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ABSTRACT The purpose of this research is to analyze and upgrade the performances of the Baxter intelligent
robot, through data mining methods. The case study belongs to the robotics domain, being integrated in the
context of manufacturing execution systems and product lifecycle management, aiming to overcome the
lack of vertical integration inside a company. The explored data comprises the parameters registered during
the activities of the Baxter intelligent robot, as, for example, the movement of the left or right arm. First,
the state of the art concerning the data mining methods is presented, and then the solution is detailed by
describing the data mining techniques. The final purpose was that of improving the speed and robustness
of the robot in the production. Specific techniques and sometimes their combinations are experimented and
assessed, in order to perform root cause analysis, then powerful classifiers and metaclassifiers, as well as
deep learning methods, in optimum configuration, are analyzed for prediction. The experimental results are
described and discussed in details, then the conclusions and further development possibilities are formulated.
Based on the experiments, important relationships among the robot parameters were discovered, the obtained
accuracy for predicting the target variables being always above 96%.

INDEX TERMS Intelligent manufacturing systems, data mining, prediction models, intelligent robots,
industry applications.

I. INTRODUCTION
Today’s manufacturers suffer from the pressure to achieve
and maintain high industrial performances within all the
industry applications, dealing with short production life
cycles as well as severe environmental regulations for sus-
tainable production. The root cause of this conflict mainly
originates from the lack of vertical integration of different
data sources inside a company in order to achieve flexible
and reconfigurable manufacturing. An essential component
of the flexible manufacturing is the data analysis within
the intelligent manufacturing execution system (MES). The
data analysis ensures a coherent vertical integration of the
data flow as well as a predictive maintenance in a complex
Enterprise Resource Planning (ERP). Thus, all the enti-
ties and the equipment (e.g. software systems, intelligent
robots or other hardware systems), of the company will func-
tion in an efficient manner, without risks, converging in order
to accomplish a common objective, the specific data analysis
and data mining methods aiming to overcome the problems
concerning the data integration, respectively the eventual

faults or vulnerabilities of the equipment. These features are
essential in an automated information flow in order to achieve
a safe, smart and sustainable production system. These pro-
duction systems often contain collaborative robots (cobots) as
well, which require special data analysis techniques in order
to integrate them into MES [1].This paper proposes a use
case in order to highlight the mile-stones of the data analysis
integration in a production chain through the implementation
of MES and the use of a Baxter type cobot in the meantime.
The demonstration purpose set up is general enough to be
extrapolated to larger/more complex scenarios [2], [3].

A. MOTIVATION
Concerning this research, the motivation is to overcome the
above mentioned challenges through appropriate data mining
methods, by performing Root Cause Analysis (RCA) and
by elaborating prediction models. Particularly, the focus is
put on the Baxter robot, aiming to improve its speed and
robustness, taking into account the available data from real
measurements.
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B. RELATED WORK
Advanced techniques such as data integration and data ana-
lytics are embedded in industrial applications, in order to
overcome the above mentioned problems. The concept of
data warehousing assumes the integration of large amounts
of heterogeneous data, provided by various sources and data
mining methods are adopted in order to unveil hidden rela-
tionships within the data [4]. The state-of-the art papers in this
domain highlight three main phases of the Product Lifecycle
Management (PLM) process - the Beginning of Life (BOL);
theMiddle of Life (MOL); respectively the End of Life (EOL)
and they also reveal the application of specific data mining
techniques in all these phases [7]–[14]. Thus, data visualiza-
tion methods and techniques for data clustering (grouping)
are implemented formulti-objective optimization (MOO) and
data mining for innovative design and analysis of production
systems [8], feature selection methods and decision trees are
employed for performing the optimization of the data mining
driven manufacturing process [9], the early defect detection
in industrial machineries based on vibration analysis and one-
class m-SVM is presented in [14], the predictive maintenance
of the products based on abnormal events and abnormal
values of the parameters with the aid of data exploration
methods being performed in [11]. The data-mining methods
are involved, as well, in the prediction of the sleep quality
based on the daily physical activity [15], in crash rate predic-
tion [16], in traffic flowprediction [17], in collision avoidance
between robots in the gaming applications context [5], and
also in human-robot interaction through specific queries [6].
However, no relevant approach exists concerning the perfor-
mance analysis of the Baxter collaborative robot, based on the
corresponding technical data. The objective of this research is
to employ the most appropriate data mining methods in order
to reveal the parameters which influence the performance of
the Baxter robot, for further improving its performance in a
production line.

C. CONTRIBUTIONS
The aim of this research is to perform both Root Cause
Analysis (RCA) for identifying the most relevant parame-
ters that influence the performance of the Baxter intelligent
robot in the production line, as well as the prediction con-
cerning the future performance of the Baxter robot, based
on these parameters. Thus, taking into account the RCA
objective, specific methods for feature selection of filter type
are employed - Correlation based Feature Selection (CFS),
Consistency based Feature Subset Evaluation, Gain Ratio
Attribute Selection [21], as well as Bayesian Belief Networks
and conjunctive rules discovery techniques [20], aiming to
detect various dependencies among the features. For the pre-
diction task, methods such as linear regression [20], but also
powerful classifiers (Support Vector Machines, Multilayer
Perceptron, decision trees) [20], [22] and classifier combina-
tion techniques (AdaBoost, Stacking) [20], [23], respectively
deep learning methods [24] are considered. There is no
significant similar approach in the domain literature.

D. RELATED METHODS
Concerning the process of knowledge discovery, assuming
the detection of new insights and patterns within the data, data
mining represents a complex domain, situated at the intersec-
tion of many other research fields, such asMachine Learning,
Statistics, Pattern Recognition, Databases, and Data Visual-
ization [4]. Two main goals were identified concerning the
data mining applications: the first one refers to the discovery
of the trends and patterns that make the datamore comprehen-
sible, enhancing in this manner the information which con-
stitutes the basics of further decisions; the second one refers
to prediction tasks assuming the building of a corresponding
model, taking into account the input data. A typical example
from the electronic commerce domain refers to the prediction
of the likelihood that a customer buys a product, based on the
demographic data on the web-site [4].

