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Abstract 

By analysing the electrochemical impedance spectra (EIS) of quasi-reversible redox systems, the two 

elements of the Faradaic impedance: charge transfer resistance and the coupled Warburg-

coefficient can be obtained at a given potential. The same applies also to DEIS (dynamic EIS) 

measurements, when high frequency impedance spectra are measured while the potential is 

scanned to simultaneously accomplish cyclic voltammetry or other transient measurements. In case 

of DEIS both the charge transfer resistance and the Warburg coefficient depend on the applied 

potential program, e.g. on scan-rate. A theory is presented, yielding a transformation by which this 

dependence can be eliminated. The proposed procedure yields two, scan-rate independent, 

hysteresis-free functions, which are closely related to the EIS results, and also to the functions which 

are the transformed forms of the cyclic voltammograms as suggested in T. Pajkossy, S. Vesztergom, 

Electrochim. Acta, 297 (2019) 1121. To illustrate the properties of the transformations and the 

functions involved, numerical simulations are also presented. The theory opens a new route for the 

high-accuracy, fast determination of charge transfer rate coefficients of quasi-reversible redox 

systems by employing DEIS. 
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1. Introduction 

Electrochemical impedance spectroscopy (EIS) is a measurement method that requires the 

equilibrium, or at least steady state, of the studied electrochemical system. In practice, slowly 

changing systems can often be regarded quasi-stationary for sufficiently fast EIS measurements. 

This way repetitive EIS measurements can serve as a characterization method of the system’s 

temporal evolution; such sequencing of EIS measurements is called dynamic EIS, DEIS. The fast 

impedance spectrum measurement is achieved by the use of multifrequency (rather than with 

stepped single frequency) perturbations; a number of spectra can be recorded in a couple of 

seconds, e.g. during one or a few cycles of a cyclic voltammogram, CV.  

The history of DEIS can be traced back to the use of fast Fourier transform (FFT) used for AC 

polarography by Smith in the seventies [1]. Since then a number of devices have been constructed 

for the purpose of DEIS and various electrochemical phenomena were studied either by DEIS or by 

equivalent methods of different names [2,3,4,5,6,7,8]. 

Although DEIS is a useful method of characterizing electrochemical systems, DEIS spectra are not 

necessarily the same as those measured with traditional EIS, in which case the system can be 

considered more stationary. In this paper we analyse the difference of DEIS and EIS spectra based 

on an archetype reaction of electrode kinetics, diffusion controlled charge transfer. In the theory of 

voltammetry, these systems are often referred to as quasi-reversible redox systems and their 

properties belong to the core of the electrochemistry textbooks [9]. 

In the theory of EIS, quasi reversible redox systems are typically represented by the Randles-circuit; 

the Faradaic impedance therein is a serial combination of the charge transfer resistance and of the 

Warburg impedance (i.e. the diffusional impedance in case of planar electrodes); for the properties 

see [10]. In traditional EIS, these two quantities depend on the electrode potential E; in the case of 

DEIS measurements, however, an additional implicit dependence on time appears. As a result, DEIS 

spectra depend on the applied potential program, above all on the scan-rate. 

The analysis of the DEIS spectra of quasi-reversible redox systems have been attempted in a couple 

of previous papers [4,5,6,7] – these, however, led to complicated results. The theory of the present 

paper, in contrast, leads to a simple procedure – to an extrapolation – by which scan-rate 

dependences can be eliminated. It yields two scan-rate independent, hysteresis-free, potential 

program invariant (PPI) functions, which are closely related to the EIS results, and to the functions 

which are the transformed forms of the CVs as suggested in a previous related paper [11].  
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The properties of the transformations and the functions involved are illustrated by numerical 

simulations. 

 

2. Theory 

Consider a quasi-reversible redox system with the condition that both the reduced and oxidized 

forms are present. These species take part in an n-electron charge transfer reaction with no 

detectable intermediates on a planar electrode. The general kinetic equation for this system 

describes the time dependence of the current density:  

𝑗(𝑡) = 𝑛F[𝑘a(𝐸(𝑡)) 𝑐red
s (𝑡) − 𝑘c(𝐸(𝑡)) 𝑐ox

s (𝑡)] (1) 

where the concentrations are surface ones (see the superscript “s”); the subscripts red and ox refer 

to reduced and oxidized species, respectively; F is the Faraday-constant. The dependence of the 𝑘a 

anodic and 𝑘c cathodic rate coefficients on electrode potential E does not have to be specified; all 

what is assumed is that they lie in a range to make both the anodic and cathodic reactions partially 

diffusion controlled. All potential dependencies of the quantities in the equations below can be 

traced back to that of the rate coefficients. The surface concentrations depend explicitly solely on 

time: this is due to the hindered diffusion of the redox species. With no hindrance, i.e. in the case 

of infinite tansport rate, Eq.(1) can be simplified to an equation where the concentrations are bulk 

ones: 

𝑗inf(𝐸) = 𝑛F[𝑘a(𝐸)𝑐red − 𝑘c(𝐸)𝑐ox] (2) 

We apply the usual assumptions that the redox species are minority components of the electrolyte 

and that any effects due to double layer charging, electrolyte resistance, migration and convection 

can be disregarded.  

