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Abstract: In this paper, we utilize known exact analytic solutions of perfect fluid hydrodynamics to
analytically calculate the polarization of baryons produced in heavy-ion collisions. Assuming local
thermodynamical equilibrium also for spin degrees of freedom, baryons get a net polarization at their
formation (freeze-out). This polarization depends on the time evolution of the Quark-Gluon Plasma
(QGP), which can be described as an almost perfect fluid. By using exact analytic solutions, we
can thus analyze the necessity of rotation (and vorticity) for non-zero net polarization. In this
paper, we give the first analytical calculations for the polarization four-vector. We use two
hydrodynamical solutions; one is the spherically symmetric Hubble flow (a somewhat oversimplified
model, to demonstrate the methodology); and the other solution is a somewhat more involved one
that corresponds to a rotating and accelerating expansion, and is thus well-suited for the investigation
of some of the main features of the time evolution of the QGP created in peripheral heavy-ion
collisions (although there are still numerous features of real collision geometry that are beyond the
scope of this simple model). Finally, we illustrate and discuss our results on the polarization.

Keywords: hydrodynamics; heavy ion collisions; polarization

1. Introduction

Our aim is to give analytical results for the polarization four-vector of massive spin 1/2 particles
produced in heavy-ion collisions from hydrodynamical models. The motivation for this work was
the recently observed non-vanishing polarization of Λ baryons at the STAR (Solenoidal Tracker at
the Relativistic Heavy Ion Collider) experiment [1,2] that hints at local thermal equilibrium also
for spin degrees of freedom in the Quark Gluon Plasma (QGP) produced in heavy-ion collisions.
The assumption of thermal equilibration for spin is at the core of the current understanding of
polarization of particles produced from a thermal ensemble (such as the QGP), and almost all studies
aimed at describing it in terms of collective models utilize the formula derived from this assumption
by Becattini et al. [3].

Although many numerical hydrodynamical models do indeed predict non-zero polarization of
produced spin 1/2 particles [4–7], a clear connection between the initial state, the final state, and the
observable polarization is to be expected from analytical studies, on which topic we do the first
calculations here (to our best knowledge).
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The observable quantities at the final state of the hydrodynamical evolution can be described
by utilizing the kinetic theory. At local thermodynamical equilibrium, for spin 1/2 particles, such a
description can be based on the the Fermi–Dirac distribution:

f (x, p) ∝
1

exp
(

pµuµ(x)
T(x)

− µ(x)
T(x)

)
+1

, (1)

where pµ is the four-momentum of the produced particle, and uµ(x), µ(x), and T(x) are the
four-velocity, the chemical potential, and the temperature field of the fluid, respectively.

Assuming local thermal equilibrium for the spin degrees of freedom, for the space-time- and
momentum-dependent polarization four-vector 〈S(x, p)〉µ of the produced particles, the following
formula is given in Ref. [3]:

〈S(x, p)〉µ =
1

8m
(
1− f (x, p)

)
εµνρσ pσ∂νβρ, (2)

where m is the mass of the investigated particle, and the inverse temperature field βµ = uµ/T(x) is
introduced. Here, εµνρσ is the totally antisymmetric Levi-Civita-symbol, where the ε0123 = 1 convention
is used. In this paper, we use this formula to calculate the polarization four-vector at the freeze-out
from analytical, relativistic, hydrodynamical solutions.

The general consensus is that the appearance of polarization strongly depends on the rotation
of the expanding QGP fireball. However, the Equation of State (EoS) of the QGP influences the
rotation; thus, by measuring the polarization, we can get information about the EoS of the QGP.
Analytic hydrodynamic calculations may provide special insight by yielding analytic formulas for the
connections of the aforementioned physical quantities.

We investigate two hydrodynamical solutions: the spherically symmetric Hubble flow [8,9] and
a rotating and accelerating solution (first reported in Ref. [10], then in a different context in [11]).
We expect to obtain zero polarization in the case of the spherical symmetric Hubble-flow, as it has no
rotation, so the study of this solution can be regarded as a simple cross-check of our methodology.
The second one, however, being a rotating and expanding solution, could be a well-usable model of
peripheral heavy-ion collisions, and it is expected that one gets non-zero polarization out of it. Thus,
this rotating expanding solution constitutes the core point of the reported work.