1) DATA MINING IN THE DOMAIN OF MANUFACTURING
AND ROBOTICS
The data-mining methods were involved in the domain of
robotics, as well, taking the forms of behaviour mining
for collision avoidance in multi-robot systems, in the con-
text of some gaming applications [5], in the context of
human-robotics interaction through transfer of information,
the human queries being recognized with the help of the
data mining techniques [6], respectively in Product Lifecycle
Management (PLM) [7]. In the context of the PLM related
processes, big data is usually involved, the data mining
methods having an important role. The scientific works in
this domain identify the following phases of PLM: Beginning
of Life (BOL) assuming the product design and produc-
tion; Middle of Life (MOL) involving issues concerning
the maintenance and services upon the products that exists
in final forms; End of Life (EOL) assuming the decisions
which should be made upon the recycle and disposal actions
concerning the products [8], [10]. During the BOL phase,
marketing analysis and product design is performed, in order
to detect which are the promising customers, respectively to
analyse their needs for products. There is also the production
sub-phase involved here, consisting of material procurement,
product manufacturing and equipment management, result-
ing in detecting the needs corresponding to some specific
functions, in making final decisions concerning the product
details, in monitoring product quality, in product simulation
and testing. The MOL phase assumes warehouse managing
(order process, inventory management, green transport plan-
ning), customer service, product support, as well as correc-
tive and predictive maintenance. The corrective maintenance
process implies the preservation and the improvement of
both system safety and availability and also of the product
quality. The preventive and predictive maintenance differs
from the corrective maintenance through the fact that actions
will be taken to prevent the failure before its occurrence,
through fault detection and degradation monitoring.During
the EOL phase, the main concern is to predict the remaining
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lifetime for parts or components, which leads to product
recovery optimization, thus enhancing the resource-saving
recycling activities.Considering all these aspects, one can
conclude that the data-mining techniques are very much
required in this context. Thus, in the article [8], an approach
is proposed for multi-objective optimization (MOO) and data
mining in the context of the innovative design and analysis of
production systems. Therefore, the objective is to minimize
or maximize F , where F(x) = (f1(x), ..., fm(x)) and x =
(x1, x2, , xn)T represent the decision variables. In this context,
F represents a mapping, defined as follows F : 8− > Zm,
where Zm is the objective space. It should be observed,
however, that sometimes f1, f2, , fn can be in conflict with
each-other. Relevant examples of fi are the system through-
put (TH), Work-In-Process (WIP), cycle time (CT), total
investment (INV). The authors introduce the ‘‘innovization’’
term, implying the detection of the important relationships
among decision variables and objectives, with the aid of the
data mining methods, the searching space being restrained in
this manner. In the presented approach, plotting the fi func-
tions one against other and also applying a clustering algo-
rithm (Non-dominated Sorting Genetic Algorithm, NSGA II)
leads to rule discovery and to the detection of the relevant
parameters of the system, together with their specific values.

The subject regarding the optimization of the data min-
ing driven manufacturing process is approached in [9],
where the authors detect two main directions: indication
based manufacturing optimization (IbMO), employing data
mining models to analyse and to predict certain process
attributes, respectively pattern based manufacturing opti-
mization (PbMO), which uses manufacturing-specific opti-
mization patterns stored within the Manufacturing Pattern
Catalogue. Regarding the IbMO approach, both the analysis
of the data and prediction could be performed; the analysis
process assumes either identifying dependencies within items
or attributes, by performing Root Cause Analysis (RCA), or
data structure analysis, through the identification of groups
composed by similar objects, by employing clustering meth-
ods. The prediction could be of the following types: ex-ante
prediction, performed before the execution of the first pro-
cess, respectively real-time prediction, involving the forecast
of the process features during the actual process execution.
Further, Gröger et al. [9] focus on metric oriented RCA,
aiming to identify the best parameters regarding the machine,
respectively the employee group, in order to achieve maxi-
mum performance. After comparing multiple classification
techniques, considering criteria such as interpretability and
robustness, the chosen method is based on decision trees, this
method being applied after a feature selection process.

The approach presented in [11] takes into account the role
of the big data analysis process concerning the predictive
maintenance of the products. The decision for the predic-
tive maintenance is frequently based on abnormal events
concerning the products, such as abnormal temperatures or
abnormal vibrations, which are explored, estimated and diag-
nosed through specific techniques, the mostly representative

being: d edge mining are not only useful for corrective and
predictive maintenance during the MOL phase, but also for
the BOL and EOL of product lifecycle.

Babiceanu and Seker [12] highlighted the role of the big
data concerning the cyber-physical systems (CPS) employed
in the domain of manufacturing. Big data is considered as
having three main dimensions: volume (referring to large
amounts of data), variety (referring to different formats),
respectively velocity (referring to the generation of the data
in an almost continuous manner), and also other dimen-
sions, according to the trends in nowadays research, such
as value (the collected data brings added value to the pro-
cesses being analysed), veracity (referring to consistency
and reliability), vision, volatility (short useful life, corre-
sponding to the lifecycle concept), verification (ensures the
correction of the measurements), validation, variability (data
incompleteness, inconsistency, latency, ambiguities). Thus,
the operation virtualization is achieved in the best manner due
to the sensor-packed intelligent manufacturing system, where
each piece of equipment, respectively each process provides
event and status information, all these being combined with
advanced analytics of Big Data, approaching the domains
of cloud-based architectures, respectively of IoT robots.
Babiceanu and Seker [12] highlight the idea that Big Data
Analytics leads to better manufacturing decisions, involving
predictive analytics, machine learning, dimensionality reduc-
tion methods, Hadoop Distributed File System (HDFS) and
MapReduce tools. However, due to the distribution of the data
over the Internet, security issues arise, being a challenge for
new research discoveries in this direction.

2) OTHER DATA MINING METHODS
An approach based on deep learning techniques, which
aims to perform the sleep quality prediction, with respect to
the physical activity recorded over the day, is described in
the article [15]. Specialized wearable sensors are employed
for registering the daily physical activity, respectively the
sleeping activity, the latency period (the period before sleep-
ing), as well as the awakening period, which happen during
night. The input data refers to the daily physical activ-
ity, while the output data refers to the sleep quality. The
sleep quality was quantified through the sleep efficiency,
measured through the following ratio: SleepEfficiency =
TotalSleepTime/TotalMinutesInBed . The technique of linear
regression, as well as multiple deep learning methods were
employed in order to perform the prediction of the sleep
quality in the most appropriate manner. The linear regression
method provided worse accuracy than the deep learning
models, the best deep learning method being, in this case,
Convolutional Neural Networks (CNN).

A prediction model for the crash rate was performed within
the research described in [16], by employing logistic quantile
regression with bounded outcomes. The quantile regression
technique was chosen because it did not require the data to
follow a specific distribution, being also able to performmore
powerful comparisons than the statistical mean, concerning
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the target attributes. Traffic flow prediction from big data
through a map reduce-based nearest neighbour approach was
also performed in the article [17].

3) CRITICAL ANALYSIS
As one can notice, the data mining methods are relevant in
various activity domains, respectively in the case of the Prod-
uct Lifecycle Management (PLM), involving various classes
of techniques such as those for dimensionality reduction,
supervised and unsupervised classification, rough set theory,
association rules, respectively deep learning approaches.
Also, there are some directions concerning the implementa-
tion of the data mining techniques in the domains of automa-
tion and robotics, but there is no relevant research referring
to the improvement of the Baxter collaborative robot [19]
performances through such techniques. The current work
aims to perform such improvements by employing the most
appropriate data mining methods.

II. MATERIALS AND METHODS
A. MES VERTICAL INTEGRATION USE CASE OVERVIEW
The dual-armBaxter cobot is a collaborative intelligent robot,
which means it can work side by side with people. From line
loading to packing and unpacking, Baxter has the flexibil-
ity to be deployed and re-deployed on tasks with minimum
setup or integration cost, with built in safety mechanism for
humans. This built in safety is one of the main differences
between the traditional industrial robot and this cobot. It only
takes a few minutes to teach Baxter to pick up an object, such
as a light bulb and put it in the tester. While the bulb is in
the tester it checks the color of it, and the next movement is
to pick the bulb from the tester and put it to the right place
according to its color.

