
An abstraction for local computations on structured
meshes and its extension to handling multiple

materials
Daniel Becker, Istvan Z. Reguly

Faculty of Information Technology and Bionics
Pazmany Peter Catholic University

Budapest, Hungary
becker.daniel.balazs@hallgato.ppke.hu, reguly.istvan@itk.ppke.hu

Gihan R. Mudalige
Department of Computer Science

University of Warwick
Coventry, United Kingdom
g.mudalige@warwick.ac.uk

Abstract—Computations involving a neighbourhood on struc-
tured meshes represents a wide class of applications that includes
the simulation of cellular automata, and the solution of partial
differential equations (PDEs). In this paper we present an
abstraction for describing such computations at a high level,
allowing fast experimentation and productivity. The abstraction
is designed such that it can be automatically converted to various
high-performance implementations. A critical feature of this
abstraction is an extension to support a varying number of
materials, or species, at each grid point, enabling much more
complex simulations.

Index Terms—Structured meshes, stencils, PDEs, multimate-
rial

I. INTRODUCTION

COMPUTATIONS based on a localised “stencil” have
wide-ranging applications in scientific computing. As

such, there are innumerable implementations done by scientists
both for one-off experiments and for large software used in
production. In many cases, the computational performance
achieved by such codes is vital for scientific exploration,
therefore many utilise modern many-core architectures such
as multi-core CPUs or GPUs.

Today’s wide variety of modern many-core architectures,
with their differing programming styles, require considerable
programming effort to run applications well. The programmer
has to consider several levels of parallelism; even CPUs now
include wide vector units in each core, as well as multiple
cores, and complex memory hierarchies that often involve sev-
eral levels of caches which may be explicitly programmable.
If a certain piece of code needs to run well on multiple
architectures, the coding effort is multiplied, and subsequently
maintenance is more difficult as well: any modification has to
be applied to multiple codebases.

Embedded Domain Specific Languages (eDSLs) [1], [2]
target a specific domain of computations, and offer an ab-
straction that can be used to express computations in that
domain using a familiar programming language (such as C++).
Such an approach, while limiting in its scope, allows its
users to describe their algorithms without having to describe
how it needs to be parallelised and how data needs to be

moved. In more complex cases it can even abstract the use
of data structures as well. Developers of such DSLs can
utilise domain-specific knowledge to address the challenges
of productivity, performance and portability.

In this paper, we present such an eDSL for local compu-
tations on structured meshes, and discuss how it can be used
to express a variety of computational patterns common in this
problem domain. The current proof-of-concept implementation
does not make use of parallelisation and only runs on one CPU
core, but plans include code generation for multi-core CPUs
and GPUs.

II. THE ABSTRACTION

The main component of the abstraction is an N dimensional
rectangular mesh. In the mesh, each cell corresponds to a
portion of physical space. Each cell may contain zero, one
- or in the more complex case - at most M materials. Once
the abstract mesh is defined, we can associate data with it -
commonly used to store state variables.

Datasets associated with the mesh may be:
• Defined by cell, for example the volume of each cell.

The dimensionality of the dataset will correspond to the
dimensionality of the mesh.

• Defined by material, for example the thermal capacity of
each material, invariant of cells.

• Defined by cell and material, for example the fractional
volume of each material in each cell. The dimensionality
of this dataset will be one higher than that of the mesh:
we can store values for each material in each cell.

• In addition, datasets that are neither defined by cell nor
material may be used in the computations. These are not
actually associated with the mesh. They can either be
scalars or one-dimensional arrays.

The bulk of the code written will of course describe the
algorithm: with our abstraction, an algorithm is a sequence
of parallel loops over the mesh, reading values at any given
point in the mesh, potentially also accessing neighbours using
the pre-defined stencils, and writing values at the given grid
point. The dimensionality of the loop is always defined by

the dimensionality of the data that is being written - when
reading, accessing lower dimensional data is also allowed (e.g.
accessing material data in a cell-material loop). Reductions are
also supported.