The expressions of the Faradaic impedance of this system – since the work of Randles in 1947 [12] 

– have appeared in many and diverse versions in textbooks and monographs, e.g. in Section 4.2 of 

[13] or Section 10 of [9]. We will adhere to the early theory of de Levie and coworkers [14,15] mostly 

because of two reasons: first, there has been made no a priori assumption on the actual dependence 

of rate coefficients on potential, and second, Ref. [15] is a study where the strong coupling of the 

charge transfer resistance, Rct, and the Warburg coefficient, 𝜎W,  has been emphasized. This 

coupling plays an important role also in the present theory. For a given potential E, the following 

equations were obtained: 
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Eq.6 of [15] reads as  

1

𝑅ct
= 𝑛F (𝑐r̅ed

s
d𝑘a

d𝐸
− 𝑐o̅x

s
d𝑘c 

d𝐸
) (3) 

where – just as in Eq.(1) – the cs concentrations are surface ones, but the overlining means that 

these are mean (time-averaged) quantities, i.e. their periodic perturbations caused by the 

impedance measurement are already eliminated.  

Eqs. 3 and 9 of Ref. [15] give the following equation for the Warburg impedance: 

𝑍𝑊 =
𝜎W

I (1 − i)

√𝜔
=

𝜎W

√i𝜔
=

𝑘a √𝐷red⁄ + 𝑘c √𝐷ox⁄

√i𝜔
∙ 𝑅ct (4) 

where 𝐷red and 𝐷ox denote the diffusion coefficients of the reduced and the oxidized species, 

respectively, i is the imaginary unit and 𝜔 is angular frequency. Note the difference of the two 

𝜎W  parameters: 𝜎W
I   is the Warburg parameter that appears in related theories and that is 

recommended by IUPAC [10]. Instead of 𝜎W
I , in what follows we prefer the use of the 𝜎W = 𝜎W

I /√2 

quantity, because it yields more compact formulae. It is expedient at this point to define the 

quantity H as 

𝐻 = 𝜎W 𝑅ct⁄ = 𝑘a √𝐷red⁄ + 𝑘c √𝐷ox⁄  (5) 

Eqs. (3) to (5) have two important features. First, at a given potential 𝜎W and  𝑅ct are proportional 

to each other; the proportionality constant contains neither bulk nor surface concentrations but 

only process rate coefficients, as a parameter combination (the intriguing consequences of the 

coupling are demonstrated in Ref. [15]). Second, in the equations of the Faraday impedance the 

surface concentrations (rather than bulk ones) appear. In traditional EIS measurements – that is, 

taking spectra after a sufficiently long initial delays – the net current is zero, the surface 

concentrations are determined by the Nernst equation; hence Rct and 𝜎W are unique functions of 

potential. 

Here the question appears: what if the net current is not zero, and surface concentrations are slowly 

changing due to a potential scan – i.e. when DEIS experiment is performed. In this case, Eqs. (3)-(5) 

would still hold, but 𝜎W and 𝑅ct will depend on the electrode potential not only due to the potential 

dependencies of the rate coefficients, but also due to the inherent time dependence of the surface 

concentration changes. This is expressed by the Matsuda-Ayabe equations [16] as follows: 
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𝑐red
s (𝑡) = 𝑐red −

1

𝑛F√𝐷red

∙ 𝑀(𝑡) (6) 

and  

𝑐ox
s (𝑡) = 𝑐ox +

1

𝑛F√𝐷ox

∙ 𝑀(𝑡) (7) 

Here the M(t) function is a convolution, with u as a convolution variable, 

𝑀(𝑡) =
1

√𝜋
∫

𝑗(𝑢)

√𝑡 − 𝑢
d𝑢

𝑡

0

 (8) 

This function has been named by Oldham [17,18] as „semiintegrated current”. Note that for other 

than planar electrode geometries Eq.(8) is to be modified; this is, however, beyond our present 

scope. 