The physical flow of the use-case with the cobot is easy to
follow. The conveyor belt moves forward the bulbs till prox-
imity sensors detect the presence of a bulb in the proximity of
the robot. In such a case the conveyor belt is stopped, and the
robot is informed about the presence of a bulb in the picking
position on the belt. The communication between the PCL
and the robot is done using the Modbus protocol.

The communication between the lower layers and the
higher ones in the MES is done through an OPC server. The
MatrikonOPC client is used in order to communicate between
the PLC and the machine integrator, which was produced
by the Apriso company [30]. This tool is able to handle
heterogeneous tags from different sources, trace the data in
the system using advanced DB, and to assist the production
during the whole product life cycle management.

The summary of the integration in one figure is shown
in Figure 1, while the schematic overview of the system
architecture is shown in Figure 1. The tools and devices used
in realizing the use-case are listed below, for details see [34]:
• Siemens S7-1200 PLC
• KTP400 Touch Panel HMI
• Stepper Motor + Driver
• Baxter as a collaborative robot

• Conveyor belt
• Proximity sensor
• Solidworks to design the tester to be 3D printed
• Siemens TIA Portal V13 for PLC and HMI program-
ming

• Robot Operation System (ROS) for programming the
baxter cobot

• DELMIA Apriso MES solution
• SAP ERP solution
• Teamcenter PLM solution

B. TECHNICAL ASPECTS OF MES IMPLEMENTATION
A typical MES hardware architecture is presented in
Figure 1. In the most demanding scenarios, a database tier
be separated from the application and web tiers. In such an
approach, it is possible to configure the database tier accord-
ing to the database vendor-specific high availability configu-
rations without impacting the MES software tiers. An exam-
ple of such a deployment scenario can be achieved by cluster-
ing the database over the MSCS (Microsoft Cluster Service)
cluster and the other tiers of the system according to the clus-
tering and NLB (Network Load Balancing) approach. Such
a configuration requires a minimum of six servers as this is
suggested in Figure 2.

FIGURE 1. Overview of the components used in the use-case.

The Database layer is responsible for storing data and
is fail over managed by Windows Clustering Services or
other database vendor specific technology. The Application
layer is responsible for background processing and delivering
data for Web Services and the Client. The Web Sever layer
is responsible for server side user interface rendering and
interfacingwith other systems. The Client layer is responsible
for client side UI rendering. In the most basic architecture
MES solutions can work on a single server such approach
is most commonly used for non-production environments
where availability and performance constraints are low pri-
ority. Typical MES deployment of production environments
allows splitting every system tier into separate physical
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FIGURE 2. Overview of the MES data bases.

FIGURE 3. Overview of a typical MES server network.

servers such as this is shown in Figure 3. During the Build
phase of the project the solution is developed and customized
by the development team on a development server (DEV
Server). Once a phase is completed, this is transferred to a
TEST server. If the solution passes all the tests, has to be
validated. In the most cases the validation of a solution is
done in a QA (Quality Assurance) Server with dummy or real
data from the production. After validation the whole solution
is deployed to App Server which means live production.

III. DATA MINING METHODS
Both Root Cause Analysis (RCA) and prediction were aimed
to be performed by employing data mining methods, in order
to build an appropriatemodel for the given system. Themodel
consists of:
• the target variables, which have to be predicted and
against which the causal influence of the other features
is analysed;

• the relevant features that influence each target variables;
• the probability distributions corresponding to the tar-
get variables, respectively of mathematical relations
between each target variable and the other variables.

The formal description of this model is provided below:

M = {T ,RFT ,VRF },

where

T = F(Rf1,Rf2, . . . ,Rfn),

RFT = {Rf1,Rf2, . . . ,Rfn},

VRF = {relevance, probability_distribution} (1)

In (1), T represents a target variable, RFT is the set of the
relevant features that influence T , F is the mathematical for-
mula through which the relation between the relevant features
and T can be expressed, VRF is the vector associated to each
relevant feature, consisting of the relevance and probability
distribution associated to this feature.
The following steps were taken into account in order to

build this model: 1) Establish the target variables, which have
to be predicted and against which the causal influence of the
other features is analysed; 2) Apply feature selection meth-
ods, in order to determine the relevant features that influence
each target variable; 3) Apply appropriate methods, in order
to predict the values of the target variables as a function of
the other variables, respectively to determine the probability
distributions of the relevant features. 4) Validate the generated
model through supervised classification.

A. FEATURE SELECTION METHODS
Concerning the data mining methods, the most appropriate
high performance techniques were chosen, in order to per-
form RCA and prediction in optimum manner. In the con-
text of the RCA phase, specific feature selection methods
were firstly applied, in order to determine the most relevant
features that influence the target variables (in this case the
Endpoint Force and the Endpoint Torque). Among the exist-
ing feature selection methods, the Correlation based Feature
Selection, the Consistency based Feature Subset Evaluation,
respectively the Gain Ratio Attribute evaluation, which pro-
vided the best results in the former experiments, were chosen.
For the CFS technique, a merit was computed, with respect to
the class parameter [21] and assigned to each feature group,
as described by the formula (2).

Merits =
krcf√

(k + k(k − 1)rff )
(2)
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In (2) rcf represents the average correlation of the features to
the class, rff is the average correlation between the features
and k is the number of the elements in the subset.

The second technique which was employed tries to assign
a consistency measure to each possible group of features and
finally chooses the group with the highest consistency values.
The consistency is computed as indicated by the formula (3):

Consistencys = 1−

∑J
i=0 |Di| − |Mi|

N
(3)

In (3) J is the number of all the possible combinations
for the attributes within the s subset, |Di| is the number of
appearances of the combination i for all the classes, while
|Mi| is the number of appearances of combination iwithin the
class where this combination appears the most often. Thus,
the consistency of the attribute subset decreases, if the global
number of appearances of that combination (subset) is greater
than the number of appearances of this combination within
the class where it appears the most often.

The above described methods were always used in con-
junction with a search algorithm, such as genetic search, best
first search and exhaustive search [26].

The third technique assessed the individual features by
assigning them a gain ratio with respect to the class [21],
as provided in (4).

GainR(Ai) =
(H (C)− H (C|Ai))

H (Ai)
(4)

In (4), H (C) is the entropy of the class parameter, H (C|Ai)
is the entropy of the class C after observing the attribute Ai
while H (Ai)is the entropy of the attribute Ai.

The final relevance score for each feature was obtained by
computing the arithmetic mean of the individual relevance
values provided by each method. Only those features that
had a significant value for the final relevance score (above
a threshold) were taken into account.

B. OTHER METHODS
Still in the context of Root Cause Analysis, but also touching
the problem of prediction, Bayesian Belief Networks were
adopted, for determining those features that influenced the
class parameter, and also their probability distributions.