Our proposed abstraction provides the following interface
to manipulate the data.

First, it needs to be specified which part of the spatial mesh
the computation will be performed on; the iteration space.
This may be the whole mesh or an N dimensional rectangular
subregion of it. This can for example be useful in the handling
of boundary conditions if calculating the value of a cell
needs to access neighbouring cells — choosing an appropriate
subregion of the mesh guarantees that such neighbours exist.

Furthermore, each computation takes a number of datasets
as parameters. There are seven kinds of parameters:

• IN parameters are read-only, it is not possible to mutate
the dataset through this parameter.

• OUT parameters are for writing out the results of the
computation at the given grid point.

• REDUCE parameters can only be datasets that are either
defined only by cell or only by material, or neither. These
are used to store the result of a reduction operation on a
full-rank matrix (defined by both cell and material) either
along the material dimension or all spatial dimensions.
Reductions along individual spatial dimensions may be
supported in the future. An aggregation function has to be
provided along with the dataset. The aggregation function
must be a binary commutative and associative function
(summation is a good example of that).

• NEIGH parameters provide read-only access to a neigh-
bourhood of the cells. The relative offsets of the neigh-
bours to be used need to be specified along with the
dataset.

• INDEX parameters provide access to the spatial coordi-
nates of the cells. These may be useful in implementing
complex boundary conditions. These parameters do not
take arguments, and pass an array of integers to the user
kernel.

• FREE SCALAR parameters provide read-only access to
scalar values that are not associated with the mesh.

• FREE ARRAY parameters provide read-only access to
one-dimensional arrays that are not associated with the
mesh.

It is allowed to take a dataset both as an IN and an OUT
parameter, but the effect of modifying it through the OUT
parameter will not be visible when reading it through the
IN parameter. To avoid making parallelisation much more
difficult, it is forbidden to take the same dataset both as
NEIGH and OUT.

After providing the datasets that will be used in the compu-
tation (we will call these dataset parameters), the user defines
an operation to perform on them. This is done locally —
the user only needs to write the part of code that will be
applied to every cell and material pair. In other words, they
do not need to explicitly write a loop, they only write what
would be in the innermost loop body. Indeed, there is even no

need to index the elements of the dataset arrays. All the user
needs to do is provide a function (a user kernel) that takes
a parameter for every dataset parameter. In the case of IN
and OUT parameters, the parameters of the kernel are scalar
values or references obtained by indexing the dataset with the
given cell and material indices (in the case of datasets defined
only by cell or only by material, the other index is ignored).
For REDUCE dataset parameters, a special wrapper type is
used as the corresponding kernel parameter to take care of
the aggregation. In a similar manner, the kernel parameter
corresponding to a NEIGH dataset parameter is a wrapper
type providing access to neighbouring cell data. The kernel
parameter corresponding to INDEX parameters is simply an N
dimensional index type. The order of the kernel parameters is
the same as the order of the corresponding dataset parameters.

III. ALGORITHMS

In this section we will discuss some examples of using the
proposed API. The following code demonstrates the applica-
tion of an edge filter on a 128×128 mesh, which only has one
material per cell. The computation is performed on the inner
127 × 127 region to ensure the required neighbours exist for
every cell in the computation.

c o n s t s t d : : s i z e t COLS = 128 ;
c o n s t s t d : : s i z e t ROWS = 128 ;
c o n s t s t d : : s i z e t MAT N = 1 ;

Data<2> d a t a ({COLS, ROWS} , MAT N) ;

Ce l lDa t a <2> x = d a t a . n e w c e l l d a t a () ;
Ce l lDa t a <2> y = d a t a . n e w c e l l d a t a () ;

S t e n c i l <2> s 9 p t ({{1 , 1} , {1 ,0} , {1 ,−1} ,
{0 ,1} , {0 ,0} , {0 ,−1} ,
{−1 ,1} , {−1 ,0} , {−1 ,−1}});

/ / F i l l t h e d a t a s e t s w i t h da ta .