2. Basic Equations and Assumptions

We use the c= 1 notation. Let us denote the space–time coordinate by xµ≡(t, r), and the
Minkowskian metric tensor by gµν =diag(1,−1,−1,−1). The convention for the Levi-Civita symbol
is ε0123 = 1. Greek letters denote Lorentz indices, and Latin letters denote three-vector indices. For
repeated Greek indices, we use the Einstein summation convention. We denote the space dimension by
d; this implies gµ

µ = d+1. In reality, d = 3, but it is useful to retain the d notation wherever possible,
in order to see whether the reason for a specific numeric constant in the formulas is the dimensionality
of space. The four-velocity of the fluid is uµ = γ(1, v), where γ=

√
1−v2 is the Lorentz factor. The

velocity three-vector is then v= uk/u0. With pµ, we denote the four-momentum of a produced particle;
we also use the three-momentum p, whose magnitude we simply denote by p (whenever there is no
risk of confusion). The energy of the particle is denoted by E; the mass shell condition then reads as
E =

√
p2+m2, with m being the particle mass.

The usability of hydrodynamics in heavy ion physics phenomenology relies on the assumption of
local thermodynamical equilibrium of the matter. For describing particles with spin 1/2, we use the
source function as written up in Equation (1). Hadronic final state observables can then be calculated
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by integrating over the freeze-out hypersurface; for example, in the case of the invariant momentum
distribution, the driving formula is

E
dN
d3p

=
∫

d3Σµ(x)pµ f (x, p). (3)

Here, d3Σν is the three-dimensional vectorial integration measure of the freeze-out hypersurface,
the appearance of which is the so-called Cooper-Frye prescription [12] for calculating the invariant
momentum distribution. Of the two solutions (mentioned above) which we investigate in this work, in
the case of the rotating and expanding accelerating solution, we also calculate the invariant momentum
distribution, as this has not been done before.

The formula given in Ref. [3] for the polarization of spin 1/2 particles, as written up in Equation (2),
may be utilized for any given βµ = uµ/T field that one gets from a given solution of the hydrodynamical
equations. We are interested in calculating the polarization at the final state of the hydrodynamical
evolution, so we must integrate the 〈S(x, p)〉µ field over the freeze-out hypersurface. The formula to
be analyzed further, that is, that for the observed polarization 〈S(p)〉µ of particles with momentum p,
thus becomes

〈S(p)〉µ =

∫
d3Σν pν f (x, p)〈S(x, p)〉µ∫

d3Σν pν f (x, p)
, (4)

as written up in, for example, [7]. For being able to perform analytical calculations, we had to make
some assumptions. We used saddle-point integration, in which one assumes that the integrand is
of the form f (r)g(r), where f (r) is a slowly changing function, while g(r) has a unique and sharp
maximum; then the integral can be calculated with a Gaussian approximation, as

∫
ddr f (r)g(r) ≈ f (R0)g(R0)

√
(2π)d

det M
,

where Mij = ∂i∂jg(r)
∣∣
r=R0

,
and ∂kg(R0) = 0;

(5)

that is, R0 is the location of the unique maximum of g(r), and M is the second derivative matrix.
Another assumption concerns the expression of 〈S(x, p)〉µ, Equation (2): if the exponent

in the Fermi–Dirac distribution is large (i.e., phase space occupancy is small), we can use the
Maxwell–Boltzmann distribution instead:

f (x, p)� 1 ⇒ f (xµ, pµ) =
g

(2πh̄)d exp
( µ(x)

T(x)
−

pµuµ

T(x)
)
. (6)

Here, g is the spin-degeneracy factor; for spin 1/2 baryons, g = 2.
In high-energy heavy ion phenomenology (when the collision energy is high enough, say for

collisions at the Relativistic Heavy Ion Collider or the Large Hadron Collider), the µ/T factor can be
(and usually is) neglected; we use this approximation here1. With this, we have

f (xµ, pµ) = C0 exp
(
−pµβµ(x)

)
, where βµ(x) =

uµ(x)
T(x)