The Bayesian Belief Networks technique aims to identify
influences between the features, by generating a dependency
network, represented as a directed, acyclic graph (DAG).
In this graph, the nodes represent the features, while the edges
stand for the causal influences between these features, having
in association the values of the conditional probabilities.
Within this graph, every node X has a set of parents, P,
respectively a set of children, C .
The probabilities of the nodes are computed based on

complex inferences. The probability of a node, which is due
to the other nodes within the network, is determined by using
formula (5).

P(x|e) ≈ P(ec|x)P(x|eP) (5)

In (5), P(x|e) is the probability of the current node due to the
other network nodes, P(ec|x) is the probability of the children
due to the current node, while P(x|eP) is the probability of the
current node, with respect to the corresponding parents.

Within a Bayesian Belief Network, to each node a probabil-
ity distribution table is assigned, which indicates the specific
intervals of values for that node, with respect to the values of
the parents.

In order to analyse the relationships among the considered
variables, various types of regression were employed: linear,
quadratic, cubic, logarithmic, power, inverse [20]. The linear
regression classifier was also used in the Weka environment,
in order to establish the mathematical relationship between
the target variable and the other variables [26].

C. SUPERVISED CLASSIFICATION TECHNIQUES
1) CLASSICAL(TRADITIONAL) TECHNIQUES
In order to assess the relevant features and the prediction
ability of the model, the following supervised classification
methods and classifier combination schemes, well known for
their performance, were taken into account: Support Vector
Machines (SVM), Random Forest (RF), Multilayer Percep-
tron (MLP), the AdaBoost meta-classifier combined with the
C4.5 technique for decision trees [22], and also the stacking
technique for classifier combination [23]. For the MLP
technique, multiple architectures were experimented and
the best one was adopted. Stacking (stacked generalization)
represents a classifier combination technique (an ensemble
method) that allows combining multiple predictors, in the
following manner: a simple supervised classifier, such as
linear regression, is taken into account as a meta-classifier
(combiner) and receives at its inputs the output values
provided by other classification techniques (usually basic
learners such as SVM, decision trees, Bayesian classifiers or
neural networks). Although it appeared around the year 1990,
this technique evolved into a ‘‘super-learner’’, allowing
to automatically choose the most appropriate classifier
combination [23].

2) DEEP LEARNING METHODS
The prediction performance of the deep learning classifi-
cation techniques was assessed, as well. For this purpose,
two powerful techniques, appropriate for the classification
of the Baxter robot technical data, were taken into account.
Thus, the Deep Belief Networks (DBN) and Stacked Denois-
ing Autoencoders (SAE) classifiers, trained in supervised
manner, were considered. The Deep Belief Networks (DBN)
constitute a complex technique, representing a class of deep
neural networks, which is composed of multiple layers of
latent variables, the so called ‘‘hidden units’’, having connec-
tions between the layers but not between the units within each
layer, as shown in Figure 4

In the current case, the DBN is based on Restricted
Boltzmann Machines (RBM). RBM belongs to the category
of Energy-Based Models (EBM), which associates a scalar
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FIGURE 4. The architecture of a DBN.

energy to each distribution of the variables of interest. The
corresponding learning process assumes to find the appro-
priate values of the parameters, so that the energy function
has desirable properties, for example a minimum value. The
Boltzmann Machines (BM) are a specific form of log-linear
Markov Random Field (MRF), the corresponding energy
function being linear in its’ free parameters. [24] Some of the
variables are never observed, being hidden, so this method
is able to represent complex distributions. RBMs restrict
the BMs to those without visible-visible and hidden-hidden
connections, having one layer of visible units and one layer
of hidden units. RBMs can be stacked and trained using a
greedy algorithm in order to achieve the Deep Belief Net-
works (DBN). In this context, the hidden layers in Figure 4
are represented by RBMs and each RBM (sub-network) hid-
den layer serves as the visible layer for the next. The joint
distribution between the observed vectors x, respectively the
hidden layers hk , is expressed in (6). [24]

P(x, h1, h2, ..., hl) = (
l−2∏
k=0

P(hk |hk+1))P(hl−1, hl)) (6)

In (6), x = h0, l is the number of the hidden layers of the
DBN, P(hk |hk+1) is a conditional distribution for the visible
units conditioned on the hidden units of the RBM at level k
and P(hl, hl−1) is the visible-hidden joint distribution within
the top level RBM. In order to train a DBN in a supervised
manner, a logistic regression layer must be added on the top
of the network

The Stacked Denoising Autoencoder technique was also
considered. An autoencoder usually takes an input x ∈ [0; 1]d

and first maps it, with the aid of an encoder, to a hidden
representation y ∈ [0; 1]d

′

, through a deterministic mapping,
as expressed by the formula (7):

y = s(Wx + b) (7)

In (7), s is a non-linear function, as, for example, the sigmoid,
W is the weight matrix and b is a constant, chosen by the
designer. The latent representation (code) y, can be mapped
back into z, a reconstruction of the same shape as x, using
a similar transformation. The denoising auto-encoder is a
stochastic version of the auto-encoder, which tries to encode
the input, preserving the information concerning the input and

also tries to undo the effect of a corruption process applied
to the input of the auto-encoder in a stochastic manner. The
reconstruction error can be measured in many ways, the tra-
ditional squared error L(xz) = ||x − z||2, being an appro-
priate method for this task, in many situations. The code y
can be considered a distributed representation, capturing the
main factors of variation within the data, fact that makes
this method similar to the Principal Component Analysis
(PCA) technique. However, if the hidden layer is non-linear,
the autoencoder captures more complex information regard-
ing the main modes of variation within the data.

The Denoising Autoencoders can be stacked, resulting a
Deep Autoencoder that uses the output of the autoencoder
which is one layer below in order to feed the current layer.
An unsupervised pre-training is firstly performed, which
assumes to train separately each layer, as a denoising autoen-
coder, by minimizing the reconstruction error of its input.
A second stage of supervised tuning can be performed, aim-
ing to minimize the prediction error concerning a supervised
task, by adding a logistic regression layer on the top of the
network, so it will be trained as a Multilayer Perceptron [24].

3) CLASSIFICATION PERFORMANCE ASSESSMENT
In order to assess the classification performance, the follow-
ing parameters were considered: the classification accuracy
(recognition rate), the True Positive (TP) rate (sensitivity),
the True Negative (TN) rate (specificity), the area under
the ROC curve (AuC), respectively the Root Mean Squared
Error (RMSE) [26]. The correlation was also taken into
account in order to assess the prediction performance of the
classifiers when considering the Endpoint Force, respectively
the Endpoint Torque measured at the left and right limb of the
robot as continuous target variables.