For analysing DEIS situations, we have to introduce the surface concentrations (Eqs (6) and (7)) into 

Eq. (3) by calculating the convolution 𝑀 up till the time of reaching the potential E. In what follows, 

𝑀(𝑡(𝐸) will be simply denoted as M; the combination yields  

1

𝑅ct
= 𝑛F (𝑐r̅ed

s
d𝑘a

d𝐸
− 𝑐o̅x

s
d𝑘c 

d𝐸
) = 𝑛F ((𝑐red −

𝑀

𝑛F√𝐷red

)
d𝑘a

d𝐸
− (𝑐ox +

𝑀

𝑛F√𝐷ox

)
d𝑘c 

d𝐸
)

= 𝑛F (𝑐red

d𝑘a

d𝐸
− 𝑐ox

d𝑘c

d𝐸
) −  𝑛F (

1

√𝐷red

d𝑘a

d𝐸
+

1

√𝐷ox

d𝑘c

d𝐸
) ∙ 𝑀 

(9) 

In Eq (9) the coefficient of 𝑀 is the potential derivative of H, defined by Eq.(5). The first term equals 

the potential derivative of the current density jinf that could be measured in the absence of any 

diffusional hindrance (i.e., when surface and bulk concentrations are equal). At this point we 

introduce the quantity Rct,inf as 

1

𝑅ct,inf
=

d𝑗inf

d𝐸
= 𝑛F (𝑐red

d𝑘a

d𝐸
− 𝑐ox

d𝑘c

d𝐸
) (10) 

which allows the simplification of Eq. (9)to  

1

𝑅ct
=

1

𝑅ct,inf
−

dH

d𝐸
∙ 𝑀 (11) 

Since 𝜎W  and 𝑅ct are coupled to each other (cf. Eq. (5)), we get a similar equation for 𝜎W : 
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1

𝜎W
=

1

𝐻
∙ (

1

𝑅ct,inf
−

d𝐻

d𝐸
∙ 𝑀) =

1

𝐻 ∙ 𝑅ct,inf
 − 

1

𝐻
∙  

d𝐻

d𝐸
𝑀 (12) 

Further equations are available to connect impedance and CV-related quantities. This is based on a 

recent theory [11] on the PPI form of CVs (or of voltammograms of arbitrary 𝐸(𝑡)  potential 

programs) of quasi-reversible redox systems. Accordingly, if a voltammogram is taken (or a set of 

voltammograms is taken) with the initial condition that no concentration gradients exist before time 

zero (accordingly, 𝑗(𝑡 ≤ 0) = 0) then, for the js and the Ms at identical potentials E the  

𝑗 = 𝑗inf − 𝐻 ∙ 𝑀 (13) 

and the  

𝑀 = 𝑀rev − 1 𝐻⁄ ∙ 𝑗 (14) 

equtions hold. From Eqs. (13) and (14) follows that 

𝐻 = 𝑗inf 𝑀rev⁄  (15) 

The physical meaning of 𝑀rev is the semiintegral of the CV of a reversible system. By the above 

equations one can transform voltammograms to a form as if no diffusion hindrance were present 

(to 𝑗inf, cf. Eq. (13)) or if the charge transfer were completely diffusionally controlled (to 𝑀rev, cf. Eq. 

(14)). Parameter H (cf. Eq. (15)) has just the same physical meaning as in Eq. (5), 𝐻 = 𝑘a √𝐷red⁄ +

𝑘c √𝐷ox⁄ . 

By the combination of Eqs (11) and (14)  we get  

1

𝑅ct
=

1

𝑅ct,inf
−

d𝐻

d𝐸
∙ 𝑀 =

d𝑗inf

d𝐸
−

d𝐻

d𝐸
∙ (𝑀rev −

𝑗

𝐻
) = 

 

 

       =
d(𝐻 ∙ 𝑀rev)

d𝐸
−

d𝐻

d𝐸
∙ 𝑀rev +

1

𝐻

d𝐻

d𝐸
∙ 𝑗 = 𝐻 ∙

d𝑀rev

d𝐸
+

1

𝐻

d𝐻

d𝐸
∙ 𝑗 

(16) 

By combining Eqs. (12) and (14) we get  

1

𝜎W
=

1

𝐻
(

1

𝑅ct,inf
−

d𝐻

d𝐸
∙ 𝑀) =

1

𝐻

d𝑗inf

d𝐸
 −

1

𝐻

d𝐻

d𝐸
(𝑀rev −

𝑗

𝐻
) = 

 

 

       =
1

𝐻
(

d(𝐻 ∙ 𝑀rev)

d𝐸
−

d𝐻

d𝐸
∙ 𝑀rev) +

1

𝐻2

d𝐻

d𝐸
∙ 𝑗 =

d𝑀rev

d𝐸
+

1

𝐻2
 
d𝐻

d𝐸
∙ 𝑗 (17) 