I n d e x G e n e r a t o r <2> i n d e x g e n e r a t o r ({1 , 1} ,
{127 , 1 2 7}) ;

Computa t ion<2> c o m p u t a t i o n (da t a ,
i n d e x g e n e r a t o r) ;

c o m p u t a t i o n . compute (
[] (NeighProxy<Cel lDa t a<2>> x , double& y)
{
y =
−x [{1 , 1}] − x [{1 , 0}] − x [{1 ,−1}]
−x [{0 , 1}] + 8∗x [{0 , 0}] − x [{0 ,−1}]
−x [{ −1 ,1}] − x [{ −1 ,0}]

− x [{−1 ,−1}];
} ,
NEIGH<Cel lDa t a <2>>(x , s 9 p t) ,
OUT<Cel lDa t a <2>>(y)) ;

Once there are multiple materials per cell, there are ad-
ditional types of loops. The most straightforward type is
where we independently iterate over all cell-material pairs,
for example to compute the mass of the material in that cell:
material density∗material fractional volume in cell∗
cell volume. In such a computation, density and fractional
volume are defined on both cells and materials, but the cell
volume is only defined on cells. Further types of computations
include: accessing values of the same material on adjacent
cells (e.g. locally averaged density), reduction of values along
all spatial dimensions (e.g. total mass of each material on
the whole mesh) and reduction of values along the material
dimension (e.g. total mass of materials in each cell).

The following example demonstrates a multimaterial com-
putation with reduction. Given a density and a volume state
variable (both defined by both cell and material), we will
calculate the total mass of the materials in each cell, summing
the masses of the individual materials in each cell:

c o n s t s t d : : s i z e t COLS = 200 ;
c o n s t s t d : : s i z e t ROWS = 200 ;
c o n s t s t d : : s i z e t MAT N = 5 0 ;

Data<2> d a t a ({COLS, ROWS} , MAT N) ;

Cel lMatData<2> d e n s i t y
= d a t a . n e w c e l l m a t d a t a () ;

Cel lMatData<2> volume
= d a t a . n e w c e l l m a t d a t a () ;

/ / F i l l t h e d a t a s e t s w i th d a t a .

Ce l lDa t a <2> m a s s b y c e l l
= d a t a . n e w c e l l d a t a () ;

a u t o sum = [] (do ub l e l e f t , do ub l e r i g h t) {
r e t u r n l e f t + r i g h t ;

} ;

I n d e x G e n e r a t o r <2> i n d e x g e n e r a t o r (
{0 , 0} ,
{COLS, ROWS}) ;

Computa t ion<2> c o m p u t a t i o n (da t a ,
i n d e x g e n e r a t o r) ;

c o m p u t a t i o n . compute (
[] (d ou b l e d e n s i t y ,

do ub l e volume ,
ReduceProxy m a s s b y c e l l)

{
m a s s b y c e l l << d e n s i t y ∗ volume ;

} ,
IN<Cel lMatData <2>>(d e n s i t y) ,
IN<Cel lMatData <2>>(volume) ,
REDUCE<Cel lDa t a <2>>(sum , m a s s b y c e l l)) ;

The next example illustrates the usage of mesh-invariant
datasets.

c o n s t s t d : : s i z e t COLS = 128 ;
c o n s t s t d : : s i z e t MAT N = 5 0 ;

Data<1> d a t a ({COLS} , MAT N) ;

c o n s t d ou b l e d t = 1e−2;

Ce l lDa t a <1> i n p u t = d a t a . n e w c e l l d a t a () ;
Ce l lDa t a <1> o u t p u t = d a t a . n e w c e l l d a t a () ;

S t e n c i l <1> n e i g h s ({{−1} , {0} , {1}}) ;

/ / F i l l t h e d a t a s e t w i th d a t a .

