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Abstract

Using linear matrix inequality (LMI) conditions, we propose a computational

method to generate Lyapunov functions and to estimate the domain of attrac-

tion (DOA) of uncertain nonlinear (rational) discrete-time systems. The pre-

sented method is a discrete-time extension of the approach first presented in

(Trofino and Dezuo, 2013), where the authors used Finsler’s lemma and affine

annihilators to give sufficient LMI conditions for stability. The system represen-

tation required for DOA computation is generated systematically by using the

linear fractional transformation (LFT). Then a model simplification step not

affecting the computed Lyapunov function (LF) is executed on the obtained lin-

ear fractional representation (LFR). The LF is computed in a general quadratic

form of a state and parameter dependent vector of rational functions, which are

generated from the obtained LFR model. The proposed method is compared

to the numeric n-dimensional order reduction technique proposed in (D’Andrea

and Khatri, 1997). Finally, additional tuning knobs are proposed to obtain

more degrees of freedom in the LMI conditions. The method is illustrated on

two benchmark examples.
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1. Introduction

Finding or at least approximating the domain of attraction (DOA) of a

locally stable equilibrium point of a nonlinear dynamical system is an important

but also a non-trivial task in model analysis and controller design/evaluation.

This task is most often solved by using a local Lyapunov function (LF), which5

can determine an invariant stability domain by considering an appropriate level

set of the LF. Due to this fact, numerous works have been devoted to the

computational construction of LFs, see e.g. [1, 2, 3, 4, 5], where the authors

used analytical techniques to iteratively obtain a LF for continuous-time (CT)

and/or hybrid switched systems. In [6], an analytical Lyapunov-like solution10

is proposed for discrete-time (DT) nonlinear dynamical systems by introducing

the so-called G-functions. Unlike Lyapunov functions, G-functions do not need

to be positive or negative definite. For convergence analysis of DT dynamical

systems, [7, 8] used Banach fixed-point principle together with a contraction

mapping theorem.15

At the same time, there exist alternative numerical Lyapunov-based ap-

proaches to determine forward invariant subsets of the state-space, for exam-

ple, [9, 10] proposed a simulation-guided LF computation method for nonlinear

switched and DT systems, respectively, by applying some linear constraints ob-

tained from the execution traces of the dynamics in discrete sample points of a20

bounded subset of the state-space. Based on multi-resolution state-space sam-

pling approach, [11] considered an initial quadratic finite-step Lyapunov func-

tion to systematically find a LF in a general quadratic form of nonlinear terms

alongside with a (possibly non-convex) bounded invariant region. The proposed

method is applicable for a wide class of DT nonlinear dynamical systems.25

Another popular approach for DOA estimation is the so-called sum of squares

(SOS) programing. In [12], a rational Lyapunov function and a polynomial

static output control law is searched to estimate and manipulate the robust
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DOA for uncertain polynomial systems by solving quasi-convex bilinear matrix

inequalities (BMIs), which are formulated from SOS constraints.30

It is worth mentioning that the theory of linear matrix inequalities (LMIs)

and semidefinite programming (SDP) have made a considerable progress in the

last two decades, and together with the useful system modeling technique, the

linear fractional transformation (LFT), they provide a powerful framework for

stability analysis, robust control and filtering problems. In this field, several35

new results are available [13, 14, 15]. In [16], the authors used a quadratic LF

and LFT to represent a rational nonlinear system, and defined convex conditions

for stability analysis and state feedback design.

In [17] an LMI approach is presented together with Finsler’s lemma, in order

to construct polynomial Lyapunov functions for discrete-time nonlinear systems40

with parameter uncertainties. A recent important result in this line of research

is presented in [18], where the authors used Finsler’s lemma and the notion of

affine annihilators to generate sufficient LMI conditions ensuring local stability

for uncertain rational CT systems. The Lyapunov conditions are required only

within a bounded polytopic subset of the state-space, therefore, it is enough45

to check the feasibility of the obtained LMIs only in the corner points of the

polytope. Based on this work, [19] analysed the synthesis of sufficient conditions

for finite-time stability of nonlinear quadratic systems using polynomial LFs,

furthermore, [20] used truncated Taylor expansion to estimate the robust DOA

for non-polynomial nonlinear systems.50

The results of [18] were developed further in [21, 22], which proposed an

LFT-based systematic procedure to construct the required differential-algebraic

system representation needed for stability analysis. The authors proposed an

efficient method to generate so-called maximal annihilators needed for LMI com-

putations and introduced a model simplification technique, which resulted in a55

dimensionally reduced optimization problem compared to other known LMI-

based solutions in the literature [23, 24, 25, 26, 18].

In this paper, we extend the ideas presented in [18, 21, 22] to discrete-

time uncertain rational systems. The parameter dependent LF is searched in
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a general quadratic form of rational terms obtained from the linear fractional60

representation of the dynamic equation. An estimate for the robust DOA is

computed within a predefined bounded polytopic subset of the state-space and

it is computed as the intersection of the largest level set of the Lyapunov function

(inside the polytope) for the different values of the uncertain parameters. To give

sufficient LMI conditions for the required properties of the LF we used Finsler’s65

lemma with maximal annihilators proposed by [21]. The LMI condition for the

decreasing property of the LF along the system trajectories is composed in two

different ways. Both methods are based on the expansion of the parameter space

of the LMI problem by introducing new rational terms into the model.

The paper is organized as follows: Section 2 presents the LMI approach70

for the computational robust DOA estimation for uncertain nonlinear DT sys-

tems. In the next section, we propose an LFR simplification method based on

both symbolic and numerical operations. In Section 4, we present two tuning

techniques to introduce new degrees of freedom into the second LMI, which

implies the decrease of the LF along the system trajectory. In the last section,75

three benchmark examples are introduced, on which the proposed approach is

illustrated and evaluated.

1.1. Notations, abbreviations

In this paper, we will use the following notations and abbreviations: i = 1, n

denotes that i ∈ {1, . . . , n}. 0n×m and In denote the n×m zero matrix and the80

n×n unit matrix, respectively. We use A � 0 and A ≺ 0 to denote that A ∈ Sm

is positive and negative definite, respectively, where Sm denotes the cone of the

m × m symmetric matrices. Given a scalar valued positive definite function

V : Rn → R, its particular level set Ωα =
{
x ∈ Rn | V (x) ≤ α

}
is said to be

the α-level set of V (x), additionally, V (x) is called proper if Ωα is a compact85

set for all α > 0. Function f : Rn → R is called rational if it can be given

as an algebraic fraction of polynomials p(x) and q(x) of the variables x1, ..., xn,

namely f(x) = f(x1, ..., xn) = p(x)
q(x) . Furthermore, f(x) is said to be well-defined

on X ⊆ Rn if q(x) 6= 0 for all x ∈ X . We call a polynomial monic if its leading
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coefficient is 1. The transpose of a matrix A is denoted by AT . In this paper,90

we consider discrete-time (DT) dynamical systems, for which the kth sample

of signal x is denoted by x[k]. In order to simply represent the dynamics of a

system let us use the notation: x+[k] = x[k + 1], k ∈ N.

1.2. The studied uncertain system class

In this paper, we consider DT nonlinear systems of the form

x+ = f
(
x, %
)

= A(x, %)x, (1)

where x[k] ∈ Rn is the state vector, %[k] ∈ Rr is a vector of possibly time-

dependent uncertain parameters. For simplicity, the time arguments of x, x+

and % are suppressed in the sequel. During the stability analysis we assume

only a bounded polytopic set of initial conditions X , including the origin 0 ∈ X ,

furthermore, we assume that the possible values of the uncertain parameter

vector % belong to a bounded polytope P. We require that polytopes X ⊂ Rn,

P ⊂ Rr be given a priori. Moreover, it is assumed that f : X × P → Rn is a

vector valued function of x and % having the form

f(x, %) =


f1(x, %)

...

fn(x, %)

 , fi(x, %) =

Mi∑
j=1

pij(x, %)

qij(x, %)
, i = 1, n, (2)

where fi : X × P → R are well-defined rational functions on the polytope95

X × P, pij(x, %) and qij(x, %) are polynomials of (x, %) and qij(x, %) 6= 0 for

all (x, %) ∈ X × P. We assume that f(0, %) = 0 for all % ∈ P, i.e. the origin

x∗ = 0 is a fixed-point of function f(·, %) for all admissible values of the uncertain

parameter % ∈ P. Consequently, f(x, %) can be written in the form A(x, %)x,

where A(x, %) is a square matrix of rational functions. We assume that the rate100

of change of the uncertain parameter is bounded, namely, for all k ∈ N there

exists σ[k] ∈ R such that %[k + 1] = %[k] + σ[k], where R ∈ Rr is a bounded

polytope. With an abuse of notation, we can also write that %+ = %+ σ.

We require that the fixed-point x∗ = 0 is locally asymptotically stable. The

set of all initial conditions, from which the solutions x[k] converge to x∗ along105

5



all possible %[k] ∈ P and σ[k] ∈ R trajectories is called the domain of attraction

(DOA) [23].