To resume, all four equations (Eqs. (11),(12),(16),(17) express linear relations, from their intercepts 

and slopes the potential derivatives of 𝑗inf,  𝑀rev and H – all of which are PPI functions – can be 
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obtained. This is summarized in the following table, which contains also the linear equations of the 

CV case, Eqs (13) and (14): 

 

Eq.No. dependence intercept slope 

(13) 𝑗 vs 𝑀 𝑗inf −𝐻 

(14) 𝑀 vs 𝑗 𝑀rev − 1 𝐻⁄  

(11) 1 𝑅ct⁄  vs 𝑀 d𝑗inf d𝐸⁄  − dH d𝐸⁄  

(12) 1 𝜎W⁄  vs 𝑀 (1 𝐻⁄ ) ∙ d𝑗inf d𝐸⁄  −(1 𝐻⁄ ) ∙ dH d𝐸⁄  

(16) 1 𝑅ct⁄  vs 𝑗 𝐻 ∙ d𝑀rev d𝐸⁄  +(1 𝐻⁄ ) ∙ dH d𝐸⁄  

(17) 1 𝜎W⁄  vs 𝑗 d𝑀rev d𝐸⁄  +(1 𝐻2⁄ ) ∙ dH d𝐸⁄  

Table 1. The linear dependences.  

 

3. Discussion 

3.1. Limiting cases 

There are two limiting cases worth to be tested: 

(i) At very short times following the start of scanning or polarization (𝑡~0), or at very high scan-rates 

(when there is little if any diffusion hindrance), the surface concentrations remain the same as prior 

to scanning; that is, the same as in the bulk. Hence 𝑗(𝐸) = 𝑗inf(𝐸) and 𝑀(𝑡)  ≅ 0. Thus the intercept 

of the 1/𝑅ct vs M(t) line (cf. Eq. (11)) is 1/𝑅ct,inf, i.e. the slope of the diffusion-free polarization curve.  

(ii) At very long times (𝑡 → ∞) or at very low (effectively zero) scan-rates, the surface concentrations 

reach a steady state and they are determined by the actual potential and the Nernst equation. (This 

is the “dc reversible case”, which has been analysed e.g. in Ch.4.2.2 of Ref. 13.) Within the 

framework of the present kinetics-centered analysis, this means that 𝑘a(𝐸)𝑐red
s =  𝑘c(𝐸)𝑐ox

s , cf. Eq. 

(1). In this case j=0, hence the intercept of the 1/𝜎W vs 𝑗(𝑡) line is d𝑀rev d𝐸⁄  (cf. Eq.18). This property 

has already been shown, in a more general form, in [19]. 

Eqs.(16) and (17) allow us to define 

       𝑅ct,ss = 𝑅ct(𝑡 → ∞) = 1 (𝐻 ∙ d𝑀rev d𝐸⁄ )⁄  (18) 

and 

       𝜎W,ss  = 𝜎W(𝑡 → ∞) = 1 (d𝑀rev d𝐸⁄ )⁄  (19) 
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where ss in the subscript refers to steady state.  These are the quantities which are obtained from 

EIS measurements.  

 

3.2. Tests of typical cases: numerical simulations (I) 

To illustrate the properties of the functions and transformations involved in the previous section, a 

set of CVs, 𝑅ct(𝐸), and 𝜎W(𝐸) functions have been simulated numerically. The calculations of the 

PPI functions were carried out from these functions afterwards. The input functions of the 

simulation are the 𝐻(𝐸), 𝑗inf(𝐸) functions; from these the 𝑀rev(𝐸) =  𝑗inf(𝐸)/𝐻(𝐸)  and the 

derivatives dH d𝐸⁄ , d𝑗inf d𝐸⁄ , and d𝑀rev d𝐸⁄  have also been calculated. These functions are shown 

in Fig.1, with the electrochemistry-related parameters of the simulations listed in the legend. 

 

 

Fig.1. PPI input functions of the simulations (a) and related derived functions (b) and (c). The 

electrochemistry-related parameters of the simulation are as follows: 𝑐red
b = 10−5mol/cm3, 𝑐ox

b =

10−6mol/cm3, 𝐷red = 𝐷ox = 10−5cm2/s; 𝑘a(𝐸) = 𝑘0exp(𝛼aF(𝐸 − 𝐸0) R𝑇⁄ ) and  𝑘c(𝐸) =

𝑘0exp(− 𝛼cF(𝐸 − 𝐸0) R𝑇⁄ ) with 𝑘0 = 10−3cm/s; 𝛼a = 0.6 .and 𝛼𝑐 = 0.4. 

