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Long-read sequencing (LRS) has become increasingly important in RNA research due 
to its strength in resolving complex transcriptomic architectures. In this regard, currently 
two LRS platforms have demonstrated adequate performance: the Single Molecule 
Real-Time Sequencing by Pacific Biosciences (PacBio) and the nanopore sequencing 
by Oxford Nanopore Technologies (ONT). Even though these techniques produce lower 
coverage and are more error prone than short-read sequencing, they continue to be 
more successful in identifying polycistronic RNAs, transcript isoforms including splice and 
transcript end variants, as well as transcript overlaps. Recent reports have successfully 
applied LRS for the investigation of the transcriptome of viruses belonging to various 
families. These studies have substantially increased the number of previously known viral 
RNA molecules. In this work, we used the Sequel and MinION technique from PacBio and 
ONT, respectively, to characterize the lytic transcriptome of the herpes simplex virus type 
1 (HSV-1). In most samples, we analyzed the poly(A) fraction of the transcriptome, but we 
also performed random oligonucleotide-based sequencing. Besides cDNA sequencing, 
we also carried out native RNA sequencing. Our investigations identified more than 2,300 
previously undetected transcripts, including coding, and non-coding RNAs, multi-splice 
transcripts, as well as polycistronic and complex transcripts. Furthermore, we found 
previously unsubstantiated transcriptional start sites, polyadenylation sites, and splice 
sites. A large number of novel transcriptional overlaps were also detected. Random-primed 
sequencing revealed that each convergent gene pair produces non-polyadenylated read-
through RNAs overlapping the partner genes. Furthermore, we identified novel replication-
associated transcripts overlapping the HSV-1 replication origins, and novel LAT variants 
with very long 5’ regions, which are co-terminal with the LAT-0.7kb transcript. Overall, our 
results demonstrated that the HSV-1 transcripts form an extremely complex pattern of 
overlaps, and that entire viral genome is transcriptionally active. In most viral genes, if not 
in all, both DNA strands are expressed.
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INTRODUCTION

Next-generation short-read sequencing (SRS) technology 
has revolutionized the research fields of genomics and 
transcriptomics due to its capacity of sequencing a large number 
of nucleic acid fragments simultaneously at a relatively low cost 
(Mortazavi et al., 2008; Wang et al., 2009; Djebali et al., 2012). 
However, SRS technologies have inherent limitations both in 
genome and transcriptome analyses. This approach does not 
perform adequately in mapping repetitive elements and GC-rich 
DNA sequences, or in discriminating paralogous sequences. 
In transcriptome research, SRS techniques have difficulties in 
identifying multi-spliced transcripts, overlapping transcripts, 
transcription start site (TSS), and transcription end site (TES) 
isoforms, as well as multigenic RNA molecules.

Long-read sequencing (LRS) techniques can resolve these 
obstacles. The LRS technology is able to read full-length RNA 
molecules, therefore it is ideal for application in the analysis of 
complex transcriptomic profiles. Currently two techniques are 
available in the market, the California-based Pacific Biosciences 
(PacBio) and the British Oxford Nanopore Technologies (ONT) 
platforms. The PacBio approach is based on single-molecule 
real-time (SMRT) technology, while the ONT platform utilizes 
the nanopore sequencing concept. Both techniques have already 
been applied for the structural and dynamic transcriptomic 
analysis of various organisms (Byrne et al., 2017; Chen et al., 
2017; Cheng et al., 2017; Li et al., 2018; Nudelman et al., 2018; 
Wen et al., 2018; Zhang et al., 2018; Jiang et al., 2019; Zhao 
et al., 2019), including viruses (Boldogkői et al., 2019b), such 
as herpesviruses (Tombácz et al., 2015; O’Grady et al., 2016; 
Tombácz et al., 2016; Balázs et al., 2017a; Balázs et al., 2017b; 
Moldován et al., 2017b; Tombácz et al., 2017b; Tombácz et al., 
2017a; Tombácz et al., 2018b; Depledge et al., 2019), poxviruses 
(Tombácz et al., 2018a), baculoviruses (Moldován et al., 2018b), 
retroviruses (Moldován et al., 2018a), coronaviruses (Viehweger 
et al., 2019), and circoviruses (Moldován et al., 2017a). 
Additionally, the ONT technology is capable of sequencing 
DNA and RNA in its native form, allowing epigenetic and 
epitranscriptomic analysis (Wongsurawat et al., 2018; Liu et al., 
2019; Shah et al., 2019).