D. THE DATASET
The experimental dataset was gathered during the real-
time activity of the Baxter robot, within the Baxter robot’s
database and referred to collision events. An instance in this
dataset consisted of the values of some significant parame-
ters, such as the Endpoint Force and the Endpoint Torque,
the five components of the Impact Torque and Squish Torque,
as well as values of some control parameters, corresponding
to the left and right limb of the robot, measured at a certain
moment in time, the number of distinct attributes within
the data being 50. According to the Baxter robot technical
specifications [19], the impact torque corresponds to a sudden
change in torque detected at one of the robot joints, associated
to the to the situations when the moving robot arm meets,
for example, a human. The squish torque appears when the
moving robot arm tries to push a rigid stationary object, such
as a wall. In this moment, the torque immediately increases
above the threshold and the movement automatically stops,
being resumed after two seconds.

At the end, a dataset of 992 instances, with nomissing data,
registered at a frequency of about 1 Hz, was achieved, which
was employed in the further experiments.
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IV. RESULTS
A. DATA ANALYSIS
In order to detect subtle relations between the significant
parameters of the Baxter robot, some experiments were
firstly performed using Weka 3.7 (Waikato Environment for
Knowledge Analysis) [26].

First, the Conjunctive Rule of Weka was applied on the
whole dataset, in order to unveil subtle relationships that exist
between the considered parameters. Then, feature selection
methods were employed, in Weka 3.7, as well. The Corre-
lation based Feature Selection (CfsSubsetEval) method and
the Consistency Subset Evaluation (ConsistencySubsetEval)
technique, both in combination with genetic search, as well as
the Gain Ratio Attribute Evaluation technique in combination
with the Ranker method, were considered. For each attribute,
a relevance score was computed, corresponding to each
method and the final score resulted as an arithmetic mean
of the individual relevance scores. Concerning the CfsSub-
setEval and ConsistencySubsetEval methods, the individual
score assigned to the attribute was the score associated to the
whole subset. Only those attributes having a final relevance
score above a threshold (0.3), were taken into account. The
type of dependency between the variables was analysed as
well, using the Regression method within the IBM SPSS
environment.

The Conjunctive Rule of the Weka 3.7 environment
revealed the existence of a dependency between the endpoint
Force and the endpoint Torque, as described in (8):

(f .endpointForce > 4.109795) = >

f .endpointTorque = 1.799236 (8)

Although the fact that the Endpoint Torque depends on the
Endpoint Force is obvious from the definition of the torque
parameter (which is the moment of force), the Conjunctive
Rule of Weka suggests that if the Endpoint Force is greater
than a threshold, then the Endpoint Torque should have a con-
stant, maximum value (1.799). A similar relationship resulted
when analyzing the data corresponding to the left limb of the
robot.

Within the IBM SPSS environment [25], a linear and
quadratic regression between the two above mentioned vari-
ables was also revealed, the R-Square coefficient being
0.999 in all these cases. The corresponding graphical repre-
sentation is provided below, in Figure 5.

In the further experiments, the Endpoint Torque and the
Endpoint Force, measured at the left, respectively at the right
limb of the Baxter robot, were taken into account as being the
target variables.

First, the data was divided in two classes, according to
the value of the Endpoint Torque parameter. For the right
limb of the robot, if the Endpoint Torque value was below
1.75, the class assigned to the corresponding items was 1,
otherwise the class 2 was assigned. For the left limb of the
robot, the Endpoint Torque value which delimited the two
considered classes was 1.62.

FIGURE 5. The existing correlations between the endpointForce and the
endpointTorque parameters.

The feature selectionmethodswere employed, as described
above, in order to discover those features which influence the
class parameter. Considering, as the target variable, the End-
point Torque measured at the right limb of the robot, the most
significant feature set is provided below, in (9).

RFSet1Right = {f .impactTorqueExpected1,

f .impactTorqueExpected3,

f .impactScalerInitial1, f .accCmd1,

f .accCmd5, f .SquishTorque1,

f .SquishTorque5, f .endpointForce} (9)

For the left limb of the Baxter robot, considering the Endpoint
Torque as the target variable, the best set of relevant features
is provided in (10):

RFSet1Left = {f .impactTorqueExpected0,

f .squishTorque2,

f .squishTorque3,

f .squishTorque5, f .endpointForce} (10)

It results that the Endpoint Force also influences the End-
point Torque, the impactTorqueExpected, squishTorque and
accCmd components being also relevant in this situation. The
data was also split in two classes, according to the Endpoint
Force parameter. Then, the feature selection techniques were
applied within the Weka 3.7 environment. The following
parameters resulted as directly influencing the Endpoint
Force, considering the right limb of the robot, as depicted
in (11):

RFSet2Right = {f .impactTorqueExpected4,

f .impactTorqueExpected5, f .accCmd2,

f .endpointTorque} (11)

It results that the Endpoint Torque also influences
the Endpoint Force, the impactTorqueExpected4,
impactTorqueExpected5 and accCmd2 parameters being also
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relevant in this case. For the left limb of the robot, the best set
of relevant features is provided in (12):

RFSet2Left

= {f .impactTorqueScaledSum,

f .impactTorque4,

f .impactTorqueExpected0, f .impactTorqueExpected1,

f .impactTorqueExpected3, f .impactTorqueExpected5,

f .impactTorqueScaled3, f .impactScalerFinal4,

f .squishTorque2, f .squishTorque3, f .squishTorque4,

f .squishTorque5, f .endpointTorque} (12)

One can notice again the importance of the endpoint Torque
and of the Expected Impact Torque, but also of some compo-
nents of the Squish Torque and of the final Impact Scaler.
Predictions: The LinearRegression classifier of Weka 3.7

was applied, in order to unveil linear relationships between
the target variables and the other variables. After applying
linear regression inWeka, considering the Endpoint Torque at
the right limb of the robot as a target variable, the following
relation resulted concerning the Baxter robot’s parameters,
as presented in (13):

f .EndpointTorque

= 0.0164 ∗ f .impactTorque5
+ 15.3446 ∗ f .impactTorqueExpected2
+ 0.0276 ∗ f .impactTorqueExpected3
+ (−0.0123) ∗ f .impactTorqueScaled0
+ (−0.0445) ∗ f .impactTorqueScaled3
+ (−0.0796) ∗ f .impactTorqueScaled5
+ (−0.1225) ∗ f .squishTorque0
+ (−0.0959) ∗ f .squishTorque1
+ 0.0856 ∗ f .squishTorque4
+ 0.8362 ∗ f .squishTorque5
+ 0.3886 ∗ f .endpointForce+ 2.5188. (13)

Thus, the Endpoint Torque parameter depends heavily on
the second component of the Expected Impact Torque value,
on the zero, first, fourth and fifth components of the Squish
Torque, on the Endpoint Force, but also on other compo-
nents of the Expected Impact Torque, of the Squish Torque,
respectively on the Scaled Impact Torque. For the left limb
of the Baxter robot, a similar relationship, illustrated in (14),
resulted after applying the LinearRegression classifier:

f .endpointTorque

= −0.217 ∗ f .impactTorqueExpected0
+ 10.7676 ∗ f .impactTorqueExpected1
+ 143.8943 ∗ f .impactTorqueExpected2
+ 0.7051 ∗ f .impactTorqueExpected3
+ (−42.3351) ∗ f .impactTorqueExpected4
+ 6.2987 ∗ f .impactTorqueExpected5