 

The simulations were performed in a novel way: In contrast to the simulations in Ref [11], where 

the CVs were calculated with a traditional explicit Euler method of solving the diffusional equation 

[20], here we applied the fast semiintegration algorithm of Ref. [21], thereby employing a new, fast 

method to calculate the 𝑗(𝑡) and  𝑀(𝑡) functions and hence the 1/𝑅ct(𝑡)  and 1/𝜎W(𝑡) curves as 

well for the quasi-reversible redox systems. The simulation procedure is shown as a pseudocode in 

Appendix A.  

The potential program starts at the actual redox potential, i.e. at E0-0.059 V, then one complete 

cycle is performed with E0+0.3V and E0-0.3V potential limits with scan-rates as indicated on the 
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plots. The effects of IR drop and double-layer charging are disregarded; the time resolution of the 

simulation is 0.1ms; the potential resolution is 1mV (all data points were averaged in 1mV potential 

intervals).  

The simulated 𝑗(𝐸(𝑡)), 𝑀(𝐸(𝑡)) functions and the reciprocals of the 𝑅ct(𝐸(𝑡)) and 𝜎W(𝐸(𝑡)) 

functions are shown in Fig.2. These four are the input data for the subsequent calculations, which 

comprise two steps:  

First, linearity of the 1 𝑅ct⁄  vs 𝑀 and of the 1 𝜎W⁄  vs 𝑗 functions (cf. Eqs. (11) and (17)) is 

demonstrated in Figs 3a and 3b.  

Second, the ordinate intercepts and the slopes of these lines are calculated using a linear least 

squares fitting procedure [22] and are plotted as a function of potential. The ordinate intercepts of 

the 1 𝑅ct⁄  vs 𝑀 lines (=1 𝑅ct,inf⁄ = d𝑗inf d𝐸⁄ , cf. Eq.(11)) are shown in Fig.3c as blue diamonds. These 

points lie on the top of the solid line of the input function d𝑗inf/dE (same as the one in Fig.1b). The 

intercepts of the 1 𝜎W⁄  vs 𝑗 lines, (=1 𝜎W,ss⁄ = d𝑀rev d𝐸⁄ , cf. Eq. (17))), plotted in Fig.3d as blue 

diamonds, fitting well to the solid line of 𝑑𝑀rev/d𝐸, which is another input function, same as the 

one in Fig.1b.  

The slopes of the 1 𝑅ct⁄  vs 𝑀 lines, (=d𝐻 d𝐸⁄ , cf. Eq.(11)) are plotted in Fig.3c as red circles. These 

points lie on the top of the solid line of the input function d𝐻/dE (same as the one in Fig.1c). Finally, 

for the sake of completeness, the slopes of the 1 𝜎W⁄  vs 𝑗 lines, (= (1 𝐻2⁄ ) ∙ d𝐻 d𝐸⁄ , Eq. (17)) are 

plotted in Fig.3d as blue diamonds. Theses points fit well to the solid line of (1 𝐻2⁄ ) ∙ 𝑑𝐻 𝑑𝐸⁄  which 

is calculated from the input function, same as the one in Fig.1c.  

 

Note that in each four case of Figs 3c and 3d the plots of the symbols lie on (or very close to) the 

solid lines, indicating that using the extrapolation procedure we obtain the same data as those of 

the input functions. The self-consistency of the simulation+extrapolation procedure is supported by 

the lack of hysteresis on the 1 𝑅ct,inf⁄ (𝐸) and the 1 𝜎W,ss⁄ (𝐸) curves. 
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Fig.2. Simulated curves at scan-rates as indicated. a.) The CVs. b.) The semiintegrated CVs. c.) The 

1/𝑅ct(𝐸) functions. d.) The 1/𝜎W(𝐸) functions.  
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Fig.3. Demonstration of linearity (cf. Eqs. (11) and (17)) and of how the PPI functions are obtained 

from the intercepts and slopes.  

a.) 1 𝑅ct⁄  vs 𝑀 lines at potentials indicated. b.) 1 𝜎W⁄  vs 𝑗 lines at potentials indicated.  

c.) Intercepts (blue diamonds) and slopes (red circles) of the 1 𝑅ct⁄  vs 𝑀 lines of (a) as function of 

potential (cf. Eq. (11)). Solid lines: the input functions of d𝑗inf d𝐸⁄  and |d𝐻 d𝐸⁄ | – same as those in 

Figs 1b and 1c. 

d.) Intercepts (blue diamonds) and slopes (red circles) of the 1 𝜎W⁄  vs 𝑗 lines of (b) as function of 

potential (cf. Eq. (17)). Solid lines: the input functions of d𝑀rev d𝐸⁄  and (1 𝐻2⁄ ) ∙ d𝐻 d𝐸⁄  – same 

as those in Figs 1b and 1c. 
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3.3. Tests of typical cases: numerical simulations (II) 

The properties of the DEIS method have been demonstrated using an archetype of the quasi-

reversible redox systems: the ferro-ferricyanide couple [4,7]. In these studies, however, no plots 

similar to Figs 2c and 2d have been created. The authors of these papers were aware of that the 

𝑅ct(𝐸) and 𝜎W(𝐸) functions should be different for the forward and backward scans – and both 

groups found very little differences. The simulations of this section may shed light on the reasons. 