Herpes simplex virus type 1 (HSV-1) is a human pathogenic 
virus belonging to the Alphaherpesvirinae subfamily of the 
Herpesviridae family. Its closest relatives are the HSV-2, 
the Varicella-zoster virus (VZV), and the animal pathogen 
pseudorabies virus (PRV). The most common symptom of 
HSV-1 infection is cold sores, which can recur from latency 
causing blisters primarily on the lips. HSV-1 may cause acute 
encephalitis in immunocompromised patients. The ability 
of herpesviruses to establish lifelong latency within the host 
organism significantly contributes to their evolutionary success: 
according to WHO’s estimates, more than 3.7 billion people 
under the age of 50 are infected with HSV-1 worldwide (Looker 
et al., 2015).

HSV-1 has a 152-kbp linear double-stranded DNA genome 
that is composed of unique and repeat regions. Both the long 
(UL) and the short (US) unique regions are flanked by inverted 

repeats (IRLs and IRSs, respectively) (Macdonald et al., 2012). 
The viral genome is transcribed by the host RNA polymerase 
in a cascade-like manner producing three kinetic classes of 
transcripts and proteins: immediate-early (IE), early (E), and 
late (L) (Harkness et al., 2014). IE genes encode transcription 
factors required for the expression of E and L genes. E genes 
mainly code for proteins playing a role in DNA synthesis, 
whereas L genes specify structural elements of the virus. Earlier 
studies and in silico annotations have revealed 89 mRNAs, 10 
non-coding (nc)RNAs (Rajčáni et al., 2004; McGeoch et al., 
2006; Macdonald et al., 2012; Lim, 2013; Hu et al., 2016), and 
18 microRNAs (Du et al., 2015). Our recent study (Tombácz 
et al., 2017b) based on PacBio RS II sequencing has identified 
additional 142 transcripts and transcript isoforms, including 
ncRNAs. The detection and the kinetic characterization of 
HSV-1 transcriptome face an important challenge because of 
the overlapping and polycistronic nature of the viral transcripts. 
Polycistronic transcription units are different from those of 
bacterial operons, in that the downstream genes on multigenic 
transcripts are untranslated because herpesvirus mRNAs use cap-
dependent translation initiation (Merrick, 2004). The majority of 
herpesvirus transcripts are organized into tandem gene clusters 
generating overlapping transcripts with co-terminal TESs. The 
ul41-44 genomic region of HSV-1 does not follow this rule, 
since these genes are primarily expressed as monocistronic 
RNA molecules. Our earlier study has revealed that these genes 
also produce low-abundance bi- and polycistronic transcripts. 
Alternatively, many HSV-1 genes, which were believed to be 
exclusively expressed as parts of multigenic RNAs, have also 
been shown to specify low-abundance monocistronic transcripts 
(Tombácz et al., 2017b).

SRS technologies have become useful tools for the analysis of 
transcriptomes. However, conventionally applied SRS platforms 
cannot reliably distinguish between multi-spliced transcript 
isoforms, and TSS variants, as well as between embedded 
transcripts and their host RNAs, etc. Additionally, SRS, even if 
applied in conjunction with auxiliary techniques such as RACE 
analysis, has limitations in detecting multigenic transcripts, 
including polycistronic RNAs and complex transcripts 
(cxRNAs; containing genes standing in opposite orientations). 
LRS is able to circumvent these problems. Both PacBio and 
ONT approaches are capable of reading cDNAs generated 
from full-length transcripts in a single sequencing run and 
permit mapping of TSSs and TESs with base-pair precision. 
The most important disadvantage of LRS compared to SRS 
techniques is lower coverage. In PacBio sequencing, if any 
errors occur in raw reads, they are easily corrected thanks to 
the very high consensus accuracy of this technique (Miyamoto 
et al., 2014). Thus, it is only a widespread myth that SMRT 
sequencing is too error prone to be used for precise sequence 
analysis. The precision of basecalling is substantially lower for 
ONT platform than that of PacBio, but the former technique 
is far more cost-effective, and yields both higher throughput 
and longer reads. The high error rate of the ONT technique 
can be circumvented by obtaining high sequence coverage. 
Nonetheless, this latter problem is not critical in transcriptome 
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research if the genome sequence of the examined organism has 
already been annotated.

