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Abstract. In this paper we provide bounds for the size of the

solutions of the Diophantine equation x(x+1)(x+2)(x+3)
(x+a)(x+b) = y2, where

a, b ∈ Z, a 6= b are parameters. We also determine all integral
solutions for a, b ∈ {−4,−3,−2,−1, 4, 5, 6, 7}.

1. introduction

Let us define

f(x, k, d) = x(x + d) · · · (x + (k − 1)d).

Erdős [12] and independently Rigge [26] proved that if x ≥ 1 and k ≥ 2,
then f(x, k, 1) is never a perfect square. A celebrated result of Erdős
and Selfridge [13] states that f(x, k, 1) is never a perfect power of an
integer, provided x ≥ 1 and k ≥ 2. That is, they completely solved the
Diophantine equation

(1) f(x, k, d) = yl

with d = 1. The literature of this type of Diophantine equations is
very rich. First consider some results related to l = 2. Euler proved
(see [10] pp. 440 and 635) that a product of four terms in arithmetic
progression is never a square solving (1) with k = 4, l = 2. Obláth
[25] obtained a similar statement for k = 5. Saradha and Shorey [30]
proved that (1) has no solutions with k ≥ 4, provided that d is a power
of a prime number. Laishram and Shorey [23] extended this result to
the case where either d ≤ 1010, or d has at most six prime divisors.
Bennett, Bruin, Győry and Hajdu [3] solved (1) with 6 ≤ k ≤ 11 and
l = 2. Hirata-Kohno, Laishram, Shorey and Tijdeman [22] completely
solved (1) with 3 ≤ k < 110.
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Now assume for this paragraph that l ≥ 3. Many authors have con-
sidered the more general equation

(2) f(x, k, d) = byl,

where b > 0 and the greatest prime factor of b does not exceed k.
Saradha [29] proved that (2) has no solution with k ≥ 4. Győry [16]
studied the cases k = 2, 3, he determined all integral solutions. Győry,
Hajdu and Saradha [18] proved that the product of four or five con-
secutive terms of an arithmetical progression of integers cannot be a
perfect power, provided that the initial term is coprime to the differ-
ence. Hajdu, Tengely and Tijdeman [20] proved that the product of
k coprime integers in arithmetic progression cannot be a cube when
2 < k < 39. Hajdu and Kovács [19] proved that the product of k
consecutive terms of a primitive arithmetic progression is never a fifth
power when 3 ≤ k ≤ 54. Győry, Hajdu and Pintér [17] proved that for
any positive integers x, d and k with gcd(x, d) = 1 and 3 < k < 35, the
product x(x + d) · · · (x + (k − 1)d) cannot be a perfect power.

Erdős and Graham [11] asked if the Diophantine equation
r
∏

i=1

f(xi, ki, 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for i = 1, 2, . . . , r,
at most finitely many solutions in positive integers (x1, x2, . . . , xr, y)
with xi + ki ≤ xi+1 for 1 ≤ i ≤ r − 1. Ska lba [32] provided a bound
for the smallest solution and estimated the number of solutions below
a given bound. Ulas [35] answered the above question of Erdős and
Graham in the negative when either r = ki = 4, or r ≥ 6 and ki = 4.
Bauer and Bennett [2] extended this result to the cases r = 3 and
r = 5. Bennett and Van Luijk [4] constructed an infinite family of
r ≥ 5 non-overlapping blocks of five consecutive integers such that
their product is always a perfect square. Luca and Walsh [24] studied
the case (r, ki) = (2, 4) for all i = 1, . . . , r.

In this paper we study the Diophantine equation

(3)
x(x + 1)(x + 2)(x + 3)

(x + a)(x + b)
= y2,

where a, b ∈ Z, a 6= b are parameters. We provide bounds for the size
of solutions and an algorithm to determine all solutions (x, y) ∈ Z

2.
The method of proof is based on Runge’s method [15, 21, 27, 31, 34,
37]. In 2008, Sankaranarayanan and Saradha [28] established improved
upper bounds for the size of the solutions of the Diophantine equations
F (x) = ym and F (x) = G(y), for which Runge’s method can be applied.