1.3. Model representation

In order to systematically build up a system representation required for the

robust DOA estimation [18, Eq. (16)], the authors of [21] proposed to start

with the linear fractional representation (LFR) of the system equation (1). The

LFT/LFR is discussed in detail in Chapter 10 of [15] or in the users’ manual

[27]. The nonlinear dynamics of the system equation (1) can be given as follows:

x+ = Ax+Bπ, (3a)

y = Cx+Dπ,

A ∈ Rn×n, B ∈ Rn×p,

C ∈ Rp×n, D ∈ Rp×p,

∆(x, %) ∈ Rp×p,

(3b)

π = ∆(x, %) y, (3c)

where Eqs. (3a) and (3b) define a linear time-invariant system with a nonlin-

ear feedback characterized by the uncertain nonlinear square operator ∆(x, %)

in (3c). Matrices A, B, C and D of (3a-b) are constant matrices. x ∈ Rn is

the state vector, π, y ∈ Rp represent the feedback signals through the nonlin-

ear uncertain operator ∆(x, %). In short, we refer to representation (3a-c) as

Fl(A,B,C,D,∆). In order to give a set of rational functions to consider in

the parameterized Lyapunov function, [21] proposed to express variable π ∈ Rp

from (3b-c) by eliminating the auxiliary variable y ∈ Rp:

G(x, %)x+ F (x, %)π(x, %) = 0, (3d)

where G(x, %) = −∆(x, %)C ∈ Rp×n,

F (x, %) = Ip −∆(x, %)D ∈ Rp×p.

Hence, we obtain an explicit expression for vector π = π(x, %), namely

π(x, %) = −F−1(x, %)G(x, %)x, ∀(x, %) ∈ X × P. (3e)
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We prescribe further algebraic equality constraints:

Nb(x, %)πb(x, %) = 0, ∀(x, %) ∈ Rn+r, (3f)

where πb(x, %) =

 x

π(x, %)

 ∈ Rm=n+p,

in order to well represent the algebraic interdependence between the state vari-

ables x1, ..., xn and the nonlinear state and parameter dependent coordinates of110

vector π(x, %). Matrix Nb(x, %) ∈ Rq×m, is a matrix of affine expressions in x

and % and is called an affine annihilator. The six equations in (3) give together

a model representation, which allows LMI-based LF computation and robust

DOA estimation as proposed by [18].

Assumptions. Representation (3) is supposed to fulfill the following assump-115

tions:

(A1) Operator ∆(x, %) is a diagonal matrix and is affine in the state variables

x1, ..., xn and in the uncertain parameters %1, ..., %r. With this regular-

ization, the state and parameter variable matrices G(x, %) and F (x, %) are

affine functions of x and %, hence, we call them affine matrices.120

(A2) Matrix F (x, %) is invertible for all (x, %) ∈ X × P, i.e. the LFR (3a-c) is

well-posed.

According to [27], assumption (A2) is an equivalent formulation of that

A(x, %) = A+B (I −∆(x, %)D)−1 ∆(x, %)C (4)

is bounded on X ×R, namely, the system equation f(x, %) = A(x, %)x is well-

defined on X ×R.

1.4. Lyapunov function candidate125

In [18], a suitable LF for representation (3) is searched in the form

V (x, %) = πTb (x, %)P πb(x, %), (5)

where P ∈ Rm×m is a (not necessarily positive definite) symmetric matrix of

free parameters. The combined vector πb(x, %) defined in (3f) contains the state
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variables and the uncertain rational functions of π(x, %), which together deter-

mine the structure of the candidate rational parameter dependent Lyapunov

function. The difference of the LF along the system trajectories can be given

by the following equation

δV (x, %, σ) = V
(
f(x, %), %+ σ

)
− V (x, %), (6)

where (x, %, σ) ∈ X × P ×R.

The necessary Lyapunov conditions for local stability are the following

vl(‖x‖) ≤ V (x, %) ≤ vu(‖x‖) ∀(x, %) ∈ X × P, (7a)

δV (x, %, σ) ≤ −vd(‖x‖) ∀(x, %, σ) ∈ X × P ×R, (7b)

where vl, vu and vd are strictly increasing continuous scalar functions, being

zero in ‖x‖ = 0.

Remark 1. Even though the true DOA of the fixed-point x∗ might be un-

bounded, the method proposed in this paper assumes that X and P are bounded130

polytopes. Therefore, the computed stability domain, which should be located

entirely in the interior of X , will be bounded.

2. LMI approach to estimate the robust DOA

The Lyapunov conditions (7) are ensured by sufficient parameter dependent

LMI conditions, in which the annihilators (3f) play an important role, namely,135

they represent equality constraints between the coordinates of πb(x, %), there-

fore, they introduce additional degrees of freedom into the optimization problem

through the introduction of some Lagrange multipliers. In this section, we adapt

the technique proposed by [18] to discrete-time (DT) systems of the same class

described in Section 1.2 and given in representation (3). The main result can140

be summarized as follows.

Proposition 2.1. Let

V (x, %) = πTb (x, %)P πb(x, %), P ∈ Rm×m, m = n+ p (5)
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be a rational LF for the system model (3). Then, the change of the LF along

the system trajectories can be given in the following form

δV (x, %, σ) = πTa (x, %, σ)Rπa(x, %, σ), R ∈ Rm
′×m′ , (8)

where m′ = n + 2p, πa(x, %, σ) ∈ Rm′ is a vector of rational functions of x,

% and σ. Moreover, due to Finsler’s lemma [18, 28, 29], the positivity and the

negativity of V (x, %) and δV (x, %, σ), respectively, can be ensured by the following

two sufficient affine parameter dependent LMI conditions:

P + LbNb(x, %) +NT
b (x, %)LTb � 0, ∀(x, %) ∈ X × P (9a)

R+LaNa(x, %, σ)+NT
a (x, %, σ)LTa ≺ 0, ∀(x, %, σ) ∈ X×P×R (9b)

where P ∈ Rm×m, Lb ∈ Rm×q and La ∈ Rm′× q′ are free matrix variables, and

the elements of matrix R = R(P ) are affine expressions of the free variables

in matrix P . Finally, Nb(x, %) ∈ Rq×m and Na(x, %, σ) ∈ Rq′×m′ are affine

annihilators for πb(x, %) and πa(x, %, σ), respectively.145

Proof. The fact that (9a) implies (7a) is a direct consequence of Finsler’s lemma

and is also discussed in [18] in Theorem 4.1. In order to derive LMI (9b), we

consider the difference equation of the LF with respect to the system dynamics

x+ = f(x, %), that is

δV (x, %, σ) = πTb
(
f(x, %), %+ σ

)
P πb

(
f(x, %), %+ σ

)
− πTb (x, %)P πb(x, %).

(10)

Let us introduce the auxiliary vector

πa(x, %, σ) =


x

π(x, %)

π+(x, %, σ)

 ∈ Rn+2p, (11)

with π+(x, %, σ) = π(x+, %+) = π(f(x, %), %+ σ). (12)

Then, the right multipliers of P in (10) can be given as follows:

πb
(
f(x, %), %+ σ

)
=

Ax+Bπ
(
x, %
)

π+(x, %, σ)

 = Aaπa(x, %, σ), (13a)
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and

πb(x, %) =

 x

π(x, %)

 = Eaπa(x, %, σ), (13b)

where

Aa =

A B 0

0 0 Ip

 , Ea =
(
Im 0p×m

)
. (13c)

Considering the newly introduced objects in (13), δV (x, %, σ) can be written in

form (8), where

R = ATa PAa − ETa PEa. (14)

Now, letNa(x, %, σ) be an affine annihilator of πa(x, %, σ). Then, Finsler’s lemma

implies that function δV (x, %, σ) is negative for all (x, %, σ) ∈ X ×P ×R if (9b)

is satisfied.

Due to the fact that the matrix inequalities in (9) are polytopic LMIs,

namely, their expressions are affine in x, %, σ, which belong to bounded poly-150

topes, it is enough to check the feasibility of (9) only in the corner points of

X × P and X × P ×R, respectively.

2.1. The notion of a maximal affine annihilator

Due to the equality (3d) of representation (3), a possible annihilator for

πb(x, %) can immediately be given by composing the block matrix Cb(x, %) =155 (
G(x, %) F (x, %)

)
. However, it is shown in [18] that in most cases the appli-

cation of an additional annihilator Nb(x, %) of Eq. (3f) may result in even less

conservative LMI conditions, and hence in a better estimate for the DOA. In or-

der to exploit the advantageous properties of Finsler’s lemma, the construction

of so-called maximal affine annihilators was proposed in [21] This approach can160

be applied in the discrete-time case as well.