+ 0.9768 ∗ f .impactTorqueScaled1
+ 4.0269 ∗ f .impactTorqueScaled5
+ (−0.3214) ∗ f .squishTorque0
+ 0.0979 ∗ f .squishTorque1
+ 0.2161 ∗ f .squishTorque2
+ 0.1089 ∗ f .squishTorque3
+ 0.2236 ∗ f .squishTorque4
+ (−0.0768) ∗ f .squishTorque5
+ 0.3666 ∗ f .endpointForce

+ (−0.0801) (14)

The importance of the Endpoint Force parameter, of the
expected Impact Torque (components 2, 3 and 4), of the
scaled Impact Torque can be noticed again, but also the rel-
evance of the squish torque (especially the components 0, 2,
3, and 4).
Then, the technique of Bayesian Belief Networks

(BayesNet) with Bayesian Model Averaging (BMA) Estima-
tor and K2 search was applied [20].The target variable, in this
case, was the Endpoint Torque, measured at the left limb
of the Baxter robot. Among the most relevant parameters,
detected through the technique of Bayesian Belief Networks,
the Expected Impact Torque, the Squish Torque and the
Endpoint Force were met. The probability distribution tables
for component 5 of the Expected Impact Torque, respectively
for components 2 and 5 of Squish Torque are provided
within Table 1, Table 2, respectively Table 3.

TABLE 1. Probability distribution Table: impactTorqueExpected5.

TABLE 2. Probability distribution Table: SquishTorque2.

TABLE 3. Probability distribution Table: SquishTorque5.

From Table 1 it results that for low values of the 5th com-
ponent of the Expected Impact Torque the Endpoint Torque
has low values with a probability of 0.948 and high values
with a probability of 0.916. For medium values of the fifth
component of the Expected Impact Torque, the Endpoint
Torque is more likely to have higher values, with a probability
of 0.083, while for higher values of the fifth component of the
Expected Impact Torque, the Endpoint Torque is more likely
to take lower values, with a probability of 0.045.
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From Table 2 it results that for low values of the compo-
nent 2 of the Squish Torque parameter the Endpoint Torque
takes lower values with a probability of 0.059 and higher
values with a very small probability of 0.001, while for
higher values of the second component of Squish Torque,
the Endpoint Torque takes, more likely, higher values, with
a probability of 0.999. It results that there is a direct
dependency between the SquishTorque2 parameter and the
Endpoint Torque (while SquishTorque2 increases, Endpoint
Torque also increases).

From Table 3 it results that for low values of the compo-
nent 5 of the Squish Torque parameter the Endpoint Torque is
more likely to take lower values with a probability of 0.807,
for medium values of the 5th component of the Squish
Torque the Endpoint Torque takes, more likely, higher val-
ues, with a probability of 0.256, while for higher values of
SquishTorque5 the Endpoint Torque takes, more likely, higher
values, with a probability of 0.309. Thus, there is a direct
dependency between the SquishTorque5 parameter and the
Endpoint Torque (while SquishTorque5 increases, Endpoint
Torque also increases).

B. CLASSIFICATION PERFORMANCE ASSESSMENT
In order to assess, through classifiers, the possibility of pre-
diction, but also to validate the part of the model consisting
of the relevant features, traditional classification techniques,
well known for their performances, such as the Support
Vector Machines (SVM), Random Forest, Multilayer Per-
ceptron (MLP), AdaBoost combined with the C4.5 decision
trees based classifier, respectively the stacking combination
scheme that took into account the above mentioned clas-
sifiers, were firstly experimented. The deep learning tech-
niques described above, based on Deep Belief Networks
(DBN), respectively Stacked Autoencoders (SAE) were also
considered. The traditional classification techniques were
implemented by using the Weka 3.7 library. For SVM,
the John Platt’s SequentialMinimal Optimization (SMO)was
employed, with normalized input data, respectively Radial
Basis Function (RBF) or polynomial kernel, the correspond-
ing configuration being tuned in order to achieve the best
performance in each case. The RandomForest technique with
100 trees was adopted, as well. Concerning the MLP clas-
sifier, the MultilayerPerceptron method of Weka was imple-
mented, with a learning rate of 0.2 and a momentum of 0.8,
aiming to achieve both high accuracy and high speed of
the learning process and also to avoid overtraining. Multiple
architectures of MLP were experimented and the best one
was finally taken into account, these being the following: the
architecture with a single hidden layer and the number of
nodes equal with the arithmetic mean between the number
of attributes and the number of classes, denoted by a; the
architecture with two hidden layers, with the same number
of nodes in each layer, this being either a, or a/2; the
architecture with three hidden layers, with the same number
of nodes in each layer, this being either a, or a/3. The
AdaBoostM1 technique with 100 iterations, standing for the

AdaBoost metaclassifier, was also implemented, in conjunc-
tion with the J48 method standing for the C4.5 algorithm.
The StackingC classifier combination scheme of Weka 3.7,
standing for an improved version of the Stacking combination
scheme, was experimented as well, using LinearRegression
as a meta-classifier and the above mentioned basic learn-
ers, in an optimum combination, determined through exper-
iments. All these classifiers were applied after performing
feature selection. The 5-folds cross-validation strategy was
adopted in all of these cases, in order to assess the classifica-
tion performance, meaning that 4/5 of the data was used for
training and 1/5 of the data was used for validation, this pro-
cedure being repeated 5 times for different training/validation
sets [20].

The deep learning methods were employed, as well,
by using the Deep Learning Toolbox for Matlab [27], for
comparison with the traditional methods, from the accuracy
point of view. The corresponding parameters, such as the
number of layers, the initial learning rate, the momentum,
the batch size and the number of training epochs were fine
tuned in order to achieve the best classification performance,
in each case. In order to assess the classification performance,
each of these methods was unfolded to a neural network
having the same structure. In order to evaluate this classi-
fier for supervised learning, an additional layer was added,
having a number of output nodes equal with the number
of classes (two, in this case). The whole data was split so
that two-thirds of it was used for training, respectively one
third of these data constituted the test set. The prediction was
also performed by considering continuous attributes as target
variables within the IBM SPSS Modeler environment [28].
In this case, the correlation metric was taken into account for
prediction performance assessment.

1) CLASSIFICATION PERFORMANCE ASSESSMENT WHEN
TAKING INTO ACCOUNT THE ENDPOINT TORQUE
CORRESPONDING TO THE RIGHT LIMB OF
THE ROBOT
The values of the classification performance parameters
obtained through traditional classification methods when tak-
ing into account the Endpoint Torque corresponding to the
right limb of the robot are depicted within Table 4. It results,
from this table, that the Endpoint Torque corresponding to
the right limb of the robot can be predicted with an accuracy
bigger than 98%. However, the best accuracy, of 99.6%,
as well as the highest value of the sensitivity, of 99.8% and

TABLE 4. Classification performance assessment for the prediction of the
Endpoint Torque, for the right robot limb.
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the highest value of the AuC, of 99.9%, were obtained in
the case of the Stacking combination scheme that took into
account all the others classifiers, without the MLP classifica-
tion technique, which would have increased the processing
time. The maximum value of the TN Rate, of 99.8%, was
achieved for the RF classifier. Concerning the values of the
sensitivity (TPRate) or specificity (TNRate), denoting, in this
case, the probability to predict a lower, or a higher value of
the Endpoint Torque, one can notice that they also were above
98% in all cases. Concerning the SMO classifier, the con-
figuration that provided the best result in this case was that
based on a polynomial kernel of 7th degree. For the MLP
classifier, the configuration having a single hidden layer and
a number of nodes equal with the arithmetic mean between
the number of attributes and the number of classes provided
the best results in this case.