, and C0 =
g

(2πh̄)d . (7)

1 The vanishing of µ can also be interpreted as an absence of a conserved particle number density n. All our conclusions
would change only by a proportionality factor if we said µ/T = const instead of µ/T = 0; if µ 6= 0, we would have had to
introduce n. Depending on the EoS (Equation of State) of the matter (one that also contains the conserved particle density n),
one could write the f (x, p) function in another form, where the normalization

∫
dp f (x, p) = n(x) is evident. For example,

if one chooses an ultra-relativistic ideal gas, with p = nT, ε = κp, with κ = d as EoS, one has g
(2πh̄)d eµ/T = n

4πT3 . Indeed,

in the solutions discussed below, µ/T =const is satisfied, which means n ∝ Td, which is the well-known condition for an
adiabatic expansion.
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If the Maxwell-Boltzmann approximation is justified, it means that f (x, p) � 1 indeed,
and Equations (2) and (4) then also become simpler:

〈S(x, p)〉µ =
1

8m
εµνρσ pσ∂νβρ, (8)

and in the saddle-point approximation, the polarization of particles with momentum p simply becomes

〈S(p)〉µ ≈ 1
8m

εµνρσ pσ∂νβρ

∣∣∣
r=R0

, (9)

since in the saddle-point approximation, in the numerator of Equation (4), 〈S(x, p)〉µ can be considered
the “smooth”’ function, and the determinant factors cancel out.

3. Some Exact Hydrodynamical Solutions and Polarization

In this section, we first specify and recapitulate the investigated hydrodynamical solutions,
then give the analytical formulas for the polarization four-vector calculated from them. The equations
of perfect fluid relativistic hydrodynamics utilized here are

(ε+p)uν∂νuµ = (gµν − uµuν)∂ν p (Euler equation),

(ε+p)∂µuµ = −uµ∂µε (energy conservation equation),

n∂µuµ = −uµ∂µn (particle number/charge conservation),

and we specify the simple EoS:

ε = κp, (10)

where the notations are: ε, p, and n are the energy density, pressure, and particle number density,
respectively. Concerning the n density: if it was assumed to be non-vanishing, we set the EoS as
p = nT. However, the solutions presented below are valid also if n = 0 (i.e., if µ = 0). Thus, the
expressions for n that we wrote up for the solutions can be regarded as supplemental to the solutions
that work for µ = 0.

We note that the simple analytic solutions of perfect fluid hydrodynamics that we utilize in this
manuscript all assume this simple form of EoS, ε= κp. Finding exact analytic relativistic solutions
for a more complex equation of state is a daunting task (however, some simple developments have
gradually been made in this direction, see e.g., Ref. [13]), but would be nevertheless required if one
wants to use the methodology presented here to give constraints on the equation of state from the
measured polarization effect of baryons. Such more general studies are beyond the scope of the present
work, wherein we lay the groundwork for the analytic calculation of polarization. So we stick to the
simple solutions (and their simple equation of state, ε= κp) as discussed below.

We also note that there is recent development on taking the effect that polarization of the
constituents of the fluid has on the fluid dynamics itself [14], along with some numerical calculations
of how this modified hydrodynamical picture affects final state polarization [15]. We do not investigate
this possibility here; we restrict ourselves to the simple and well-known basic equations written
up above.

3.1. Hubble Flow

We do not go into the details about the method for finding or verifying that the solutions presented
below are indeed solutions of the perfect fluid hydrodynamical equations; we refer back to the original
publications of the solutions.
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We investigate the Hubble-like relativistic hydrodynamical solution, first fully described in Ref. [8].
This solution has the following velocity, particle density, and temperature fields:

uµ =
xµ

τ
, n = n0

(τ0

τ

)d
, T = T0

(τ0

τ

)d/κ
, (11)

where τ =
√

t2 − r2, and κ is the inverse square speed of sound (constant in the case of this exact
solution). The κ = 3 case corresponds to ultra-relativistic ideal gas, and κ = 3/2 corresponds to a
non-relativistic gas; however, this solution is valid for any arbitrary constant κ value2