A diverse collection of methods and approaches have 
already been employed for the investigation of herpesvirus 
transcriptomes, including in silico detection of open reading 
frames (ORFs) and cis-regulatory motifs, Northern-blot 
analysis (Costa et al., 1984; Sedlackova et al., 2008), S1 
nuclease mapping (McKnight, 1980; Rixon and Clements, 
1982), primer extension (Perng et al., 2002; Naito et al., 2005), 
real-time reverse transcription-PCR (RT2-PCR) analysis 
(Tombácz et al., 2009), microarrays (Stingley et al., 2000), 
Illumina sequencing (Harkness et al., 2014; Oláh et al., 2015), 
PacBio RS II (O’Grady et al., 2016; Tombácz et al., 2017b), and 
Sequel sequencing, as well as ONT MinION cDNA and direct 
RNA sequencing (Boldogkői et al., 2018; Prazsák et al., 2018; 
Depledge et al., 2019).

In this study, we report the application of PacBio Sequel 
and ONT MinION long-read sequencing technologies for the 
characterization of the HSV-1 lytic transcriptome. We used an 
amplified isoform sequencing (Iso-Seq) protocol of PacBio that 
was based on PCR amplification of cDNAs prior to sequencing. 
We used both cDNA and direct (d)RNA sequencing on the 
ONT platform. Additionally, we applied Cap-selection for 
ONT sequencing. In order to identify non-polyadenylated 
transcripts, we also applied random oligonucleotide primer-
based RT in addition to the oligo(dT)-priming. Furthermore, 
the latter technique is more efficient for the mapping of the 
TSSs, and it is useful for the validation of novel RNA molecules. 
Our intentions of using novel LRS techniques were to analyze 
the dynamic viral transcriptome, to generate a higher number 
of sequencing reads, and to identify novel transcripts that had 
been undetected in our earlier PacBio RS II-based approach. 
Furthermore, in this report, we also reanalyzed our earlier 
results that were obtained using a single-platform method 
(Tombácz et al., 2017b).

MATERIALS AND METHODS

Cells and Viral Infection
The strain KOS of HSV-1 was propagated on an immortalized 
kidney epithelial cell line (Vero) isolated from the African 
green monkey (Chlorocebus sabaeus). Vero cells were cultivated 
in Dulbecco’s modified Eagle medium supplemented with 

10% fetal bovine serum (Gibco Invitrogen) and 100 μl 
penicillin–streptomycin 10K/10K mixture (Lonza)/ml and 
5% CO2 at 37°C. The viral stocks were prepared by infecting 
rapidly-growing semi-confluent Vero cells at a multiplicity of 
infection (MOI) of 1 plaque-forming unit (pfu)/cell, followed 
by incubation until a complete cytopathic effect was observed. 
The infected cells were then frozen and thawed three times. 
The cells were then centrifuged at 10,000 ×g for 15 min 
using low-speed centrifugation. For the sequencing studies, 
cells were infected with MOI = 1, incubated for 1 h. This 
was followed by removal of the virus suspension and a PBS 
washing step. Next, the cells were supplied with a fresh culture 
medium and were then incubated for 1, 2, 4, 6, 8, 10, 12, or 24 h.

RNA Isolation
The total RNA samples were purified from cells using the 
NucleoSpin® RNA kit (Table 1) according to the kit’s manual 
and our previously described methods (Boldogkői et al., 
2018). The RNA samples were quantified using the Qubit® 
2.0 Fluorometer and were stored at -80°C until use. The 
samples taken from each experiment were then mixed for 
sequencing. Samples were subjected to ribodepletion for the 
random primed sequencing, while selection of the poly(A)+ 
RNA fraction was being carried out for polyA-sequencing. All 
experiments were performed in accordance with the relevant 
guidelines and regulations.