2) CLASSIFICATION PERFORMANCE ASSESSMENT WHEN
TAKING INTO ACCOUNT THE ENDPOINT TORQUE
CORRESPONDING TO THE LEFT LIMB OF THE ROBOT
The values for the classification performance parameters for
the prediction of the Endpoint Torque at the left limb of the
robot, through classical learners, are illustrated in Table 5.
It results that an accuracy above 96.5% was obtained in all
cases, the highest value, of 99.89%, being achieved in the
case of the StackingC combination scheme that employed as
basic learners all the others classifier, without MLP. It can
also be remarked that for the sensitivity (TP Rate) the highest
value, of 98.2%, resulted both for AdaBoost combined with
J48 and for the StackingC combination scheme, while for
the specificity (TN Rate), the highest value, of 99.8%, was
obtained in the case of the SMO classifier with a polynomial
kernel of degree 7. The best value for the AuC parameter,
of 99.9%, resulted in the case of the RF classifier and of
the StackingC combination scheme. For the MLP classifier,
the configuration with three hidden layers, having, within
each layer, a number of nodes equal with the arithmetic mean
between the number of attributes and the number of classes,
led to the best results in this case. Concerning the SMO
classifier, the configuration employing a polynomial kernel
of degree five provided the best performance in the current
situation.

TABLE 5. Classification performance assessment for the prediction of the
Endpoint Torque, for the left robot limb.

3) CLASSIFICATION PERFORMANCE ASSESSMENT WHEN
TAKING INTO ACCOUNT THE ENDPOINT FORCE
CORRESPONDING TO THE RIGHT LIMB OF THE ROBOT
Regarding the case when the Endpoint Force at the right
limb of the robot was taken into account as a target variable,

the classification performance parameters, assessed through
traditional classification methods, are provided in Table 6.
The maximum classification accuracy, of 99.46%, as well
as the maximum sensitivity (TP Rate), of 99.4%, resulted in
the case of the AdaBoost meta-classifier combined with the
J48 method, the maximum specificity (TN Rate) of 99.8%
resulted for the MLP classifier and for the StackingC com-
bination scheme involving all the classifiers, except MLP.
The highest value of AuC of 99.9% resulted in the case of
the StackingC combination scheme and for the RF classifier.
Concerning the MLP classifier, the architecture with two
hidden layers, having, within each such layer, a number of
nodes equal with the arithmetic mean between the number
of attributes and the number of classes, led to the best per-
formance. Referring to the SMO classifier, the configuration
with a polynomial kernel of degree three provided the best
performance in this case.

TABLE 6. Classification performance assessment for the prediction of the
Endpoint Force, for the right robot limb.

4) CLASSIFICATION PERFORMANCE ASSESSMENT WHEN
TAKING INTO ACCOUNT THE ENDPOINT TORQUE
CORRESPONDING TO THE LEFT LIMB OF THE ROBOT
The classification performance parameters, assessed through
traditional classification techniques, corresponding to the
case when the Endpoint Torque value was aimed to be pre-
dicted are depicted within Table 7. In this case, the maximum
accuracy, of 99.89%, the maximum specificity (TN Rate)
of 99.9% and the maximum AuC of 99.9% were achieved for
the AdaBoost meta-classifier combined with the J48 method
and for the StackingC combination scheme that implemented
all the others classifiers, except MLP, as basic learners. The
highest sensitivity (TP Rate) of 99.98% resulted in the case
of the AdaBoost classifier combination scheme. Regarding
the MLP classifier, the architecture with one hidden layers,
having a number of nodes equal with the arithmetic mean
between the number of attributes and the number of classes,
provided the best performance. Concerning to the SMO clas-
sifier, the configuration with a polynomial kernel of degree
five yielded the best classification performance.

TABLE 7. Classification performance assessment for the prediction of the
Endpoint Force, for the left robot limb.
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V. DISCUSSIONS
As one can notice from the experiments described above,
the target variables, the Endpoint Force and the Endpoint
Torque, are influenced by the Squish Torque and Impact
Torque parameters measured at the joints of the Baxter robot
and also by other control parameters of the robot. It can be
observed that, generally, when the values of the components
of the Impact Torque and Squish Torque increase, the End-
point Torque and Endpoint Force increase, as well. Also,
the Endpoint Torque depends on the Endpoint Force, between
these two variables existing various types of correlations
(linear, quadratic).

The values of the Endpoint Torque and Endpoint Force can
be predicted, through traditional classification techniques,
as a function of the other variables (Squish Torque, Impact
Torque and control variables), with an accuracy above 96%
in all cases.

Figure 6 illustrates a centralization concerning the accu-
racies of the predictions regarding the values of the End-
point Torque and Endpoint Force parameters corresponding
to the right limb, respectively to the left limb of the Baxter
robot, due to the considered classifiers. The accuracies were
measured this time through the Root Mean Squared Error
(RMSE) parameter, the deep learning techniques being taken
into account, as well, for comparison with the traditional
methods. It can be noticed that, considering the available
experimental data, the best accuracy values corresponded to
the prediction of the Endpoint Torque at the right limb of
the robot (the arithmetic mean of the recognition rates being
above 99.4%, respectively the arithmetic mean of the RMSE
values being 0.0437), followed by those corresponding to the
prediction of the Endpoint Force at the left limb of the robot
(the arithmetic mean of the recognition rates being above
99.2% , respectively the arithmetic mean of the RMSE values
being 0.0467 in this case), then by the case when the Endpoint
Force at the right limb of the robot was aimed to be predicted
(the arithmetic mean of the recognition rates being above

FIGURE 6. The comparison of the RMSE values corresponding to the
prediction of the Endpoint Force and Endpoint Torque at the
left and right limb of the Baxter robot.