ON A GENERALIZATION OF A PROBLEM OF ERDŐS AND GRAHAM 3

They generalized the method to obtain bounds for the solutions of
equations of the form P (x)/Q(x) = ym. Based on this latter result
we provide bounds for the solutions of equation (3). We note that
solutions of (3) in integers also correspond to integer solutions to the
hyperelliptic equation

x(x + 1)(x + 2)(x + 3)(x + a)(x + b) = Y 2,

where Y = (x+a)(x+b)y. Baker [1] applied his theory of lower bounds
for linear forms in logarithms to obtain upper bound for the size of
solutions of hyperelliptic equations. Many authors improved the bound
see e.g. [5, 7, 8, 9, 33, 36]. Still these bounds remain astronomical. It
is also possible to apply Runge’s method to provide upper bound for
the size of integral solutions of this hyperelliptic curve. Our method
yields better bound, thus it is more efficient to determine all integral
solutions.

Theorem 1. (I) If (x, y) ∈ Z
2 is a solution of (3) with a ≡ b (mod 2),

then

|x| ≤ max{|A2|, |A1|
1/2, |A0|

1/3, |B2|, |B1|
1/2, |B0|

1/3, |
1

4
(a + b− 6)2ab|},

where

A2 =
3

4
a2 +

1

2
ab +

3

4
b2 − 2 a− 2 b + 7

A1 = −
1

4
a3 +

1

4
a2b +

1

4
ab2 + 2 a2 −

1

4
b3 + 2 b2 − 4 a− 4 b + 6

A0 = −
1

4
(a + b− 4)2ab

B2 =
3

4
a2 +

1

2
ab +

3

4
b2 − 4 a− 4 b− 5

B1 = −
1

4
a3 +

1

4
a2b +

1

4
ab2 + 4 a2 −

1

4
b3 + 4 b2 − 16 a− 16 b + 6

B0 = −
1

4
(a + b− 8)2ab.

(II) If (x, y) ∈ Z
2 is a solution of (3) with a 6≡ b (mod 2), then

|x| ≤ 2 max{|C2|, |C1|
1/2, |C0|

1/3, |D2|, |D1|
1/2, |D0|

1/3},
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where

C2 =
3

4
a2 +

1

2
ab +

3

4
b2 −

7

2
a−

7

2
b−

5

4

C1 = −
1

4
a3 +

1

4
a2b +

1

4
ab2 +

7

2
a2 −

1

4
b3 +

7

2
b2 −

49

4
a−

49

4
b + 6

C0 = −
1

4
(a + b− 7)2ab

D2 =
3

4
a2 +

1

2
ab +

3

4
b2 −

5

2
a−

5

2
b +

19

4

D1 = −
1

4
a3 +

1

4
a2b +

1

4
ab2 +

5

2
a2 −

1

4
b3 +

5

2
b2 −

25

4
a−

25

4
b + 6

D0 = −
1

4
(a + b− 5)2ab.

We apply the above theorem to determine all integral solutions of
(3) with a, b ∈ {−4,−3,−2,−1, 4, 5, 6, 7}, a 6= b.

Corollary 1. All solutions (x, y) ∈ Z
2, y 6= 0 of (3) with a, b ∈

{−4,−3,−2,−1, 4, 5, 6, 7}, a 6= b are as follows

a = −4, b = −3, (x, y) ∈ {(−6, 2), (1, 2)}

a = −4, b = 5, (x, y) ∈ {(−6, 6)}

a = −2, b = 7, (x, y) ∈ {(3, 6)}

a = 6, b = 7, (x, y) ∈ {(−4, 2), (3, 2)}.

2. proof of the results

In the proof we will use the following result of Fujiwara [14].

Lemma 1. Put p(z) =
∑n

i=0 aiz
i, an 6= 0, where ai ∈ R for all i =

0, 1, . . . , n. Then

max{|ζ | : p(ζ) = 0} ≤ 2 max

{

∣

∣

∣

∣

an−1

an

∣

∣

∣

∣

,

∣

∣

∣

∣

an−2

an

∣

∣

∣

∣

1/2

, . . . ,

∣

∣

∣

∣

a0
an

∣

∣

∣

∣

1/n
}

.