To calculate the polarization four-vector, as of now we investigate the simplest case, the spherical
symmetric expansion. For the freeze-out hypersurface, the τ = τ0 = const. hypersurface was
chosen (which, in the case of the investigated solution, equals the constant temperature freeze-out
hypersurface), and a given point of this hypersurface can simply be parametrized by the r coordinate

three-vector, and the time coordinate on the hypersurface is t(r)≡
√

τ2
0+r2. The integration measure

and the resulting expression for the Cooper–Frye formula can then be written as

d3Σµ =
1

t(r)

(
t(r)

r

)
d3r ⇒ E

dN
d3p

= C0

∫
d3r

Et(r)−pr
t(r)

exp
(
−Et(r)−pr

T0

)
. (12)

As we are discussing massive particles, this integral always exists. The T0 constant (an arbitrary
parameter of the solution) can simply be taken as the temperature at freeze-out, and we did so.

The position of the saddle-point (R0), as well as the second derivative matrix Mkl is calculated as:

∂k
Et−pr

T0

∣∣∣
r=R0

!
= 0 ⇒ R0 = τ0

m p. Mkl ≡ −∂k∂l
Et−pr

T0

∣∣∣
r=R0

= m
T0τ0

(
δkl −

pk pl
E2

)
. (13)

With this, we can get an approximation for the invariant single-particle momentum distribution:

det M =
m2

E2

(
m

T0τ0

)3
⇒ E

dN
d3p

=
n0

4

√
πτ3

0

mT3
0

exp
(
−τ0m

T0

)
. (14)

The formula is independent of momentum. This was expected because this hydrodynamical
solution (in the V(S) = 1 case) is boost invariant.

To use (9) to determine the polarization four-vector in the hydrodynamical solution of the
Hubble-flow, first we give the expression for the ∂νβρ derivative:

∂νβρ = ∂ν

 rρ√
τ2

0+r2T0

 =
gνρ√

τ2
0+r2T0

+
rνrρ

(τ2
0+r2)3/2T0

. (15)

2 We note that a more general class of solutions is possible [8,9,16] in which the temperature and density fields are
supplemented with an arbitrary V function of a “scaling variable” S:

n = n0

( τ0

τ

)d
V(S), T = T0

( τ0

τ

)d/κ 1
V(S) ,

and the S variable is any function of Sx , Sy, and Sz:

S ≡ S(Sx , Sy, Sz), where Sx ≡
r2

x

Ẋ2
0 t2

, Sy ≡
r2

y

Ẋ2
0 t2

, Sz ≡
r2

z

Ẋ2
0 t2

, for example: S =
r2

x

Ẋ2
0 t2

+
r2

y

Ẏ2
0 t2

+
r2

z

Ż2
0 t2

.

Here Ẋ0, Ẏ0 and Ż0 are arbitrary constants. In the given example, the S = const surfaces are ellipsoids, and Ẋ0, Ẏ0, Ż0 are
time derivatives of the principal axes of them.
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Then, for the time component, we get:

〈S(p)〉0 =
1

8mT0
ε0ikl pl∂iβk

∣∣∣∣
r=R0

=
1

8mT0
εikl pl

 gik√
τ2

0+r2T0

+
rirk

(τ2
0+r2)3/2T0

 ∣∣∣∣∣
r=R0

= 0, (16)

as ε0ikl is antisymmetric, whereas gik and rirk are symmetric to the change in the i↔ k indices.
Similarly for the spatial coordinates:

〈S(p)〉i = 1
8mT0

(
− εikl pl∂0βk + εikl pl∂kβ0 − εikl p0∂kβl

)∣∣∣∣∣
r=R0

= 0. (17)

In conclusion, the polarization four-vector in the spherical symmetric Hubble-flow is

〈S(p)〉µ =

(
0
0

)
, (18)

which is consistent with our expectations.