I n d e x G e n e r a t o r <1> i n d e x g e n e r a t o r ({1} , {COLS − 1 }) ;
Computa t ion<1> c o m p u t a t i o n (da t a , i n d e x g e n e r a t o r) ;

c o m p u t a t i o n . compute (
[] (c o n s t d ou b l e dt ,

c o n s t NeighProxy<Cel lDa t a<1>> i n p u t ,
do ub l e& o u t p u t) {

o u t p u t = d t ∗ (
− i n p u t [{−1}]
+ 2∗ i n p u t [{0}]
− i n p u t [{1}]
) ;

} ,
FREE SCALAR<>(d t) ,
NEIGH<Cel lDa t a <1>>(i n p u t , n e i g h s) ,
OUT<Cel lDa t a <1>>(o u t p u t)) ;

IV. DATA STRUCTURES

This section deals with the representation of datasets defined
by both cell and material.

The most straightforward data structure to store such
datasets is a two-dimensional array of size N ×M , where N
is the total number of cells and M is the number of materials.
Accessing values is easy and requires only simple pointer
arithmetics. However, in practice, most cells usually contain
only one or at most a few materials. If there are many cells and
materials, such a full-matrix representation becomes extremely
wasteful.

This is not only a problem of wasting memory space
— also the locality of the data that we actually want to
use deteriorates. On modern hardware with layered cache
structures, accessing non-local data is potentially orders of
magnitude more expensive than accessing local data.

Therefore, a more compact representation of the data is
often desirable, which only stores data for materials that have
non-zero fractional volume in a cell. We will briefly present
one such data structure, taken from [3].

The central part of the data structure is a table that is stored
with the mesh. For each cell, the table contains information
about the number of materials (nmats) in that cell and an
additional integer (imaterial). If there is only one material in

a given cell, the corresponding nmats value in the table will
be -1 instead of 1, while in the case of multimaterial cells,
the value is simply the number of materials in the cell. The
imats value of single-material cells is a negative number, the
absolute value of which is the id number of the material in
that cell. The imats value of multimaterial cells is an index
into a separate array (we will call it the linked list array) that
stores the data of all multimaterial cells. The linked list array
is also stored with the mesh, not with individual datasets.

The slots in the linked list array contain the following fields:
• frac2cell, which is the id number of the cell the slot

belongs to
• material, which is the material id number
• nextfrac, which is the index of the next slot corresponding

to the same cell as this slot. If no such slot exists,
the value is -1. This field makes it possible to treat
this structure as an array-backed linked list. This way,
materials can be added to or removed from a cell later.

The actual values of the datasets are stored in the following
way. For each dataset, an array is allocated that stores an
element for each cell. For those cells that only contain one
material, the corresponding value in the array is the value
that belongs to that material. For cells that contain multiple
materials, the value is unspecified.

For multimaterial cells, the dataset values are stored in
arrays that run parallel to the linked list array. If a slot in
the linked list array has index i, the corresponding value in
the parallel array is also at index i.

In traditional multi-material codes, the management of the
data structure is done by the user, intermixed with the science
code — with our abstraction, this is completely hidden away,
and may actually be changed easily to better support a given
target architecture.

ACKNOWLEDGMENT

István Reguly was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences. Project
no. PD 124905 has been implemented with the support pro-
vided from the National Research, Development and Inno-
vation Fund of Hungary, financed under the PD 17 funding
scheme.

REFERENCES

[1] G. R. Mudalige, M. B. Giles, I. Reguly, C. Bertolli, and P. H. J.
Kelly, “Op2: An active library framework for solving unstructured mesh-
based applications on multi-core and many-core architectures,” in 2012
Innovative Parallel Computing (InPar), May 2012, pp. 1–12.

[2] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and S. McIntosh-
Smith, “The ops domain specific abstraction for multi-block structured
grid computations,” in 2014 Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance
Computing, Nov 2014, pp. 58–67.

[3] R. V. Garimella and R. W. Robey, “A comparative study of multi-material
data structures for computational physics applications,” Tech. Rep.