Proof of Theorem 1. The polynomial part of the Puiseux expansion of

(

x(x + 1)(x + 2)(x + 3)

(x + a)(x + b)

)1/2

is x + 3 − a+b
2
.
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(I) First we deal with the case a ≡ b (mod 2) that is, when a+b
2

is
an integer. We have that

x(x + 1)(x + 2)(x + 3) − (x + a)(x + b)

(

x + 2 −
a + b

2

)2

=

2x3 + A2x
2 + A1x + A0 =: fA(x)

and

x(x + 1)(x + 2)(x + 3) − (x + a)(x + b)

(

x + 4 −
a + b

2

)2

=

−2x3 + B2x
2 + B1x + B0 =: fB(x).

If follows from Lemma 1 that fA(x) 6= 0 if

|x| > max{|A2|, |A1|
1/2, |A0|

1/3} =: rA.

Similarly, one has that fB(x) 6= 0 if

|x| > max{|B2|, |B1|
1/2, |B0|

1/3} =: rB.

Therefore fA(x)fB(x) < 0, if |x| > max{rA, rB}. We obtain that either
(

x + 4 −
a + b

2

)2

<
x(x + 1)(x + 2)(x + 3)

(x + a)(x + b)
<

(

x + 2 −
a + b

2

)2

or
(

x + 2 −
a + b

2

)2

<
x(x + 1)(x + 2)(x + 3)

(x + a)(x + b)
<

(

x + 4 −
a + b

2

)2

.

Since x(x+1)(x+2)(x+3)
(x+a)(x+b)

= y2, we get that y2 =
(

x + 3 − a+b
2

)2
in both

cases. Thus x is a root of the quadratic polynomial x(x+1)(x+2)(x+

3)− (x+a)(x+ b)
(

x + 3 − a+b
2

)2
. The constant term of this quadratic

polynomial is −1
4

(a + b− 6)2ab, hence

|x| ≤ |(a + b− 6)2ab|.

(II) Now we consider the case a 6≡ b (mod 2). We have that

x(x + 1)(x + 2)(x + 3) − (x + a)(x + b)

(

x + 3 −
a + b− 1

2

)2

=

−x3 + C2x
2 + C1x + C0 =: fC(x)

and

x(x + 1)(x + 2)(x + 3) − (x + a)(x + b)

(

x + 3 −
a + b + 1

2

)2

=

x3 + D2x
2 + D1x + D0 =: fD(x).
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Lemma 1 implies that fC(x) 6= 0 if

|x| > 2 max{|C2|, |C1|
1/2, |C0|

1/3} =: rC

and fD(x) 6= 0 if

|x| > 2 max{|D2|, |D1|
1/2, |D0|

1/3} =: rD.

It is clear that fC(x)fD(x) < 0, if |x| > max{rC , rD}. One gets that
either
(

x + 3 −
a + b− 1

2

)2

<
x(x + 1)(x + 2)(x + 3)

(x + a)(x + b)
<

(

x + 3 −
a + b + 1

2

)2

or
(

x + 3 −
a + b + 1

2

)2

<
x(x + 1)(x + 2)(x + 3)

(x + a)(x + b)
<

(

x + 3 −
a + b− 1

2

)2

.

In both cases we get a contradiction, since x(x+1)(x+2)(x+3)
(x+a)(x+b)

= y2 and

there cannot be a square between consecutive squares. Thus |x| ≤
max{rC , rD}. �

Proof of Corollary 1. We wrote a Magma [6] code to solve equation
(3). If a ≡ b (mod 2), then we used the bound

|x| ≤ max{|A2|, |A1|
1/2, |A0|

1/3, |B2|, |B1|
1/2, |B0|

1/3}

and we determined the roots of the quadratic equation x(x + 1)(x +

2)(x + 3) − (x + a)(x + b)
(

x + 3 − a+b
2

)2
. Some details of the compu-

tations are given in the following table. We only indicate those cases
where there is a solution with y 6= 0.

a b bound for |x|
-4 -3 96
-4 5 46
-2 7 50
6 7 114

�
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