3.2. Rotating and Accelerating Expanding Solution

Another hydrodynamical solution of particular interest to us is a rotating and accelerating
expanding solution, first written up in Ref. [10]. This solution has the following velocity, temperature,
and particle density profiles:

v =
2tr+τ2

0 Ω×r
t2+r2+ρ2

0
, T =

T0τ2
0√

(t2−r2+ρ2
0)

2+4ρ2
0r2−τ4

0 (Ω×r)2
, n = n0

(
T
T0

)3
, (19)

where ρ0 and τ0 are arbitrary parameters, and Ω is an arbitrary angular velocity three-vector that
indicates the axis and magnitude of rotation. The ρ0 parameter tells about the initial spatial extent of
the expanding matter; however, the τ0 parameter is just there for the sake of consistency of physical
units; in this way, the unit of Ω is c/fm, as it should be for an angular velocity-like quantity3, and T0 is a
temperature constant. In the case of Ω= 0, we recovered an acceleratingly expanding but non-rotating
spherically symmetric solution.

We note that in general Ω 6= 0, hence this solution has non-vanishing acceleration and rotation, as
well as spatially non-trivial (i.e., not spherically symmetric) temperature distribution (and temperature
gradient). In the Ω → 0-limiting case (as noted above), the accelerating nature persists. However,
in this case, the temperature distribution becomes spherically symmetric, and at the same time,
the vorticity of the flow vanishes. In the case of this simple solution, we thus cannot choose the
free parameters in a way to separately turn on and off these features, and thus cannot analytically
disentangle the effects that these features have on the final state polarization. (Some numerical
calculations of polarization, e.g., the one found in Ref. [17] state that different components of the
polarization vector are influenced differently by these features of a realistic hydrodynamical expansion).

3 Here we changed the notation of Ref. [10]. The rather unfortunate B notation used there is now written as τ2
0 Ω.
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Turning to the calculation of polarization, it is convenient to write up the investigated solution
with the following notation:

uµ

T
≡ βµ = aµ+Fµνxν+(xνbν)xµ− xνxν

2
bµ, (20)

with aµ =
ρ2

0
2T0τ2

0

(
1
0

)
, bµ =

1
T0τ2

0

(
1
0

)
, F0k = Fk0 = F00 = 0, Fkl = εklm

Ωm

2T0
. (21)

To calculate final state observables, we choose the constant proper time (τ0 = const) hypersurface
here as well. The solution itself allows for a re-scaling of the arbitrary constants in the formulas;
just as in the previous case, here too we can treat the T0 quantity as the temperature at freeze-out
(at the r = 0 center of the expanding matter). We use the notation introduced in Equation (12) for the
Maxwell–Boltzmann distribution. To derive the saddle-point for the calculation of the polarization
four-vector, we shall use the expression of the invariant momentum spectrum:

E
dN
d3p

= C0

∫
d3r

E− pr√
τ2

0+r2

 exp

−E(2r2+τ2
0+ρ2

0)−2
√

τ2
0+r2pr−τ2

0 r(p×Ω)

T0τ2
0

 . (22)

This integral always exists (in the case of massive particles). In order to utilize the saddle-point
integration method, we determine the position of the saddle-point (R0) and the second derivative
matrix at the saddle-point:

for R0 : ∇
{
− 1

T0τ2
0

(
E(2r2+τ2

0+ρ2
0)− 2

√
τ2

0+r2rp− τ2
0 r(p×Ω)

)}∣∣∣
r=R0

!
= 0, (23)

Mkl = ∂k∂l

{ 1
T0τ2

0

(
E(2r2+τ2

0+ρ2
0)− 2

√
τ2

0+r2rp− τ2
0 r(p×Ω)

)}∣∣∣
r=R0

. (24)

We leave the detailed calculations to Appendix A; the results are the following. The R0

saddle-point (for a given p momentum) is in the plane spanned by the p and p×Ω vectors. In the
following, we use the p̂ ≡ p/p notation for the unit vector pointing in the direction of p. For the
saddle-point, we get

R0 =
τ0

2p

√
E−m
2m

√
τ2

0 (p̂×Ω)2(E−m)2 + 4p2 · p̂ + τ2
0

E−m
2p
· p̂×Ω. (25)

Concerning the second derivative matrix, we need it only for the calculation of the invariant
momentum distribution, where its determinant is invoked. It turns out that this quantity is

det Mkl =
32m2

T3
0 τ6

0
(E+m)p. (26)

Using this result, we get the invariant single-particle momentum distribution4 as