A simulation pair is shown with all parameters but the rate coefficients being the same. On Fig. 4a-

4d CVs, 1/𝑅ct(𝐸) and 1/𝜎W(𝐸) are shown, simulated for a redox couple with k0=10-3 cm/s, i.e. the 

same as at Fig 2. Note the increasing CV peak separation with scan-rate; the  1/𝑅ct(𝐸) and 1/𝜎W(𝐸) 

functions have big hystereses. For the simulations of Fig 5a to 5c k0=10-2 cm/s was chosen – this is a 

k0 value that is still an order of magnitude smaller than that of the ferro-ferricyanide couple [23]. 

For this latter system, the increase of the CV peak separation with scan-rate is barely visible, and 

the hystereses of the 1/𝑅ct(𝐸) and 1/𝜎W(𝐸) functions almost vanish. To conclude, we can observe 

marked scan-rate dependences of the impedance-related parameters for those systems that exhibit 

a significant scan-rate dependence of the CV peak-separation.  

 

 

Fig.4. Simulated curves at scan-rates as indicated. a.) The CVs. b.) The 1/𝑅ct(𝐸) functions. c.) The 

1/𝜎W(𝐸) functions. The electrochemistry-related parameters of the simulation are as follows: 

𝑐red
b = 10−6mol/cm3, 𝑐ox

b = 0 mol/cm3, 𝐷red = 𝐷ox = 10−5cm2/s;  

𝑘a(𝐸) = 𝑘0exp(𝛼aF(𝐸 − 𝐸0) R𝑇⁄ ) and  𝑘c(𝐸) = 𝑘0exp(− 𝛼cF(𝐸 − 𝐸0) R𝑇⁄ )  

with 𝑘0 = 10−3cm/s; 𝛼a = 𝛼𝑐 = 0.5. 
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Fig. 5. Simulated curves at scan-rates as indicated. For details, see the legend of Fig.4. The only 

difference is 𝑘0 = 10−2 cm/s. 

 

3.4. Transformation of AWVs to impedance spectrum parameters and back 

Based on the above equations, we can transform voltammograms given as 𝑗(𝐸(𝑡)) and 𝐻(𝐸) 

function pairs (or any two of the j,H,M ensemble) to 𝑅ct(𝐸) and 𝜎W(E) pairs and back.  

As an example we show how to transform voltammogram js and Ms to impedance parameters 

(provided that we know 𝐻(𝐸)). We start with Eq. (13): 

d𝑗

d𝐸
=

d(𝑗inf − 𝐻 ∙ 𝑀)

d𝐸
=

1

𝑅ct,inf
−

d (𝐻 ∙ 𝑀)

d𝐸
 (20) 

By substituting 1 𝑅ct,inf⁄  from Eq. (11), we get 

1

𝑅ct
=

d𝑗

d𝐸
+ 𝐻 ∙

d𝑀

d𝐸
=

d𝑗

d𝐸
+

𝑗inf

𝑀rev
∙

d𝑀

d𝐸
 (21) 

With 𝜎W = 𝑅ct ∙ 𝐻 (cf. Eq.(5)) we get  

1

𝜎W
=

1

𝐻
∙

d𝑗

d𝐸
+

d𝑀

d𝐸
=

𝑀rev

𝑗inf
∙

d𝑗

d𝐸
+

d𝑀

d𝐸
 (22) 

Note the simplicity and symmetry of Eqs. (21) and (22).  
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3.5. Summary of the important equations 

 

 charge transfer coupling diffusion 

CV 𝑗 = 𝑗inf − 𝐻 ∙ 𝑀 𝐻 = 𝑗inf 𝑀rev⁄  𝑀 = 𝑀rev − 1 𝐻⁄ ∙ 𝑗 

DEIS 
1

𝑅ct
=

d𝑗inf

d𝐸
−

dH

d𝐸
∙ 𝑀 𝐻 = 𝜎W 𝑅ct⁄  

1

𝜎W
=

d𝑀rev

d𝐸
+

1

𝐻2
 
d𝐻

d𝐸
∙ 𝑗 

Table 2. The relation of the four important equations connecting the four measured quantities 

(𝑗, 𝑀, 𝑅ct, 𝜎W)  with the four PPI quantities (𝑗inf, 𝑀rev, d𝑗inf d𝐸⁄ , d𝑀rev d𝐸) ⁄ .  