Let f : Rs → R be given in the form f(w) = πT (w)Qπ(w), where w ∈ Rs,

π(w) ∈ Rm is a vector of rational functions and Q ∈ Rm×m is a symmetric

matrix of free parameters. Function f(w) is required to be positive for all
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parameter values w 6= 0 belonging to a bounded polytope W ∈ Rs, which

can be ensured by the following (sufficient) affine parameter dependent LMI

condition

Q+ LN(w) +NT (w)LT � 0, ∀w ∈ W, (15)

where N(w) ∈ Rq×m is an affine annihilator of π(w), namely, N(w)π(w) = 0,

for all w ∈ Rs. We say that N(w) is a maximal affine annihilator of π(w)

if for any possible affine annihilator N1(w) ∈ Rq1×m of π(w) the feasible set of

the corresponding LMI

Q+ L1N1(w) +NT
1 (w)LT1 � 0, ∀w ∈ W (16)

for matrix Q is contained in the feasible set of the LMI characterized by the

maximal annihilator (15). In other words, for any affine annihilator N1(ω), if a

symmetric matrix Q with a certain multiplier L1 ∈ Rm×q1 is a solution for (16),

then there exists a matrix L ∈ Rm×q, such that Q with L is a solution for (15).165

From the point of view of the DOA estimation, this means that for a given

(fixed) set of rational functions πb(x, %) and πa(x, %, σ) in Eqs. (3f) and (11),

using maximal affine annihilators Nb(x, %) and Na(x, %, σ) in LMIs (9) will lead

to the largest DOA estimate, which can be obtained by using affine annihilators.

At the same time, an annihilator from a broader class of matrix functions may170

lead to an even less conservative solution for matrix P of Eq. (5), but the

corresponding computation problem is not guaranteed to be solvable in a convex

optimization framework.

2.2. Computing a robust stability domain

Let us call a given set X ⊂ Rn a robust stability domain (RSD) of fixed-point175

x∗, if the system trajectory converges to x∗ from any initial condition x[0] ∈ X,

for any %[k] ∈ P and σ[k] ∈ R for all k ∈ N. Note that an RSD is always a

subset of the true DOA of a fixed-point x∗, moreover, the computed RSD can be

considered as an estimate of the true DOA. Using a Lyapunov function V (x, %)

satisfying (7) a possible RSD can be computed as follows.180
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1. First of all, let us define the “hyper” level set of V (x, %) in the extended

space Rn+r of (x, %):

Ωα =
{

(x, %) ∈ Rn+r
∣∣ V (x, %) ≤ α

}
. (17)

In Figure 1, the boundary of this level set Ωα is illustrated by the orange

contour line. Note that every point (x, %) ∈ Ωα, for which % 6∈ P, is

irrelevant in the stability analysis, therefore, these points may be omitted

from of Ωα and we may introduce the following truncated set (illustrated

by the filled orange region in Figure 1):

Ωα,P = Ωα ∩ (Rn × P). (18)

We can assume that, for a certain value α, the truncated level set Ωα,P

is contained (entirely) in X × P ⊂ Rn+r, therefore, Ωα,P is invariant

with respect to the system dynamics, namely (x[0], %[0]) ∈ Ωα,P implies

that (x[k], %[k]) ∈ Ωα,P for all k ∈ N. Moreover, according to [18, Corol-

lary 4.1], the feasibility of LMIs (9) imply that for any initial condition185

(x[0], %[0]) ∈ Ωα,P the system trajectory x[k] will tend exponentially to

the fixed-point x∗ = 0, for any %[k] ∈ P and σ[k] ∈ R, for all k ∈ N.

2. Secondly, we introduce an auxiliary set, which can be considered as a

“projection” of Ωα,P onto the subspace of the state variables (Rn) defined

in the following way (Figure 1, blue interval):

Ω̄α,P = {x ∈ Rn | ∃% ∈ P such that (x, %) ∈ Ωα,P}. (19)

Note that Ω̄α,P ⊂ X if Ωα,P ⊂ X × P.

3. Finally, we give a robust stability domain for the fixed-point:

Ω̄x0

α,P = {x ∈ Rn | (x, %) ∈ Ωα,P for all % ∈ P} ⊆ Ω̄α,P . (20)

Observe that, for any initial conditions from the RSD Ω̄x0

α,P , the state

vector will remain inside Ω̄α,P and will converge to the fixed-point inde-190

pendently of the time evolution of the uncertain parameters.
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Figure 1: In this figure, we illustrate how the ro-

bust stability domain is computed by using a spe-

cific level set of the obtained parameter dependent

Lyapunov function. For simplicity, the RSD of a

first order system is illustrated in this figure with a

single uncertain parameter. The orange contour line

(Ωα) illustrates the α level set of the LF V (x, %).

The light green strip (Rn × P) highlights the re-

gion, where % ∈ P. The filled orange region il-

lustrates the truncated level set Ωα,P . This trun-

cated set is invariant with respect to the system

dynamics. The blue and green intervals illustrate

the projected sets Ω̄α,P and Ω̄x0α,P , respectively. If

the initial value of the state variable x[0] belongs

to the computed robust stability domain Ω̄x0α,P , the

state x[k] will remain inside Ω̄α,P for all k ≥ 0 and

will tend to the origin, independently of the uncer-

tain parameter %[k], i.e. x[k] ∈ Ω̄α,P and x[k] → 0

for all x[0] ∈ Ω̄x0α,P and for all %[k] ∈ P such that

%[k + 1]− %[k] ∈ R for all k ≥ 0.
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In [18, Eqs. (89) and (90)], the authors introduced two further LMI condi-

tions, which ensure that the truncated unitary level set Ω1,P is entirely inside

of X × P. Furthermore, an objective function is proposed to be minimized in

order to stretch Ω1,P inside X × P as much as possible. From now on, we will195

consider the truncated unitary level set Ω1,P (and the corresponding RSD Ω̄x0

1,P)

instead of Ωα,P .

3. Symbolic LFR model simplification

In this section, we present an improved version of the model simplification

method for representation (3) proposed by [22], furthermore, we show that the200

transformed smaller LFR model results in smaller dimensional LMI conditions

(9) for stability but giving the same Lyapunov function and computed RSD as

the initial higher dimensional LMIs would determine.

3.1. Non-uniqueness of LFR representation

It is obvious that the linear fractional representation (3a-c) is not unique205

for a given system dynamics, and the different representations may result in

different Lyapunov functions, thus in different computed robust stability do-

mains. However, in many cases, we can reduce the number of equations in the

initial LFR while maintaining the same LF and the same computed RSD. This

is obviously advantageous from a computational point of view, since the smaller210

dimensional LFR results in the same DOA estimate with less computational

effort. In order to given an initial LFR for the system equation, we use the

symbolic LFT techniques [30, 31, 32, 33] implemented in function sym2lfr of

the Enhanced LFR-toolbox for Matlab [34, 27] (LFR-toolbox).

Using our model simplification technique, the initial LFR is considered “re-215

ducible” if there exist certain coordinates of the generated combined vector

πb(x, %), which can be expressed by the linear combination of its other coordi-

nates (with constant coefficients).
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It is worth mentioning that the LFR-toolbox offers to use the numeric n-

dimensional order reduction (n-DOR) technique [35], which produces a Kalman-220

like decomposition of matrices (D,C,B,A) of representation (3a-c) and elimi-

nates the unobservable and uncontrollable modes from the model. This model

transformation results in a so-called relative minimal representation, notion de-

fined in [36, 27]. In our RSD computation framework, the model generated by

the n-DOR is often not the best suited in the practical examples (see eg. [22])225

due to the following possible issues:

1. Due to the numeric floating point operations of n-DOR, the obtained

LFR Fl(Ă, B̆, C̆, D̆, ∆̆) generates a vector of rational functions π̆(x, %) =

(I − ∆̆D̆)−1∆̆C̆x having a highly complex symbolic representation.

2. As it is demonstrated in [22, Section 5.2], we may lose significant degrees230

of freedom in the DOA computation if we use n-DOR. Consequently, the

reduced model may result in a more conservative estimation for the true

DOA.

3.2. The proposed approach for LFR simplification

Based on both symbolic and numeric operations, a transformation is pro-235

posed in [22] for representation (3), such that certain pairs of variables (πi, yi)

can be eliminated from the transformed realization of the initial LFR (3a-c),

since they do not affect the system equation (1) of the nonlinear dynamics. Dif-

ferently from n-DOR, it is not guaranteed that the obtained smaller realization

(with a smaller operator ∆̂(x, %) ∈ Rk×k, k < p), is relative minimal, but it240

still has advantageous properties for RSD computation. The main advantage

of the proposed model simplification method is that it results in a reduced set

of functions π̂(x, %) ∈ Rk, which define the same LF (5) as the original vector

π(x, %). In other words, the smaller LFR results in a smaller dimensional but

equivalent LF computation problem.245

In this section, we propose an improved model simplification technique based

on [22]. First of all, a symbolic decomposition of the combined vector πb(x, %)

15



is considered:

πb(x, %) =
1

q(x, %)
·Θπ0(x, %), (21)

where Θ ∈ R(n+p)×K is a constant coefficient matrix, π0(x, %) is a vector of

distinct monic monomials and q(x, %) is the smallest degree common monic de-

nominator of the rational functions in πb(x, %). If we disallow Θ to contain

completely zero columns and fix the order of monomials in π0(x, %), this decom-

position is unique. In order to compute this decomposition, we refer to Section250

3 of [22].

