03315291430139));
B = ([2.6272464106760@.62724641067607]
[0.03310894817352.03310894817353]);
C =([2.641250974712Q02.64125097471210]
[0.0189340856986D.01893408569862]);
D = ([2.64129958932392.64129958932394]
[0.01897805182641.01897805182648])

(13)

Let us decompose the map defined above in the basis v}:

F(p) = Fu(p)u = Fu(p)v,
i.e.,F, andF, denote the components of vect®r in the directional, v. We have succeeded in proving that

Fu(p) > 0if p€ AD, Fu(p) < 0if p € BC;
Fy(p) > 0if pe CD, Fu(p) < 0if pe AB.

Here AD denotes the convex hull of the intervalsand D; the definitions ofBC, CD, andAD are analogous. This
means that all conditions of the Miranda-Vrahatis theoreensatisfied; consequently, contains a fixed poinp

of # for x € [0,7]. On the basis of the results of our B&B method (8) (9), thema be periodic points fox e
[0,7]in ([2.6342722.634274][0.026042940.02604485). In this box if there exists a fixed point according to the
eigenvalues (11) then it must be unstable. These implypteaists and it is an unstable fixed point. By [1, Section 28]
the 2r-periodic solution corresponding to the fixed pgindf Poincaré mag is unstable if and only ip is unstable,
which completes the proof. O



(a) The region of attraction of a stable solution. (b) The region of attraction of some stable solutions.

Figure 3: The region of attraction of stable periodic solog.

1.3. The stable periodic point

Similarly as it was done in the proof of Theorem 1, it can bewshthat there exists a poing{, 72) € I, from
which there starts a stable periodic solution. Naturatlg,solutions where the first coordinate is shifted witlo2 its
multiples are behaving similarly. This solution probabifubcated from the lower stable equilibrium state, while th
unstable solution bifurcated from the upper unstable éxyiin state of the unforced pendulum.

Similarly to the unforced pendulum, the stable periodiziBoh has also a region of attraction, meaning that the
solutions started from this region are converging to thélstperiodic solutions. This region of attraction can be
seen on Figure 3(a). If this region of attraction is drawntfa other periodically shifted solutions too, then sets are
formed, which are the so called Lakes of Wada [7], that is showFigure 3(b).

Definition 2. (Lakes of Wada). The sets defined infespace have the property of the Lakes of Wada, if a mutual
boundary point of any two sets is the boundary point of evérgroset too.

In other words, no matter how closely a boundary is examiataf the defined sets will appear there. In our
case it means that near these boundary points all the re@jattractions of the periodic solutions appear. Therefore
moving away from these points arbitrarily slightly any elic solution can be reached, which will naturallyfer
only in the number of previous turns.

Not all the points of thex, X") space of the examined system belong to the region of dtiract any of the stable
solutions (for example unstable solution), these pointish&iexamined later.

2. Stabilization of the unstable solution

2.1. Stabilizing the upper equilibrium of the unforced pend

The literature describes two methods for stabilizing aaint©ne of them is when the system is controlled based
on the state of the dynamical system. This can be done eitirtinciously or within discrete periods of time. This
type of control, also called "feedback technique” stak#izhe desired state for a wider range of its initial statée T
other method is when the contrdfacting the system does not depend on the current state oftizerical system.

In this case the stabilization can only be experienced onadlenset of initial states.

As is known, the upper equilibrium state of the unforced pdunah is unstable. It is proven [3] that by moving
the suspension point appropriately it can be stabilizedhSuresult can be achieved by moving the suspension point
with an oscillating motion with appropriate period and aitojle in vertical direction. (This system is usually called
“Kapitsa pendulum” in honor of the Russian physicist, P.apKsa, who observed the discussed phenomenon for the
first time.) Let the motion happen according to the law

&(t) = asin(py),
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Figure 4: The absolute value of the eigenvalues as a funofitine parametep.