 

The important equations and their relations are summarized in Table 2. Two points need emphasis: 

(i) The CV and the DEIS measure the large and small signal (”global” and “local”) responses of the 

system. The slopes and intercepts of the linear equations of the DEIS are just the potential 

derivatives of those of the CV equations. (ii) Note the central role of the parameter combination 

𝐻 = 𝑘a √𝐷red⁄ + 𝑘c √𝐷ox⁄ . in the equation set. 

 

3.6. Practical implication: determination of the charge transfer rate coefficients 

 

1. The determination of electrochemical charge transfer rates usually requires high purity 

experiments, because the measurement is very sensitive to the cleanliness of the interface. 

One may reduce the spoiling of the interface if the experiment is carried out quickly. This is 

the big advantage of DEIS, where a CV cycle along with one hundred audio-frequency 

impedance spectra can be acquired within less than a minute; meanwhile, in case of EIS, 

measurements may last for hours. The main role of the above derivation is that it clearly 

shows the connection of the 𝜎W,ss, 𝜎W, 𝑅ct,inf and 𝑅ct parameters, and their roles in classical 

EIS and DEIS studies. 

2. One cannot determine rate coefficients directly from voltammetry or impedance 

measurements. All what we can obtain is the 𝐻(𝐸) function of Eq. (5), which is a combination 

of rate coefficients and diffusion coefficients. Fortunately, the latter ones are independent 

of potential and can be obtained through special 𝑀rev(|𝐸 ≫ 𝐸1/2|) measurements (like 

measuring Cottrell-transients). Even then, to separate the anodic and cathodic rate 
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coefficients, we have to assume a certain (typically exponential) potential dependence of 

them. 

3. Determination of rate coefficients from CVs has two difficulties. The first is due to the non-

zero electrolyte resistance, to the so-called “IR-drop”. This can be significantly reduced by 

electronic IR-compensation or can be corrected by the procedure explained in Section 3.2.2. 

of [11]. The second difficulty is the consequence of that the double layer’s charging current 

depends on many (often uncontrollable) parameters. The double layer capacitance, 𝐶dl, – 

being the attribute of the interface – is very sensitive to contaminations of the solution and 

hence it is difficult to make any “double layer correction” or “baseline correction”. That is 

why the evaluation is indefinite also with the traditional ways of CV evaluations listed in 

Section 3.2.4. of [11]. Using DEIS is a good alternative: by fitting an appropriate equivalent 

circuit (typically a Randles-circuit) the 𝜎W and 𝑅ct quantities are separated from the obtained 

𝐶dl and 𝑅s. (We note that in many cases 𝐶dl is to be replaced by a constant-phase element 

to obtain a good fit, but this is a minor complication which has not much effect on the 

kinetics-related parameters much.)  

4. For impedance measurements, we always assume the steady state of the system; in the 

present case, that of the overlined concentrations in Eq.3. Evidently, this condition holds for 

slow scans with high frequency impedance measurements and does not hold for fast scans 

with low frequencies. The maximum scan-rate depends on how fast we can measure the 

impedance spectra, which in turn, depends on many technical details of the impedance 

spectrum measurement. There exist no exact, unique equation relating the maximum scan-

rate to the frequency range of impedance measurement; however, as a thumb's rule, we can 

say that the spectrum measurement is correct if the potential change during a spectrum 

measurement is smaller than RT/F (≈27 mV).  (Note that if a Kramers-Kronig test reveals non-

self-consistency at the low frequency end of the spectrum, even then it is easy to truncate 

the impedance spectrum by discarding a couple of points of the lowermost frequencies.) 

An example: in preliminary experiments of the present author, using a setup similar to the 

one described in Ref. 3, spectra comprising 41 spectrum points in the 10 Hz and 13.2 kHz 

frequency range could be measured in every 300 ms; during this time, with 50 mV/s scan-

rate the potential changed 15 mV. Hence, for this particular measurement system with 10 

Hz low frequency limit, the scan-rate was limited to 50 mV/s. 
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5. One role of this theory is to help to understand the origin of differences in the 𝜎W and 𝑅ct 

parameters measured by EIS and DEIS. By EIS we determine 𝜎W,ss (=  (d𝑀rev d𝐸⁄ )−1  cf. Eq. 