Example 1. Consider the following possible value for vector πb(x, %). Its de-

composition is given by:

πb(x, %) =



x1

x2

x1

x2
1+4

x2
1

x2
1+4

x3
1

x2
1+4


=

1

x2
1 + 4

·



1 0 0 4 0

0 1 0 0 4

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0


·



x3
1

x2
1x2

x2
1

x1

x2


,

dimensions: n = 2, p = 3. (22)

Note that matrix Θ is rank deficient, and the last element in πb(x, %) can be

expressed by a linear combination of the other elements, namely

x3
1

x2
1 + 4

= x1 − 4
x1

x2
1 + 4

. (23)

In this case, we have the possibility to eliminate the redundant element from

πb(x, %), such that the reduced set of rational functions will define the same

algebraic rational structure for the Lyapunov function.

The main results on LFR simplification are summarized in the next propo-255

sition, in which we show that if Θ is rank deficient, we can derive a simplified

model representation and solve a smaller dimensional LMI condition to obtain

the same Lyapunov function characterizing the same guaranteed robust stability

domain of the dynamical system.
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Proposition 3.1. Let us consider a system in representation (3) and a Lya-260

punov function with the given algebraic structure (5) determined by vector πb(x, %)

that is considered in the decomposed form (21). We assume that matrix Θ is

rank deficient (rank Θ = n+ k < n+ p) and the coordinates of vectors π and y

in representation (3) are written such that the first n+ k rows of matrix Θ are

linearly independent.265

1. Then, there exist matrices

T1 ∈ Rp×n, T2 ∈ Rp×k and E =
(
Ik 0k×(p−k)

)
(24)

such that the LFR with a smaller dimensional block ∆̂

x+ = Âx+ B̂π̂, (25a)

ŷ = Ĉx+ D̂π̂, (25b)

π̂ = ∆̂(x, %)ŷ, (25c)

where

Â = A+BT1, B̂ = BT2,

Ĉ = EC + EDT1, D̂ = EDT2,

∆̂(x, %) = E∆(x, %)ET ,

satisfies Assumptions (A1) and (A2) and represents the same dynamics

as the initial LFR (3a-c).

2. Furthermore, if we express vector π̂ = π̂(x, %) from Eqs. (25b) and (25c)

as

π̂(x, %) = −F̂−1(x, %) Ĝ(x, %)x, ∀(x, %) ∈ X × P, (25d)

where Ĝ(x, %) = −∆̂(x, %) Ĉ ∈ Rp×n,

F̂ (x, %) = Ik − ∆̂(x, %) D̂ ∈ Rp×p,

then, for every symmetric matrix P ∈ R(n+p)×(n+p) there exists a smaller

17



symmetric matrix P̂ ∈ R(n+k)×(n+k) such that

V (x, %) = πTb (x, %)P πb(x, %) = π̂Tb (x, %) P̂ π̂b(x, %),

for all (x, %) ∈ Rn+r, where π̂b(x, %) =

 x

π̂(x, %)

 .
(26)

3. If matrix P is a solution of the parameter dependent LMI

P + LN(x, %) +NT (x, %)LT � 0, ∀(x, %) ∈ X × P (27)

for some matrix L ∈ R(n+p)×q, then matrix P̂ of Eq. (26) is a solution of

the smaller dimensional LMI

P̂ + L̂ N̂(x, %) + N̂T (x, %) L̂T � 0, ∀(x, %) ∈ X × P (28)

with matrix L̂ = STL and N̂(x, %) = N(x, %)S, that is an affine annihila-

tor for π̂b(x, %), and

S =

In 0n×k

T1 T2

 ∈ R(n+p)×(n+k) (29)

is a full column-rank matrix, where T1 and T2 were introduced in Eq. (24).

4. If the obtained LFR returned by our proposed model simplification method

can be further reduced by n-DOR, the final relative-minimal model (com-270

puted by n-DOR) will result in a more conservative LF computation prob-

lem.

Proof. 1. Considering decomposition (21), note that matrix Θ can be written

in the following block-matrix form:

Θ =


Θx

Θπ1

Θπ2

 ∈ R(n+p)×K , (30)

where Θx ∈ Rn×K , Θπ1 ∈ Rk×K , Θπ2 ∈ R(p−k)×K . Correspondingly, we
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can consider a partitioning of system (3a-c):

x+ = Ax+B1π1 +B2π2, (31a)

y1 = C1x+D11π1 +D12π2 ∈ Rk, (31b)

y2 = C2x+D21π1 +D22π2 ∈ Rp−k, (31c)

π1 = ∆1(x, %)y1 ∈ Rk, (31d)

π2 = ∆2(x, %)y2 ∈ Rp−k. (31e)

Due to the fact that the first n + k rows of Θ are linearly independent,

there exist matrices Γ1 ∈ R(p−k)×n and Γ2 ∈ R(p−k)×k such that

Θπ2 = Γ1Θx + Γ2Θπ1 . (32)

Namely, the rows of Θπ2
can be expressed as the linear combinations of

the rows in matrices Θx and Θπ1
. This directly implies that the explicit

expressions of π1 and π2 satisfy the following identity:

π2(x, %) = Γ1x+ Γ2π1(x, %), and πb(x, %) =


x

π1(x, %)

π2(x, %)

 . (33)

The transformation matrices to obtain (25a-c) and (28) can be written

as

T1 =

0k×n

Γ1

 , T2 =

Ik
Γ2

 (29)
=⇒ S =


In 0

0 Ik

Γ1 Γ2

 . (34)

Using matrix S, the original vector πb(x, %) can be expressed by the terms

of x and π1(x, %) as follows:

πb(x, %) = S π̂b(x, %), where π̂b(x, %) =

 x

π1(x, %)

 . (35)
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Substituting π2 = Γ1x + Γ2π1 into Eqs. (31a) and (31b), we obtain a

reduced LFR:

x+ = (A+B2Γ1)x+ (B1 +B2Γ2)π1, (36a)

y1 = (C1 +D12Γ1)x+ (D11 +D12Γ2)π1, (36b)

with π1 = ∆1(x, %)y1. (36c)

Equations (31c) and (31e) can be detached from (36), since in this trans-

formed representation, the system’s dynamic equation (36a) does not de-275

pend on π2 and y2. Representation (36) describes the same dynamics as

the original (decomposed) model (31) with matrices given in (34).

On the other hand, considering the block-matrix decomposition of matri-

ces G(x, %) and F (x, %) of (3e), equality (3d) can be rewritten as follows:

k l

p− k l


n︷ ︸︸ ︷

G1(x, %)

k︷ ︸︸ ︷
F11(x, %)

p−k︷ ︸︸ ︷
F12(x, %)

G2(x, %) F21(x, %) F22(x, %)




x

π1(x, %)

π2(x, %)

 = 0. (37)

Having (33), and taking only the first k rows of (37), we obtain the fol-

lowing identity:

Ĝ(x, %)x+ F̂ (x, %)π1(x, %) = 0, (38)

where

Ĝ(x, %) = G1(x, %) + F12(x, %) Γ1,

F̂ (x, %) = F11(x, %) + F12(x, %) Γ2 = F1:(x, %)T2,

F1:(x, %) =
(
F11(x, %) F12(x, %)

) (39)

Due to the fact that both matrices F1:(x, %) and T2 are full row and col-

umn rank matrices, respectively, for all (x, %) ∈ X ×R, matrix F̂ (x, %) is

invertible for all (x, %) ∈ X ×R, therefore, vector π1(x, %) can be expressed

as follows:

π1(x, %) = −F̂−1(x, %) Ĝ(x, %)x, (40)

which completes the proof of the first part of Proposition 3.1.
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2. Let us introduce the block-matrix decomposition of matrix P of the initial

Lyapunov function V (x, %) in (26):

P =

P11 P12

P21 P22

, where P11 ∈ R(n+k)×(n+k). (41)

Due to (35), equality (26) can hold if matrix P̂ has the value:

P̂ = STP S = P11 + ΓTP21 + P12Γ + ΓTP22Γ (42)

where Γ := (Γ1 Γ2). Thus, the second part of the proposition is proven.

For the sake of completeness, we will show that the two expressions for

Ĝ(x, %) and F̂ (x, %) in Eqs. (25d) and (39) are equivalent. First of all,

we derive the explicit formulas of Gi(x, %) , Fij(x, %) in the terms of the

decomposed matrices of the partitioned representation (31):G1(x, %)

G2(x, %)

 = −

∆1(x, %) 0

0 ∆2(x, %)

C1

C2

 = −

∆1C1

∆2C2

 ,

and F11(x, %) F12(x, %)

F21(x, %) F22(x, %)

 =

Ik −∆1D11 −∆1D12

−∆2D21 Ip−k −∆2D22

 .

Considering the expressions of matrices Ĉ and D̂ of (25), we have that

Ĝ(x, %) = G1(x, %) + F12(x, %)Γ1

= −∆1C1 −∆1D12Γ1 = −∆1Ĉ,
(43)

F̂ (x, %) = F11(x, %) + F12(x, %)Γ2

= (Ik −∆1D11)−∆1D12Γ2 = Ik −∆1D̂.
(44)

Finally, we obtained the the two definitions (25d) and (39) for matrices280

Ĝ(x, %) and F̂ (x, %) are equivalent.