E
dN
d3p

∝

√
π3T3

0 τ3
0

32p(m+E)
exp

(
−Eeff

T0

)
, with Eeff = m+

ρ2
0E
τ2

0
+

τ2
0
4
(Ω2−(p̂Ω)2) (E−m) . (27)

4 This has not yet been calculated for this hydrodynamical solution.



Universe 2019, 5, 101 8 of 13

Equivalently, by defining a “local slope” Teff, the result can be expressed as

E
dN
d3p

∝

√
π3T3

0 τ3
0

32p(m+E)
exp

(
− E

Teff

)
, with Teff =

T0

m
E +

ρ2
0

τ2
0
+

τ2
0
4 (Ω2−(p̂Ω)2)

(
1−m

E
) . (28)

Proceeding to the polarization of the produced baryons, we calculated the derivative of the inverse
temperature field for this solution from the form given in Equation (20), and then substituted it into
the expression of the polarization, Equation (9). The result is

∂νβρ = Fρν+xαbαgνρ+xρbν−xνbρ ⇒ 〈S(p)〉µ =
1

8m
εµνρσ pσ

(
Fρν+xρbν−xνbρ

)∣∣∣
r=R0

. (29)

(The second term was cancelled owing to the symmetry of gνρ and the antisymmetry of εµνρσ,
and xµ is understood as the four-coordinate of the freeze-out hypersurface whose three-coordinate is
the r = R0 three-vector). Remembering the expression of the introduced Fµν tensor and bµ vector from
Equation (20), in particular that of F0k = 0, and bk = 0, we got the following expressions for the the
time-like and space-like components:

〈S(p)〉0 = − 1
8m ε0klm pm(Fkl+xlbk−xkbl)

∣∣∣
r=R0

= − 1
16m εklmεklq pm

Ωq
T0

= 1
8m

pΩ
T0

,

〈S(p)〉k = 1
8m

(
εk0lr pr(Fl0+xlb0−x0bl)+εkl0r pr(F0l+x0bl−xlb0)+εklr0 p0(Frl+xrbl−xlbr)

)∣∣∣
r=R0

= − 1
8m

(
2b0εklmxl pm+Eεklmεmlq

Ωq
2T0

)∣∣∣
r=R0

= 1
8mT0

(
EΩ− 2

τ2
0

R0×p
)

k

= mΩk+(E−m) p̂lΩl p̂k
8mT0

.

Summarizing this result, the polarization four-vector for the investigated rotating and accelerating
expanding solution is the following:

〈S(p)〉µ =
1

8mT0

(
pΩ

mΩ + E−m
p2 (Ωp)p

)
. (30)

In the case of Ω = 0, there is no rotation, and we got 〈S(p)〉µ = 0. Thus, in this model, polarization
is very transparently connected to the presence of rotation.

It is useful to transform the polarization four-vector into the rest frame of the particle. The result
is5, with (r.f. standing for “rest frame”):

〈S(p)〉µr.f. =
(

0
Sr.f.

)
, where Sr.f. =

1
8T0

Ω. (31)

We can also compute the helicity of the produced spin 1/2 particles in this solution from this
formula (the S polarization vector is taken in the laboratory frame):

H := p̂S =
E

8mT0
p̂Ω. (32)

5 The Lorentz matrix performing this boost transformation is the following (in usual 1+3 dimensional block matrix notation):

Λµ
ν =

(
cosh χ − p̂l sinh χ
− p̂k sinh χ δkl+(cosh χ−1) p̂k p̂l

)
=

1
m

(
E −pl
−pk mδkl +

E−m
p2 pk pl

)
,

where E and p could be parametrized with the velocity parameter χ as E = m cosh χ and p = m sinh χ, respectively.
It indeed can be checked that this matrix takes the (E, p) four-momentum vector into (m, 0), as it should.
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4. Illustration and Discussion

In this section, we would like to illustrate our simple analytical results for the polarization vector.
We use the same type of plots that were used to visualize some existing numerical simulations (e.g.,
those presented in Ref. [7]). We plot the components of the polarization vector with respect to the
momentum components in the transverse plane (that is, w.r.t. momentum components px and py). On
Figure 1, we plot the polarization vector in the laboratory frame. For the sake of plotting, the mass of
the Λ baryon (mΛc2 = 1115 MeV) was chosen. For the sake of this illustration, we chose a moderate
value for the magnitude of the Ω vector as |Ω| = 0.1 c/fm.