(19)) and  𝑅ct,ss ( =  (𝐻 ∙ d𝑀rev d𝐸⁄ )−1, cf. Eq. (18)); their ratio is just the same H as of the σW 

and 𝑅ct obtained from spectra acquired by DEIS.  

4. Conclusions 

The previous theory of Ref. [11] showed how to transform quasi-reversible voltammograms to yield 

two potential-program invariant functions, 𝑗inf  and 𝑀rev. The present theory plays a similar role by 

producing two other potential-program invariant (e.g. scan-rate invariant) functions for the Faraday 

admittance, 𝑅ct, inf and  𝜎W, rev. 𝑗inf  and 𝑀rev are the large signal response curves (“global” response 

functions) of the system whereas the reciprocals of 𝑅ct, inf and  𝜎W, rev are the small signal, or “local” 

response functions. The local response functions are the potential derivatives of the global response 

functions. The connections between the measured and the PPI functions – as summarized in Table 

2 – are surprisingly simple. 

From the point of view of measurements of charge transfer kinetics, it is of great importance that 

the 𝐻 = 𝜎W/𝑅ct equation holds also for spectra measured by DEIS. This opens a new route for the 

high accuracy determination of charge transfer rate coefficients of quasi-reversibe redox systems.  
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List of symbols 

 

𝑡, 𝐸, 𝑣 time, electrode potential, scan-rate 

𝑗, 𝑗inf current density, and current density at infinite transport 

𝑅ct , 𝑅ct, inf charge transfer resistance and charge transfer resistance at infinite transport rate 

𝑅ct,ss charge transfer resistance in the steady state of the electrode 

M, 𝑀rev semiintegrated current density (cf. Eq.(8)), and semiintegrated current 

 density for reversible redox systems 

𝜎W , 𝜎W, ss, Warburg coefficient and Warburg coefficient in the steady state of the electrode; 

 see also Section 3.1 

𝑐red, 𝑐ox concentration of the reduced and oxidized species in the electrolyte bulk 

𝑐red
s , 𝑐ox

s   concentration of the reduced and oxidized species at the electrode surface 

𝐷red, 𝐷ox diffusion coefficient of the reduced and oxidized species 

𝑘a , 𝑘c  rate coefficient of the anodic and cathodic reactions 

𝛼a , 𝛼c  charge transfer coefficient of the anodic and cathodic reactions 

𝑘0 , 𝐸0  standard rate coefficient and standard potential of the redox reaction 

H parameter combination of 𝑘a , 𝑘c , 𝐷red, and 𝐷ox  (cf. Eq.(5)). 

n charge number of the electrode reaction  

F,R,T Faraday’s number, universal gas constant, temperature 
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Appendix A. The simulation algorithm 

The core of the CV simulation algorithm, as a pseudocode is as follows. All the variable names are 

the same as those in the “Theory” section (though typographically different). The FRLT() function 

is the fast semiintegration algorithm (“Fast Riemann-Liouville-Transform algorithm”). In fact, it is a 

low-pass recursive filter array, constructed to have a transfer characteristics of 1 √𝑠⁄  in the 

Laplace space. For details, including the initialization of the filter array, see Ref. 21. 

 

do  
 t(i)=t(i-1)+deltat 
 E(i)=CalculateNextPotential_for_ t(i) 
 ka(i) = k0 × Exp(+alphaa × FperRT * (E(i) - E0)) 
 kc(i) = k0 × Exp(-alphac × FperRT * (E(i) - E0)) 
 H(i)=ka(i)/sqrt(Dred)+ kc(i)/sqrt(Dox) ‘cf. Eq. (5) 
 j(i) = nF×ka(i)×csred – nF×kc(i)×csox ‘cf. Eq. (1)  
 M(i) = FRLT(j(i)) 
 csred = cbred – M(i) / (nF×SqrOfDred) ‘cf. Eq (6)  
 csox = cbox + M(i) / (nF×SqrOfDox) ‘cf. Eq. (7)  
  
 dE=E(i)-E(i-1) 
 dka=ka(i)-ka(i-1) 
 dkc=kc(i)-kc(i-1) 
 Rct(i)=1/(nF×(csred×dka – csox×dkc/dE))  ‘cf. Eq.(3)  
 sigmaW(i)=Rct(i)*H(i)  ‘cf. Eq. (5) 
  
 WriteDataToFile(t,E,j,M,Rct,sigmaW) 
 
 jinf(i) = nF×ka(i)×cbred – nF×kc(i)×cbox ‘cf. Eq. (2) 
 Mrev(i)=jinf(i)/H(i) ‘cf. Eq. (15) 
 WriteDataToFile(H, jinf, Mrev) 
loop for all data 
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