3. Assume that (27) is feasible with P and for some L. Since S is full column-

rank, the following matrix inequality

ST
(
P + LN(x, %) +NT (x, %)LT

)
S � 0 (45)

holds for all (x, %) ∈ X × P, which implies (28).
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4. Let Fl(Ă, B̆, C̆, D̆, ∆̆) denote the relative-minimal LFR computed by the

n-DOR and let

π̆1 =
(
Ik′ − ∆̆D̆

)−1

∆̆C̆x ∈ Rk
′
, π̆b =

 x

π̆1

 ∈ Rn+k′ (46)

denote the corresponding set of rational functions (k′ < k).

According to [35, Theorem 4] and [27, Section 2.6], the relative-minimality

of Fl(Ă, B̆, C̆, D̆, ∆̆) implies that there exists a similarity transformation

for Fl(Â, B̂, Ĉ, D̂, ∆̂) defined by

H =

H1

H2

 , H−1 =
(
H ′1 H ′2

)
∈ Rk×k, H1 ∈ Rk

′×k,

π̆ =

π̆1

π̆2

 = H π̂ =

H1π̂

H2π̂

 , (47)

such that the last k− k′ number of variables π̆ (namely π̆2: the unobserv-

able/uncontrollable modes) of the transformed LFR model

Fl
(
Â, B̂H−1, HĈ,HD̂H−1, H∆̂H−1

)
(48)

can be eliminated, since the remaining equations of the transformed LFR

(48) represents the same closed-loop system equation f(x, %). If we con-

sider the block matrix decomposition of matrices H and H−1 as presented

in (47), the relative-minimal representation can be given as:

Fl(Ă, B̆, C̆, D̆, ∆̆) = Fl
(
Â, B̂H ′1, H1Ĉ,H1D̂H

′
1, H1∆̂H ′1

)
,

with π̆1 = H1π̂. (49)

Consequently, vector π̆b(x, %) can be expressed as a linear combination of

the terms of π̂b(x, %) as follows:

π̆b(x, %) = Hb π̂b(x, %), where Hb =

In 0

0 H1

 ∈ R(n+k′)×(n+k). (50)

Since the rational coordinate functions of π̂b(x, %) are (by construction)

linearly independent, matrix Hb defines a projection of the set of initial
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rational functions onto a smaller set of rational functions. In other words,

vector π̂b(x, %) cannot be retained from the projected vector π̆b(x, %) (as

the initial vector πb(x, %) can be expressed by π̂b(x, %) in Eq. (35)), there-

fore, the LF

V̆ (x, %) = π̂Tb (x, %)HT
b P̆Hbπ̂b(x, %), (51)

with the symmetric matrix P̆ ∈ Rk′×k′ of free parameters contains less

linearly independent rational terms than the initial LF. This clearly results285

in a more conservative (or at least not in a larger) DOA estimation.

4. Tuning knobs

In the following motivating example, we demonstrate that the obtained vec-

tor πa(x, %, σ) (defined in Eq. (11)), which contains the rational terms appearing290

in δV (x, %, σ), may be improved in the sense that the corresponding annihila-

tor Na(x, %, σ) represents more algebraic relations between the coordinates of

πa(x, %, σ). The following simple example illustrates such a case.

Example 2. Consider the following trivial dynamical system

x+ = x3, x[0] ∈ X = [−a, a], (52)

where a ∈ (0, 1) is a constant. Due to the fact that |x|3 < |x| for all x ∈ X the

solution will converge exponentially to the locally asymptotically stable fixed-

point x∗ = 0. Using LFT, the system equation (52) is given in representation

(3), with the following model matrices (A,B,C,D,∆) and vector π:

A B

C D

 =


0 0 1

1 0 0

0 1 0

 , ∆(x) =

x 0

0 x

 ,

π(x) =

x2

x3

 , πb(x) =


x

x2

x3

 .

(53)
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For this model, the LF is searched in form (5). The difference of the LF can

be written in form (8), where vector πa and its corresponding maximal affine

annihilator are the following:

Na(x) =

−x 1 0 0 0

0 −x 1 0 0

 , πa(x) =


x

π(x)

π+(x)

 =



x

x2

x3

x6

x9


.

Note that in case of using an affine annihilator, the algebraic interdependence

between the functions of π+(x) and πb(x) cannot be expressed, due to the

difference between the exponents of the monomials in πa(x). In other words,

the affine matrix Na(x) is an annihilator for a wide class of functions

za(x) =



x

x2

x3

z4(x)

z5(x)


, (54)

where z4(x) and z5(x) can be arbitrary scalar functions, since their algebraic

expression is not fixed relatively to each other or to the remaining coordinates295

of πa(x).

If we introduce some additional monomials into πa(x), such as x4, x5, x7,

x8, we can generate a more representative affine annihilator

Ña(x) =



x −1 0 0 0 0 0 0 0

0 x −1 0 0 0 0 0 0

0 0 x 0 0 −1 0 0 0

0 0 0 1 0 0 −x 0 0

0 0 0 x 0 0 0 −1 0

0 0 0 0 1 0 0 0 −x

0 0 0 0 0 x −1 0 0

0 0 0 0 0 0 0 x −1



. (55)
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such that the symbolic matrix multiplication Ña(x)π̃a(x) gives zero for a more

limited set of vectors z̃a(x), where π̃a(x) and z̃a(x) denote the augmented vectors

π̃a(x) =



x

x2

x3

x6

x9

x4

x5

x7

x8



, z̃a(x) =



x

x2

x3

z4(x)

z5(x)

x4

x5

x7

x8



. (56)

Therefore, Ña(x) can result in a higher dimensional but less conservative suffi-

cient LMI condition (9b) for the negativity of δV (x, %, σ).

Remark 2. Typically non-advantageous annihilators are those having com-

pletely zero columns but also the block diagonal matrices, e.g.

Na(x) =

−x 1 0 0

0 0 −x 1

 , πa(x) =


x

x2

x5

x6

 , za,k(x) =


x

x2

xk

xk+1

 . (57)

One can easily check that Na(x) · za,k(x) gives zero vector for any k ∈ N.

Based on the above observations, we can state the problem of improving an300

annihilator by adding further coordinates to πa(x, %, σ).

Problem statement. Assume the structure of πa(x, %, σ) is such that the

corresponding annihilator Na(x, %, σ) does not represent the algebraic inter-

dependence between the rational/polynomial terms in πa(x, %, σ), namely, the

obtained affine matrix Na(x, %, σ) is an appropriate annihilator for a large set305

of vectors za(x, %, σ) different from πa(x, %, σ). In this section, we present two

different techniques how to supplement the initial vector πa(x, %, σ), such that

the corresponding annihilator results in a less conservative LMI.
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4.1. Method I. Difference based approach

In [18, Theorem 4.1] the derivative of expression N(x, %)πb(x, %) = 0 is com-310

puted in order to generate a new vector π̄a(x, %, σ), in which further new rational

functions would appear. Furthermore, a closed formula is given for a possible

annihilator of π̄a(x, %, σ), which is successfully applied to compute forward in-

variant domain for continuous-time nonlinear systems. In this section, we adopt

this method for discrete-time systems.315

We propose to introduce the following new rational functions into πa(x, %, σ):

π̄a(x, %, σ) =

πa(x, %, σ)

µ(x, %, σ)

 , (58)

where µ(x, %, σ) =


µ1(x, %, σ)

. . .

µn(x, %, σ)

 ∈ Rn
2+2np,

and µk(x, %, σ) = x+
k πa(x, %, σ) ∈ Rn+2p, k = 1, n.

Due to this construction, the difference of the LF can be written in the terms

of the new set of rational functions, namely:

δV (x, %, σ) = π̄Ta (x, %, σ)
(
HTRH

)
π̄a(x, %, σ),

where H =
(
In+2p 0(n+2p)×(n2+2np)

)
.

(59)

The construction of the annihilator of the modified vector π̄a(x, %, σ) is pre-

sented in the following proposition.

Proposition 4.1. Let N(x, %) be an affine annihilator for πb(x, %) that is de-

composed as follows:

N(x, %) =

n∑
k=1

Nkxk +N0(%) ∈ Rq×m, (60)

where Nk are constant matrices and N0(%) is an affine matrix valued function of

%. Furthermore, let Na(x, %, σ) ∈ Rq′×m′ be an affine annihilator of the initial

vector πa(x, %, σ). Then, an annihilator for π̄a(x, %, σ) can be constructed as
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follows:

ℵπ̄a
(x, %, σ) =


Na(x, %, σ) 0q′×(n2+2np)

0nq′×(n+2p) W2(x, %, σ)

N0(%+)Aa W3

W41(x) W42

 ,

ℵπ̄a
(x, %, σ) ∈ R(q′+nq′+q+n2)×(n+1)(n+2p),

(61)

where %+ = %+ σ and

W2(x, %, σ) = In ⊗Na(x, %, σ),

W3 =
(
N1Aa N2Aa . . . NnAa

)
,

W41(x) = (In ⊗ x) ·
(
A B 0n×p

)
,

W42 = −In ⊗
(
In 0n×2p

)
.

(62)

In (62), operator ⊗ denotes the Kronecker product.