Figure 1. The components of the polarization four-vector in the rotating and accelerating expanding
solution with respect to the momentum. Plots were made with the mass of the Λ baryon
(mΛ = 1115 MeV/c2), and with |Ω| = 0.1 c/fm.

In our case, as a special coincidence owing purely to the specific algebraic form of the presented
analytic solution, it turned out that the polarization in the rest frame of the produced baryons was
independent of momentum p; see Equation (31). This coincidence is expected to be relieved in the case
of more involved (complicated) solutions (that are left for future investigations). Figure 2, nevertheless
shows the value of the Sy component in the baryon rest frame.

The helicity of the produced baryons (being proportional to the pS scalar product), however,
does depend on the momentum, even in the case of our very simple solution. We plot it on Figure 3,
with the same parameter values as in the foregoing two plots.
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Figure 2. The only non-vanishing component of the polarization vector in the rest frame of the baryon
is Sy in the investigated simple solution; in this case, its value is uniquely determined by the magnitude
of the Ω vector. More involved types of analytic solutions would yield some dependence on the
momentum components, px and py. For the plotted value of Sy (a constant, as seen in the plot), the
same input parameters were used as above: mΛ = 1115 MeV/c2, and |Ω| = 0.1 c/fm.

Figure 3. Helicity of the produced baryons calculated in the rotating and accelerating expanding
solution. Parameter values as above: mΛ = 1115 MeV/c2, |Ω| = 0.1 c/fm.

5. Summary and Outlook

In this paper, we gave the first analytical formulas for the polarization of baryons produced
from a thermal ensemble corresponding to rotating and expanding exact hydrodynamical solutions.
These arise as descriptions of the final state of non-central high energy heavy-ion collisions.
We investigated two exact relativistic hydrodynamical solutions. One was the spherically symmetric
Hubble flow (an overly simplistic one, the study of which can be regarded as a check of the
methodology), in which the polarization turns out to be exactly zero (as is naturally expected from
symmetry considerations). The other solution we investigated was one describing rotating and
accelerating expansion. In this case, we obtained the first-ever analytical formulas that connected
dynamical quantities of the expansion (i.e., magnitude of rotation, acceleration) with the observable
final state polarization of spin 1/2 particles (baryons), which turned out to be non-zero in this case.

Our results are simple and straightforward. The calculations presented here yielded the
first results in terms of exact formulas for the polarization. Nevertheless, many more solutions
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(more involved ones), as well as more complicated final state parametrizations can be investigated
in the future. The motivation is that the simple solution that we used here that yields non-zero
polarization is one that features acceleration, temperature gradient, as well as vorticity. However, these
cannot be tuned (or turned on and off) separately by a continuous change of the parameters of the
solution. Solutions that allow this to be done are to be investigated in a later stage of this research effort.
Such future studies are needed to disentangle the effects that rotation, acceleration, and temperature
gradient have on the observable final state polarization of baryons produced in heavy-ion collisions.
Such studies have the potential of a better understanding of what phenomenological implications
polarization measurements (such as was recently done by the STAR experiment [1]) can have on the
properties (such as the Equation of State) of the strongly coupled Quark Gluon Plasma produced in
heavy-ion collisions.
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Appendix A. Additional Calculations

Here we discuss some additional calculations used in Section 3.2 pertaining to the case of rotating
and accelerating solution.

For a given momentum p, the position of the saddle-point R0 (to be applied in the approximate
calculation of the momentum spectrum and the polarization) was written up in Equation (25);
we provide some additional details of the derivation of that formula here. The defining equation was
Equation (23), of which the following equation for R0 is obtained:

4ER0 − 2
√

τ2
0+R2

0p− 2(pR0)√
τ2

0+R2
0

R0 − τ2
0 (p×Ω) = 0, (A1)

where R2
0≡R0R0. From this equation one readily sees that R0 must be a linear combination of p and

the p×Ω vector. We substitute this assumption into the equation above. We note that p and p×Ω are
orthogonal to each other, which leads to some intermediate simplifications, as well as enables us to
rearrange the obtained condition into the following form:

R0 := αp + βτ2
0 p×Ω ⇒ 2

{(
2E−αp2

A

)
α−A

}
p = τ2

0

{
1−2β

(
2E−αp2

A

)}
(p×Ω).

where we temporarily introduced the A≡
√

τ2
0+α2 p2 + β2τ4

0 (p2Ω2−(pΩ)2) notation. Because of the
orthogonality of p and p×Ω, both sides here have to vanish identically, from which we get

A = α

(
2E−αp2

A

)
, 4E−2αp2

A
=

1
β

. (A2)

One divides these equations to obtain a simple relation, the substituting back one gets a quadratic
equation for β, the solution of which is

α

β
= 2A ⇒ 4E−4βp2 =

1
β

⇒ β =
E

2p2 ±

√
E2

4p2 −
p2

4p2 =
E±m
2p2 , (A3)
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where we used the E2 = p2+m2 relation. To find α we substitute this back into the expression of A:

α= 2βA ⇒ α2 = 4β2 {τ2
0+α2 p2+β2τ4

0 (p2Ω2−(pΩ)2)
}
⇒ α= 2βτ0

√
1+β2τ2

0 (p2Ω2−(pΩ)2)

1−4p2β2 .

Using the above expression of β (with the yet undetermined sign) we get 1−4p2β2 = − 2m
p2 (m±E),

and see that the expression for α will be valid only in the case when 1−4β2 p2 > 0, thus conclude that
the bottom sign is the proper choice. We thus arrive at the following expressions:

β =
E−m
2p2 , α = 2βτ0

√
1+β2τ2

0 (p2Ω2−(pΩ)2)

1−4p2β2 =
τ0

2

√
E−m
2m

√
τ2

0 (p̂×Ω)2(E−m)2 + 4p2. (A4)

From these formulas the expression of R0 shown in Equation (25) readily follows. The other
ingredient in the saddle-point integration necessary for getting the momentum spectrum is the
determinant of the second derivative matrix of the source function. Here we outline the main steps of
the derivation of Equation (26). From Equation (24) the second derivative matrix itself turns out to be

Mkl =
1

T0τ2
0

{(
4E−2(pr)

A

)
δkl−

2
A
(pkrl+rk pl)+2(pr)

rkrl
A3

} ∣∣∣∣
r=R0

, (A5)

where we use the notation A as above. We should use the expression of R0 as calculated above.
The determinant of this M matrix is the product of its eigenvalues. In our case the particular spatial

directions are: p, p×Ω, and the vector orthogonal to both these, that is, p×(p×Ω). One recognizes
that the vector p×(p×Ω) is an eigenvector of the M second derivative matrix:

M
(
p×(p×Ω)

)
= · · · = 1

β
p×(p×Ω). (A6)

The corresponding eigenvalue is thus 1/β. Owing to the symmetric nature of M, the other two
eigenvectors must be in the orthogonal complementer subspace of this vector, so they are linear
combinations of p and p×Ω. Let us thus look for these eigenvectors in the form a= µp+νr, with yet
to be determined µ and ν coefficients. Substituting this expression, we get

M a = λa ⇒
(

4E−2(pR0)

A

)
a− 2

A

(
R0(ap)+p(aR0)

)
+2(pR0)

R0(aR0)

A3 = λa, (A7)

where λ is the eigenvalue (the values of which we are looking for). By substituting the assumed form
of a and inferring the components of this equation in the p and p×Ω directions, we get the following
equation for the µ and ν coefficients:

2
A3

(
2EA3−2A2pR0 −A2R2

0
−A2 p2+(pR0)

2 2EA3−2A2pR0+R2
0pR0

)(
µ

ν

)
= λ

(
µ

ν

)
. (A8)

We immediately infer the product of the two λ1,2 eigenvalues as the determinant of this 2×2 matrix.
Taking the third eigenvalue (calculated above) into account, after some simplifications, we indeed get
the following expression for the determinant of the M matrix (the expression we used in Equation (26)):

det M =

(
1

T0τ2
0

)3

32pm2(m+
√

p2+m2). (A9)
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