where¢ denotes the coordinate of the suspension point on the akatics,a is the amplitude of the vertical displace-
ment, andp is the number of displacements withirr period of time. In this case thefirential equation of the
unforced pendulum can be written as
ap® . .
X’ = (—Ig - sz sm(pt)) sinx — yX,
wherel is the length of the pendulum. To observe the stability threatian equation method can be used. In this case
it is known that the pendulum has two equilibrium points,@uwhich one is stable (the lower equilibrium state 0)
and the other one is unstable (the upper equilibrium stater). Our investigation is focused on the upper equilibrium
point as we want to stabilize it. The period of time of the dopraabove is 2/p, so the variational system will be
examined for this length. Within this time interval the matic trajectory is knownx(t) = z(t) = = =const.), therefore
the trajectory does not need to be calculated. With thesanethe variational system offtkrential equation can be
given as
Z =2,
a . 14
Z = (|9 + sz sm(pt)) 73— yZ. (14)

Considering the case= 0.1, = 20, we examine how fast the suspension point must be movethén words, how
large the parametqr should be chosen so that the upper equilibrium statezy = x is stable. To guarantee stability
we use (7). We determine reliably the fundamental matri¢p(27/p) = E) of (14) and its eigenvalues. To achieve
stability, it is necessary and ficient that the absolute values of the eigenvalues be lerslthaigure 4 shows these
absolute values for a constamt 8 and diferentp parameters.

2.2. Stabilizing the upper limit cycle of the forced pendulu

Analogously to the previous method we try to stabilize thparpunstable periodic orbit, the existence of which
was proved in Theorem 1. Le{t) denote the angle variable of this orbit. Based on the ptevresults it can be
anticipated that the oscillatory moving of the suspensmintanto the direction ok(t) with acceleration of magnitude
lap? sin(pt)| with appropriate amplituda and frequency will stabilize the unstable cycle.

The unit vector in the plain pointing to the position of thesgension point is equal to (c&f), sinX(t)), so the
acceleration vector is

(U’ (1), v’ (t)) = (ap? sin(pt) cosx(t), ap? sin(pt) sinX(t)), (15)
and we get the control law of the moving of the suspensiontgigimiouble integration. Making the choiée= | = g,
v = 0.1 again, the equation of the controlled motion has the form
v (t)

u') .
X’ = (—1+ #)smx— T cosx + cost — 0.1X. (16)

7



Theorem 2. If a = 4 and p = 4, then the control defined KiL5) stabilizes the upper unstable cycle of the damped
forced pendulunf2), i.e., x= X(t) is a stable periodic solution of16).

Proor. We consider the system

2'1 =2,
z, = —sin(z) - 0.1z + cost,
Z =1,
Z = (—1 + ﬁ sin(pt) coszl(t)) sinz;
- ﬁ sin(pt) sinzy(t) cosz; — 0.1z, + cost, (17)
Z =2,
Z = ((—1 + ﬁ sin(pt) coszl(t)) coszs(t)

+¥ sin(pt) sinz(t) sinzg(t)) Zs — 0.1z.
The variables; andz are identical tox;, x, of the original diferential equation of the forced damped pendulum.
The purpose of the first two equations of the system is to tatledhe periodic solution with which the direction
of the acceleration of the suspension point can be detednifike system of the third and forth equation fgrz,
is equivalent to the second ordeffdrential equation (16); it describes the controlled systeer the influence of
control (15), consequently it continuously uses the cowttiz; (t) of the originally unstable motion yielded by the
first two equations of the system. Finally we checked theilgiaby the fifth and sixth equation which form the
variational system to the system of the third and forth égnatVe start the process with the initial values zf &)
and @3, z;) both equal tq[2.6342722.634274][0.026042940.02604485})

Settinga = 4 andp = 4, the two eigenvalues of the matrix obtained by the methadriteed above for the initially
unstable solution are:

At = [-0.41408955-0.41383926}+ [0.600605090.60292339,

and
A% = [-0.41408955-0.41383926}- [0.600605090.60292339.

The absolute values of both multiplicators are less than méhe originally unstable solution has become stable.

We illuminate Theorem 2 by a computer simulation. Figure) Sfiows the solution of the uncontrolled pendu-
lum (2) satisfying initial condition;(0) = 2.5, x(0) = 0.0. To demonstrate the influence of the control on this
solution, in Figure 5(c) we present the solution of (16) with same initial condition.

Let us observe that control (15) does not depend on statdseafurrent pendulum — neither on the speed nor
the angle. Only the solution of the upper unstable trajgasapplied in these functions, which can be calculated in
advance and stored. Therefore the control applied on thremproblem is a kind of non-feedback techniques.
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Figure 5: Stabilization of the forced pendulum.
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