Proof. For the sake of simplicity, the arguments of vectors π, πb, πa, µ will be

suppressed in this proof. Affine matrix Na(x, %, σ) is an annihilator of πa and

hence of µk for all k = 1, n. On the other hand, if we compute the difference

of N(x, %)πb(x, %) and considering that π+
b = Aaπa, we obtain the following

identity:

δ(N(x, %)πb) = N(x, %)+π+
b −N(x, %)πb

= N0(%+)Aaπa +

n∑
k=1

NkAaµk

= N0(%+)Aaπa +W3 µ = 0.

(63)

Finally, we can observe that(
In 0n×2p

)
µk = xx+

k , (64)

therefore, if we collect vectors xx+
k into a composed vector, we obtain an affine
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relationship between µ and πa:

[
In ⊗

(
In 0n×2p

)]
· µ =


xx+

1

. . .

x x+
n

 = (In ⊗ x)x+

= (In ⊗ x) ·
(
A B 0n×p

)
πa.

(65)

Identity (65) gives the last row of annihilator ℵπ̄a
(x, %, σ).

In most cases, the newly introduced functions µk(x, %, σ) in vector π̄a(x, %, σ)320

result in a more representative annihilator ℵπ̄a
(x, %, σ), thus, the LMI (9b) cor-

responding to the new vector π̄a(x, %, σ) may result in a better estimate of the

DOA. Another advantage of this technique is that the introduction of vector

µ entails a closed formula for a possible annihilator for the augmented vector

π̄a(x, %, σ), although, annihilator ℵπ̄a
(x, %, σ) may not be maximal. At the same325

time, the n2 + 2np number of newly introduced functions in π̄a(x, %, σ) consti-

tute a significant increase in the dimension of the second LMI condition (9b),

especially in the case of a large number of nonlinear functions in vector π(x, %).

Example 2 (continued). If we apply Method I on the objects Na(x) and πa(x)

in (52) computed for the demonstrative model x+ = x3 of Example 2, we obtain

the following vector π̄
(1)
a (x) and its corresponding annihilator N̄

(1)
a (x):

N̄ (1)
a (x) =



x −1 0 0 0 0 0 0 0 0

0 x −1 0 0 0 0 0 0 0

0 0 0 0 0 x −1 0 0 0

0 0 0 0 0 0 x −1 0 0

0 0 0 −1 0 0 0 1 0 0

0 0 0 0 −1 0 0 0 1 0

0 0 x 0 0 −1 0 0 0 0


,

π̄(1)
a (x) =

(
x x2 x3 x6 x9 x4 x5 x6 x9 x12

)T
.

(66)

One can observe that three new monomials are introduced: x4, x5 and x12. The

first two monomials make possible to represent the interdependence between x3
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and x6. Note that this model can be further simplified by using the proposed

method presented in Section 3, since some functions appear multiple times in

the obtained vector π̄
(1)
a (x). In other words, the coefficient matrix Θ of the

obtained vector π̄
(1)
a (x) is rank deficient. Furthermore, according to [21, Section

4.1], a certain number of rows can be eliminated from the modified annihilator

N̄
(1)
a (x) without increasing the conservatism of the RSD computation problem.

The reduced model is the following:

N̄a(x) =



x −1 0 0 0 0 0 0

0 x −1 0 0 0 0 0

0 0 0 0 0 x −1 0

0 0 0 −1 0 0 x 0

0 0 x 0 0 −1 0 0


,

π̄a(x) =
(
x x2 x3 x6 x9 x4 x5 x12

)T
.

(67)

This annihilator N̄a(x) still has an unfortunate structure, since it has two zero

columns, but now, monomial x6 is well-represented due to the appearance of330

(the initially missing) monomials x4 and x5.

4.2. Method II. LFT based approach

In this subsection, we select new rational functions to supplement the initial

set of functions in πa(x, %, σ) by using the linear fractional transformation. This

approach guarantees that the finally obtained supplemented vector (denoted by

π̃a(x, %, σ)) will have a maximal annihilator Ña(x, %, σ), which has in each row

at least one nonzero element. Let us consider the linear fractional representation

of vector πa(x, %, σ) as follows:

πa = H1x+H2π̃,

z = T1x+ T2π̃,

π̃ = ∆(x, %, σ)z,

let π̃a =

x
π̃

 ,

with ∆(x, %, σ) ∈ Rp
′×p′ .

(68a)
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Using the second two equations of (68a), one can obtain the following explicit

expression for π̃:

π̃(x, %, σ) = −F−1
a (x, %, σ)Ga(x, %, σ)x,

where Fa(x, %, σ) = I −∆(x, %, σ)T2,

Ga(x, %, σ) = −∆(x, %, σ)T1,

(68b)

which also entails the following affine expression between the nonlinear coordi-

nate functions of vector π̃a(x, %, σ):(
Ga(x, %, σ) Fa(x, %, σ)

)
· π̃a(x, %, σ) = 0. (68c)

In order to eliminate the linearly dependent coordinate functions from vector

π̃a(x, %, σ), we applied again the proposed LFR simplification method described

in Section 3 to the LFR (68a). Without the loss of generality, we can assume335

that representation (68a) is already in its simplified form.

Using the terms of the new vector π̃a(x, %, σ), function δV (x, %, σ) can be

expressed as follows:

δV (x, %, σ) = π̃Ta (x, %, σ)
(
HTRH

)
π̃a(x, %, σ),

where H =
(
H1 H2

)
.

(69)

It is important to mention that, in most practical examples, π̃a(x, %, σ) is typ-

ically larger dimensional than π̄a(x, %, σ), however, due to the attributes of the

LFR, we can assure that there exists an annihilator for π̃a(x, %, σ), in which each

column contains nonzero elements. This result is summarized in the following340

proposition.

Proposition 4.2. Assume that the LFR (68a) is well-posed, namely matrix

Fa(x, %, σ) is invertible. Then, vector π̃a(x, %, σ) admits a maximal annihilator

Ña(x, %, σ), in which every row contains nonzero elements.

Proof. If n ≥ 2, a possible annihilator for π̃a(x, %, σ) can be given as follows:

ℵπ̃a
(x, %, σ) =

 ℵx 0(n−1)×p′

Ga(x, %, σ) Fa(x, %, σ)

 ,

where ℵx =
(
x2 −x1 ... 0

... ...
0 ... xn −xn−1

)
∈ Rn−1×n.

(70)
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The invertibility of Fa(x, %, σ) implies that each column of ℵπ̃a
(x, %, σ) contains345

at least one nonzero element. Additionally, each row of matrix ℵπ̃a
(x, %, σ) can

be given as the linear combination of the rows of a maximal affine annihilator

Ña(x, %, σ) of π̃a(x, %, σ). Finally we have that each column of Ña(x, %, σ) has

nonzero elements. If n = 1, it is easy to show that matrix T1 ∈ Rp′×1 of Eq.

(68a) and hence matrix Ga(x, %, σ) must be full rank, otherwise, according to350

(68b), π̃a(x, %, σ) would be zero.

As a consequence of Proposition 4.2, we can say that each coordinate of

vector π̃a(x, %, σ) is algebraically related to another coordinate of π̃a(x, %, σ)

given by the corresponding row of Ña(x, %, σ).

Example 2 (continued). The generated vector π̃a(x) and its corresponding

maximal annihilator are illustrated below for the system x+ = x3 of Example

2:

Ña(x) =



x −1 0 0 0 0 0 0 0

0 x −1 0 0 0 0 0 0

0 0 x 0 0 −1 0 0 0

0 0 0 1 −x 0 0 0 0

0 0 0 x 0 0 0 0 −1

0 0 0 0 1 −x 0 0 0

0 0 0 0 0 0 1 −x 0

0 0 0 0 0 0 0 1 −x



,

π̃a(x) =
(
x x2 x3 x6 x5 x4 x9 x8 x7

)T
.

(71)

Observe that the LFT generated a vector π̃a(x), in which every monomial ap-355

pears with degree less than or equal to 9. Note that annihilator Ña(x) has a

more advantageous structure than N̄a(x) generated by Method I, since Ña(x)

does not contain completely zero columns.
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5. Examples

In this section, we illustrate the operations of the proposed RSD computa-360

tion method through two different discrete-time dynamic equations. The results

presented in this section were computed in the Matlab environment equipped

with Enhanced LFR-toolbox for Matlab [34, 27]. To model and solve semidef-

inite optimization (SDP) problems, YALMIP [37] with Mosek solver [38] was

used. The computations were processed on a desktop PC with Intel Core i5-4590365

CPU at 3.30GHz and 16GB of RAM.

5.1. Gradient descent

In the literature, there exist many approaches to prove stability and conver-

gence of the diverse alternatives of the steepest descent and other fixed-point

algorithms. Two of the most popular techniques are based on Banach’s contrac-370

tion mapping theorem (see e.g. [39]) and on the well-known Lyapunov theorem.

In [40] a LF is considered to prove stability for a continuous-time version of the

steepest descent dynamics. In [41] a multi-variable robust adaptive gradient-

descent training algorithm is developed to train a recurrent neural network.

The convergence of the weight vector was proven using a diagonal quadratic375

Lyapunov function.