98.8% in this case, respectively the arithmetic mean of the
RMSE values being 0.058) and finally by the case when the
Endpoint Torque at the left limb of the robot was assessed
(the arithmetic mean of the recognition rates being above
98.05%, while the arithmetic mean of the RMSE values was
0.092). Concerning the traditional classification techniques,
the best classification performances, in both accuracy and
time, were achieved for the StackingC combination scheme
that implemented the SMO, RF and AdaBoost classifica-
tion techniques as basic learners, followed by the AdaBoost
combination scheme implemented in conjunction with the
J48method, respectively by the RFmethod, fact that confirms
the efficiency of these ensemble classification techniques.
The AdaBoost technique was efficient from both time and
accuracy points of view. According to Figure 6, it is obvious
that the considered Deep Learning methods (DBN and SAE)
overpassed the performances of the traditional classification
techniques, the RMSE parameter taking values less than
0.01 in all the cases. Thus, the arithmetic mean value of
the RMSE parameters was 0.0060 in the case of the SAE
technique, while in the case of DBN, it was 0.0067. In the
case of the DBN method, the architecture that led to the best
classification performances was that containing five or seven
hidden units of RBM type, the initial learning rate being 0.2,
the momentum being 0.8, the batch size being 150 and the
number of the training epochs being tuned to 100. In the case
of the SAE technique, the configuration corresponding to
the best classification performance was that with two hidden
units (of Autoencoder type), the initial learning rate of 0.2,
the batch size of 120 and 100 training epochs.

Prediction by correlation, considering as target continuous
variables, was performedwithin the IBMSPSSModeler [28].
The following classifiers were taken into account: Random
Forest (RF), Support Vector Machines (SVM), respectively
the Multilayer Perceptron (MLP) classifier with a single
hidden layer having the number of nodes equal with the
number of input features. The values of the correlation metric
obtained for each target variable (Endpoint Torque, respec-
tively Endpoint Force, measured at the right, respectively
left limb of the Baxter robot) were always above 0.98 in
all the considered cases, fact that confirms the previously
obtained results. The arithmetic means of the correlation val-
ues, resulted for each classifier, are depicted within Table 8.
As in the previous case, when assessing the accuracies of
the binary classifiers, the best correlation values, having the
arithmetic mean of 0.997, were obtained for the Endpoint
Torque measured at the right limb of the Baxter robot, respec-
tively for the Endpoint Force measured at the left limb of the
Baxter robot, followed by 0.991, obtained when predicting

TABLE 8. Prediction performance assessment considering continuous
target variables, through the arithmetic mean of the correlations.

50256 VOLUME 6, 2018



D. Mitrea, L. Tamas: MES Specific Data Analysis-Use Case With a Cobot

the Endpoint Force at the right limb of the robot, respectively
0.986, when predicting the Endpoint Torque at the left limb
of the Baxter robot.

Based on the obtained results, the Endpoint Force and
Endpoint Torque at the left and right limbs of the Baxter robot
can be tuned to minimum values, for reduce the damages
caused by collisions. Considering the fact that the prediction
accuracy for these target variables was always above 96%,
it results that the tuning process will have an important impact
concerning the efficiency and safety of the Baxter robot,
mainly during the MOL phase of the corresponding PLM,
facilitating the vertical integration of this equipment in the
context of the MES of the company.

When comparing the results presented above with the state
of the art achievements, it results that the accuracy obtained
in the above described experiments is within the range, even
better than the highest accuracy values corresponding to these
achievements. This fact is illustrated within Table 9.

TABLE 9. Comparison with the state of the art results.

A. PRACTICAL APPLICATIONS OF THE DATA
MINING METHODS
In order to monitor the behaviour of the Baxter robot over
time, some useful plots and 3D histograms will be auto-
matically generated, according to the data-mining results
described above, using Python or Matlab [29] develop-
ment environments, which have interfaces with the Baxter
robot [19]. Some eloquent examples of such plots and his-
tograms, generated using the Matlab 2017 environment, are
illustrated within the next figures.

Thus, Figure 7 provides a 2D plot, representing the
Endpoint Force parameter as a function of the component 5 of
to the Squish Torque parameter. According to this representa-
tion, the Endpoint Force parameter is, on average, increased
when the Squish Torque 5 parameter takes negative values
between −0.25 and −0.1, respectively when it takes positive
values between 0.1 and 0.15.

The next figure, Figure 8, illustrates a 3D plot, repre-
senting the Endpoint Torque parameter as a function of 2nd
and 5th components of the Squish Torque. Regarding the
representation provided in Figure 8, the color is proportional
with the surface height. From Figure 8 it can be noticed that
for low values of the 2nd and 5th components of the Squish
Torque parameter, the Endpoint Torque has, on average, low
values, while for medium and increased values of the 2nd and
5th components of Squish Torque, the Endpoint Torque can
take both medium and increased values.

Figures 9, 10 and 11 represent 3D histograms, as follows:
• Figure 9 illustrates the histogram of the vari-
ables Expected Impact Torque (the 5th component),

FIGURE 7. The plot of the Endpoint Force and a function of
squishTorque5.

FIGURE 8. The 3D plot of the Endpoint Force and a function of
squishTorque2 and squishTorque5.

FIGURE 9. The 3D histogram of the variables expectedImpactTorque5 and
endpoint torque.

respectively the Endpoint Torque. It can be noticed that
for medium values of the 5th component of the Expected
Impact Torque, often medium and high values of the
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FIGURE 10. The 3D histogram of the variables squishTorque5 and
Endpoint Torque.

FIGURE 11. The 3D histogram of the variables squishTorque2 and
Endpoint Torque.

Endpoint Torque parameter are met, while for smaller
values of the 5th component of the Expected Impact
Torque, both small and higher values of the Endpoint
Torque parameter are met.

• Figure 10 depicts the histogram of the parameters Squish
Torque 5 and Endpoint Torque. One can remark that
for increasing values of the 5th component of Squish
Torque, high values of the Endpoint Torque are met
mostly often, but small values of the Endpoint Torque
can be met as well.

• Figure 11 depicts the histogram of the parameters Squish
Torque, 2nd component, respectively Endpoint Torque.
It results that for small negative values of the 2nd compo-
nent of Squish Torque increased values for the Endpoint
Torque are often met, while for values of the 2nd compo-
nent of Squish Torque which are around and above zero,
small values of the Endpoint Torque parameter occur.

For Figure 9, 10 and 11, the vertical axis stands for the
number of items having certain values of the parameters

represented on the other axes. The observations above
confirm and complete the results provided within
Tables 1, 2 and 3.

VI. CONCLUSIONS
As it results from the experiments, the data mining methods
are able to unveil subtle relationships between the Baxter
robot parameters. Thus, the Endpoint Force and the Endpoint
Torque depend on each other and also on the Impact Torque
and Squish Torque components, which are measured at the
joints of the robot, so they and can be predicted on the basis of
these values, with an accuracy above 96%. According to these
experiments, plots expressing the relationships between these
parameters can be dynamically represented to the user con-
sole of the robot. Thus, the performances of the Baxter robot
in the PLM context can be considerably improved. By tuning
the Endpoint Force and Endpoint Torque at minimum values,
the collision impact can be considerably reduced, fact that
will have an important influence concerning the safety of
this equipment facilitating the vertical integration process.
Concerning the future research, the aim will be to apply other
advanced data mining methods, as well, such as associa-
tion rules [31], clustering (grouping) techniques, in order to
automatically divide the data in multiple classes [20], opti-
mization techniques, such as Particle Swarm Optimization
(PSO) [32], as well as to experiment more dimensionality
reduction methods, before the classification phase.
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