In this section, we consider the dynamics of the classical gradient descent

algorithm in order to demonstrate the operations of the proposed method. The

objective function to be minimized is chosen to be the energy (i.e. Hamilto-

nian) function of the Duffing oscillator. For the sake of completeness, we give

the dimensionless differential equation, which describes the free motion of the

undamped Duffing dynamics [42]

ÿ − βy + αy3 = 0, where β = b2, α = a2. (72)

If we introduce the state variables x1 = y and x2 = ẏ, the Hamiltonian function

of the oscillator is the following

H(x) =
1

4

(
2x2

2 − 2b2x2
1 + a2x4

1

)
. (73)
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This function has two local minima in (b/a, 0) and (−b/a, 0) for every nonzero

a, b parameter values. The gradient descent dynamics for this specific objective

function H(x) can be given as follows:

x+ = f(x, %) = x− % · ∇H(x), % ∈ P = [0.01, 0.1], (74)

where ∇H(x) denotes the gradient of function H(x), and % > 0 is the value of

the variable step-size belonging to the given bounded interval. Furthermore, we

make no restrictions on the rate of the parameter’s change, the only constraint

is that the value of parameter % in any future step should belong to the same

bounded interval, namely, %+ = % + σ ∈ P. In the computations, we let the

parameter values to be a = 0.5, b = 1. Using the proposed model transformation

in Section 3, the dynamics of the centered state vector x̄ = (x1 + b/a, x2)
T

can be given in representation (3) required for RSD computation. The model

matrices of the final simplified LFR (3) are

A B

C D

 =



1 0 −4 0 3 1

0 1 0 1 0 0

0.5 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 −0.5 0


, (75a)

∆(x, %) =

%I2 0

0 x1I2

 . (75b)

From the LFR (75), we have generated vector πb(x, %) ∈ Rm, for which a maxi-
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mal affine annihilator Nb(x, %) ∈ Rq×m is computed as proposed by [21]:

Nb(x, %) =



x2 −x1 0 0 0 0

% 0 −2 0 0 0

0 % 0 1 0 0

0 0 x1 0 −1 0

0 0 x2
x1

2 0 0

0 0 0 0 x1 2


, (76)

πb(x, %) =
(
x1 x2 0.5 %x1 −%x2 0.5 %x2

1 −0.25 %x3
1

)T
,

where the dimensions are the following: n = 2, p = 4, m = n+p, q = 6. To give

an LMI (9b) for the negativity of δV (x, %, σ), we have considered three different

setups:

1. Firstly, we used the initial vector πa computed as presented in (11), which380

resulted in a small dimensional but conservative LMI.

2. Secondly, we generated a larger vector π̄a as proposed in (58), which re-

sulted in a less conservative LMI, but the processing time increased sig-

nificantly.

3. Finally, as proposed in Method II in subsection 4.2, we used LFT and385

the proposed LFR simplification method to generate vector π̃a. This LMI

results in the largest RSD, but the processing time increased by more than

one order of magnitude compared to the case when using vector π̄a.

In order to compare the operations of the three models, we used three different

polytopes:

X0 = [−3.65,−0.9]× [−2.2, 2.2],

X1 = [−4.55,−0.3]× [−3.4, 3.4],

X2 = [−5, 0]× [−4, 4],

(77)

for which the LMIs are solved. Table 1 summarizes the results of the opti-

mization problems for each pair of vector πa and polytope Xi. In Figure 2 and390

Figure 3, the obtained RSD Ω̄1,P with Ω̄x0

1,P are illustrated. Additionally, the
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Figure 2: Trajectory (x[k], %[k]) for the gradient-descent dynamics (left) in case of a time-

varying step size %[k] (right). The computed truncated level set Ω1,P (green surface) was

obtained when using vector π̄a (method I) with polytope X1 (5th row of Table 1, see also

Figure 3d),

truncated level set Ω1,P is shown in Figure 2 alongside with a possible trajectory

(x[k], %[k]).

5.2. Uncertain Lotka-Volterra system

We consider a 2-dimensional Lotka-Volterra (LV) model with a constant

uncertain parameter % ∈ [1.8, 2.2]. The system equation of the LV model is the

following:

˙̄xi = x̄i(Ui(%)x̄+ bi), U(%) =

 −% −3

1.4 1

 , b =

 5

−2.4

 , (78)

where Ui(%) denotes the ith row of the parameter dependent model matrix

U(%), for i = 1, 2. This system has a unique nonzero equilibrium point at

x∗(%) = −U−1(%)b. In order to analyse the stability properties of x∗(%), we

translate the system into this equilibrium point by introducing the centered

state vector x = x̄ − x∗(%). One can immediately observe that the position of

the equilibrium point depends on the parameter’s value, therefore, this change

of coordinates is also parameter dependent. Substituting the centered state

vector into the system’s equation, we obtain an autonomous nonlinear system:

ẋi =
(
xi + x∗i (%)

)
Ui(%)x (79)
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set of functions, polytope area of Ω̄1,P Ω̄x0

1,P Xi in cubic units average proc. time

vector πa (initial), X0 7.5909 8.7803 12.1 (in Figure 3a) 0.1472 sec

vector π̄a (method I), X0 7.7690 8.7122 12.1 (in Figure 3b) 4.2773 sec

vector π̃a (method II), X0 9.2163 9.2168 12.1 (in Figure 3c) 86.014 sec

vector πa (initial), X1 no solution found

vector π̄a (method I), X1 18.2780 20.4107 28.9 (in Figure 3d) 4.4903 sec

vector π̃a (method II), X1 22.1316 22.1516 28.9 (in Figure 3e) 112.968 sec

vector πa (initial), X2 no solution found

vector π̄a (method I), X2 no solution found

vector π̃a (method II), X2 28.1455 28.2825 40 (in Figure 3f) 172.517 sec

Table 1: Results of the optimization problem for the three different set of rational functions

πa, π̄a, π̃a, and for the three different polytopes X0 ⊂ X1 ⊂ X2.

method dimension of πa dimension of its annihilator average processing time

initial vector πa 10 8× 10 0.1472 sec

method I: π̄a 30 34× 30 4.3838 sec

method II: π̃a 52 102× 52 123.833 sec

Table 2: Dimension of vector πa and its corresponding annihilator with the estimated overall

solver time in the three different cases.
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(a) Computed DOA estimate in case of πa

and X0.

(b) Computed DOA estimate in case of π̄a

and X0.

(c) Computed DOA estimate in case of π̃a

and X0.

(d) Computed DOA estimate in case of π̄a

and X1.

(e) Computed DOA estimate in case of π̃a

and X1.

(f) Computed DOA estimate in case of π̃a

and X2.

Figure 3: Computed DOA estimate for the classical gradient descent dynamics applied to

the Hamiltonian function H(x) of the Duffing oscillator (colored surface). The dashed black

rectangular region illustrates polytope X , in which the LMIs were tested. The blue and green

contour lines bound the computed regions Ω̄1,P and Ω̄x01,P , respectively. In order to make the

computed DOA estimate more visible, we projected X , Ω̄1,P and Ω̄x01,P onto the surface of

the objective function H(x). These are illustrated by the solid black, blue and green lines,

respectively.
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The equation of the approximated discrete-time version for this system (using

forward Euler method) is

x+
i = xi + h ·

(
xi + x∗i (%)

)
Ui(%)x, (80)

where h denotes the constant sampling period. Using the LFR-toolbox function395

sym2lfr, we obtain a model in the linear fractional representation Fl(A0, B0, C0, D0,∆0).

Without any further simplification procedure, the dimension of the operator ∆0

is 17× 17.

Applying the numeric n-DOR technique [35] (implemented in the LFR-

toolbox function minlfr), we obtain an LFR model Fl(Ă, B̆, C̆, D̆, ∆̆) with an

8 × 8 dimensional operator ∆̆. The rounded values of the transformed model

matrices are the following:

Ă B̆

C̆ D̆

 '



1 −0.0157 0 0 3.6021 0.7421 0 −0.03 0 0

0.0233 1.0167 0 0 −0.7294 3.6646 0 0 0 2.4825

0.206 0.1472 0.2397 −0.7678 0.5749 0.6412 0 −0.0055 −0.7469 0.3313

−0.0013 −0.0009 −0.0015 0.0048 −0.0036 −0.004 0 0 −0.227 −0.0021

−0.0013 −0.0009 0.0002 0.2667 −0.0035 −0.0039 0 0.0019 0.2594 0.0319

−0.0009 −0.0007 −0.0008 0.0531 −0.0026 −0.0029 0 0.0004 0.0516 −0.1549

−0.1416 0.2009 0.0022 0.5628 −0.6181 0.5623 0.2381 0.004 0.5475 0.4506

0 1.0011 0.5526 −0.0034 −0.7395 3.3246 0.7893 0 0 0

−0.0103 0 −0.0081 0.0001 −0.0341 −0.0076 0.0058 0 0 0

0.0056 0.004 0.0067 0 0.0157 0.0175 0 0 0 0



,

∆̆ = diag(%I5, x1I2, x2). (81)

The generated set of rational functions can be computed as follows: π̆ = (I8 −

∆̆D̆)−1∆̆C̆x. Due to the numerical floating point operations of the n-DOR, the400

symbolic expression of vector π̆ is exceedingly lengthy and complicated.

On the other hand, using the proposed symbolic LFR simplification proce-
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dure proposed in Section 3, we can generate the following LFR model:

A B

C D

 '



1 −0.0157 1 0 −5 0.15 0.0786 0 0 0.03 0

0.0233 1.0167 0 0 0.0513 −0.07 −5.0833 1.0167 0 −0.014 −4.27

−0.2433 0 0 1 1.2167 0 0 0 1 0 0

0 0 0 0 0 0 0 0 −0.2381 0 0

−0.0476 0 0 0 0.2381 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −0.0476 0

0 −0.0476 0 0 0 0 0.2381 0 0 0 0

0 −0.2398 0 0 0 0 1.1991 0 0 0 1

−0.01 0 0 0 0.05 0 0 0 0 0 0

0 −1 0 0 0 0 5 0 0 0 0

0 −0.0023 0 0 0 0 0.0117 0 0 0 0



,

∆ = diag(%I6, x1I2, x2) (82)

The sparse structure of matrices A, B, C, and D makes possible to obtain a

symbolically well-tractable explicit expression for the rational vector π:

π =
1

5%− 21
·



0.01%x1(21x1 − 5%x1 + 511)

−0.05%x2
1

%x1

−%x1x2

%x2

0.009836%x2(5x2 + 512)

0.21x2
1

21x1x2

0.04918x2
2



(83)

In Table 3, one can see the runtime results of the optimization procedure ob-

tained for both models Fl(Ă, B̆, C̆, D̆, ∆̆) and Fl(A,B,C,D,∆), the first ob-

tained by the numeric n-DOR technique and the second by our LFR simplifica-

tion technique. In order to reduce the conservatism of the second LMI (9b), in405

both cases we used the augmented vector π̄a proposed in Method I. In Figure 4

and 5, we illustrate the obtained RSD of the locally stable fixed-point.
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Figure 4: The truncated unitary

level set Ω1,P of the LF is illus-

trated in this figure (green surface).

The corresponding projected regions

Ω̄1,P and Ω̄x01,P are illustrated in Fig-

ure 5. The colored polytopes illus-

trate polytope X for the different

values of the uncertain parameter %.

0 0.5 1 1.5 2 2.5 3 3.5 4
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state x1
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Inner region Ω̄x0

1,P
Equilibrium point if
% = 1.8, 1.9, 2, 2.1, 2.2.
Limit of the unbounded
true DOA if % = 1.8, 2, 2.2.

Figure 5: The robust stability domain Ω̄x01,P of the unique non-trivial parameter dependent

fixed-point x∗(%) of the discretized Lotka-Volterra model is illustrated in this figure (solid

line) alongside with Ω̄1,P (dashed line). The position of the fixed-point x∗(%) is illustrated for

a few values of the uncertain parameter %. Furthermore, the approximated boundary of the

(unbounded) true DOA is illustrated by the thin dotted lines corresponding to three different

values of the uncertain parameter %. The approximate is computed by simulating the time

inverted continuous-time model.
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used model area of Ω̄1,P and Ω̄x0

1,P in cubic units processing time

initial: Fl(A0, B0, C0, D0,∆0) solver did not terminate successfully

n-DOR: Fl(Ă, B̆, C̆, D̆, ∆̆) 1.3037 2.1651 ∼ 1800 sec

simplified LFR: Fl(A,B,C,D,∆) 1.5019 2.4747 ∼ 450 sec

Table 3: Results of the optimization problem (areas of the obtained regions and processing

time), when using n-DOR and our proposed LFR simplification method to generate a smaller

LFR.

5.3. Three dimensional rational model

In the following third order rational system taken from [18, 21], we can

compare the discrete-time DOA estimate with the continuous-time case. The

continuous-time model of the system is:

ẋ = f(x), where f(x) =


x2 + ex3 + ex1

x2
2+1

−x1 − x2 + ex2
1

e(−2x1 − 2x3 − x2
1),

 , and e =
1

2
. (84)

Using forward Euler method, we can give a discrete-time model for this system:

x+ = x+ hf(x), (85)

where h denotes the constant sampling period. In the computations, we used

h = 0.1. After the symbolic model simplifications, the nonlinear terms in vector

π(x, %) are the following (for both CT and DT models):

π(x, %) =
(
x2

1
x1x

2
2

x2
2+1

x1x2

x2
2+1

)T
. (86)

Vector πa(x, %, σ) for the LMI (9b) are given differently for the CT and DT

cases: π
(DT)
a (x, %, σ) computed as presented in Eq. (11) in the DT case, and

π(CT)
a (x, %, σ) =

 πb(x, %)

∂π
∂xf(x, %) + ∂π

∂%σ

 (87)

in the CT case, where σ denotes the time derivative of δ in this case. In order

to obtain a larger estimate, the obtained rational terms in both π
(CT)
a (x, %, σ)
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and π
(DT)
a (x, %, σ) were supplemented with additional new rational terms as

proposed in Section 4.1 (Method I) and Section 4.1 (Method II). In order to be

able to evaluate the results of the operations in the four different cases, we used

a common polytope for all cases:

X = [−3.771, 3.5195]× [−4.6077, 5.1943]× [−8.4274, 6.7204]. (88)

The results of the RSD computation (including the volume of the computed

estimate) are presented in Table 4, and the corresponding stability domains are410

illustrated in Figures 7-10.

In order to evaluate the obtained DOA estimate, we approximated numer-

ically the true DOA of the continuous-time model. We simulated the system

on a sufficiently long horizon t ∈ [0, T ], from different initial conditions, which

are located in an appropriately dense grid. If the trajectories reach a certain415

guaranteed stability domain around the origin (e.g. ‖x(T )‖ < ε), we consider

the corresponding initial condition to be an element of the true DOA. In the

numeric computations, we used T = 60 and ε = 2, since the ball with a radius

of length 2 is completely inside of the guaranteed stability region illustrated

in Figure 9. The numerical simulations suggest, that the system features an420

unbounded DOA with an infinite volume. The approximate shape of a part of

this unbounded DOA is shown in Figure 6.

6. Conclusions

In this paper, we have proposed a computational method to estimate the

domain of attraction (DOA) of uncertain nonlinear (rational) discrete-time sys-425

tems based on Lyapunov theorem. The proposed approach is related to an ear-

lier method presented in [18], where the authors adopted Finsler’s lemma with

affine annihilators to construct polytopic LMI conditions for stability. Based

on linear fractional transformation and further symbolic model simplification

steps, we also presented a systematic method to obtain a system representation430

required for computational DOA estimation and to generate uncertain rational

terms, which will give the structure of the parameterized Lyapunov function.
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Figure 6: Numerically computed true DOA of the 3rd order rational system.

3D rational model m ma #new terms #vars volume solver time

CT + Method I. (Fig. 7) 6 27 18 1926 314.479 4.758 sec

CT + Method II. (Fig. 9) 6 21 12 1575 304.804 3.349 sec

DT + Method I. (Fig. 8) 6 36 27 2223 279.382 8.401 sec

DT + Method II. (Fig. 10) 6 54 45 6705 318.521 247.143 sec

Table 4: Results of the RSD computation for the continuous-time and discrete-time models

using both tuning-knobs described in Section 4.1 and Section 4.2. Column ma contains the

number of the overall rational terms in the second LMI conditions (9b), and it also gives the

size of the second LMI. The 4th column gives the number of the new rational terms, which

were introduced by Method I or II. In the 5th column we present the number of free decision

variables of the optimization problem. The last column presents the processing time of the

semidefinite optimization solver.
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Figure 7: Computed RSD estimate for the

CT model using the CT version of Method I

of Section 4.1 proposed in [18, Theorem 4.1].

Volume: 314.479 cubic units.

Figure 8: Computed RSD estimate for the

DT model using Method I of Section 4.1. Vol-

ume: 279.382 cubic units.

Figure 9: Computed RSD estimate for the

CT model using Method II of Section 4.2.

Volume: 304.804 cubic units.

Figure 10: Computed RSD estimate for the

DT model using Method II of Section 4.2.

Volume: 318.521 cubic units.
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The proposed linear fractional representation (LFR) simplification method

is based on our earlier results introduced in [22], Compared to the numeric n-

dimensional order reduction (n-DOR) technique, the proposed LFR simplifica-435

tion method may result in a higher dimensional LFR (with a larger block ∆), but

it keeps the transformed model matrices in a symbolically more tractable form.

Furthermore, we showed that the simplified smaller model gives the same LF

with the same computed DOA, but obtained by solving a smaller LMI problem

with less number of decision variables. Differently from n-DOR, our symbolic440

model simplification procedure was shown to keep the sparse matrix structure

of the model matrices (A,B,C,D) of the initial LFR model, therefore, the ob-

tained smaller dimensional model matrices will generate a reduced number of

symbolically more tractable rational functions. The simplified expressions of

the rational functions in πb are also advantageous when a maximal annihilator445

is generated for vector πb. Additionally, we have proposed two tuning heuristics

to obtain less conservative LMI conditions for the negativity of difference of the

Lyapunov function.
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Ministry of National Economy of Hungary through the projects KAP-1.1-17

and GINOP-2.3.2-15-2016-00002, respectively. The second author gratefully

acknowledges the research grants supported by the János Bolyai Research Schol-455

arship of the Hungarian Academy of Sciences.

References
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