Pacific Biosciences RS II and Sequel 
Platforms—Sequencing of the 
Polyadenylated RNA Fraction or the Total 
Transcriptome
The Clontech SMARTer PCR cDNA Synthesis Kit was used 
for cDNA preparation according to the PacBio Isoform 
Sequencing (Iso-Seq) protocol. For the analysis of relatively 
short viral RNAs, the ‘No-size selection’ method was used 
and samples were run on the RSII and Sequel platforms, both. 
The SageELF™ and BluePippin™ Size-Selection Systems 
(Sage Science) were also used to carry out size-selection for 
capturing the potential long, rare transcripts. The reverse 
transcription (RT) reactions were primed by using the 
oligo(dT) from the SMARTer Kit. However, we also used 
random primers for a non-size selected sample to detect 
non-polyadenylated RNAs. The cDNAs were amplified by 

TABLE 1 | Summary of the kits used for RNA preparation and quantitation.

Method Kit Company

RNA purification Total RNA extraction NucleoSpin RNA Macherey Nagel
PolyA(+) RNA isolation Oligotex mRNA Mini Kit Qiagen
Ribodepletion Ribo-ZeroTM Magnetic Kit H/M/R Epicentre/Illumina

Concentration measurement Total RNA Qubit RNA BR Assay Kit Life Technologies
PolyA(+) RNA Qubit RNA HS Assay Kit
rRNA depleted RNA

Elimination of non-capped RNAs 5’-phasopahte-dependent-exonuclease digestion Terminator™ 5′-Phosphate-Dependent Exonuclease Epicentre/Lucigen
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the KAPA HiFi Enzyme from KAPA Biosystems, according 
to PacBio’s recommendations (Balázs et al., 2017b; Tombácz 
et al., 2018b). The SMRTbell libraries were generated 
using PacBio Template Prep Kit 1.0. For binding the DNA 
polymerase and annealing the sequencing primers, the DNA/
Polymerase Binding Kit P6-C4 and v2 primers, as well as the 
Sequel Sequencing Kit and v3 primers were used for the RSII 
and Sequel sequencing, respectively. The DNA/Polymerase 
Binding Kit P6-C4 and v2 primers were used for binding DNA 
polymerase and for annealing sequencing primers. Whereas, 
the Sequel Sequencing kit and v3 primers were used for RSII 
and Sequel sequencing.

The polymerase-template complexes were bound to 
MagBeads with the PacBio MagBead Binding Kit. Samples 
were loaded onto the RSII SMRT Cell 8Pac v3 or Sequel 
SMRT Cell 1M. The movie time was 240 or 360 min per SMRT 
Cell for the RSII, while 600-min movie time was set to the 
Sequel run.

Oxford Nanopore Minion Platform—cDNA 
Sequencing Using Oligo(dT)  
or Random Primers
Regular (No Cap Selection) Protocol
The 1D Strand switching cDNA by ligation protocol (Version: 
SSE_9011_v108_revS_18Oct2016) from the ONT was used for 
sequencing HSV-1 cDNAs on the MinION platform. The ONT 
Ligation Sequencing Kit 1D (SQK-LSK108) was applied for 
the library preparation using the recommended oligo(dT) 
primers, or custom-made random oligonucleotides, as well as 
the SuperScipt IV enzyme for the RTs. The cDNA samples were 
subjected to PCR reactions with KAPA HiFi DNA Polymerase 
(Kapa Biosystems) and Ligation Sequencing Kit Primer Mix 
(part of the 1D Kit). The NEBNext End repair/dA-tailing 
Module (New England Biolabs) was used for the end repair, 
whereas the NEB Blunt/TA Ligase Master Mix (New England 
Biolabs) was utilized for the adapter ligation. The enzymatic 
steps (e.g.: RT, PCR, and ligation) were carried out in a 
Veriti Cycler (Applied Biosystems) according to the 1D 
protocol (Moldován et al., 2018b; Tombácz et al., 2018b). The 
Agencourt AMPureXP system (Beckman Coulter) was used 
for the purification of samples after each enzymatic reaction. 
The quantity of the libraries was checked using the Qubit 
Fluorometer 2.0 and the Qubit (ds)DNAHS Assay Kit (Life 
Technologies). The samples were run on R9.4 SpotON Flow 
Cells from ONT.

Cap Selection Protocol
The TeloPrime Full-Length cDNA Amplification Kit (Lexogen) 
was used for generating cDNAs from 5’ capped polyA(+) 
RNAs. RT reactions were carried out with oligo(dT) primers 
(from the kit) or random hexamers (custom made) using the 
enzyme from the kit. A specific adapter (capturing the 5’ cap 
structure) was ligated to cDNAs (25°C, overnight), then the 
samples were amplified by PCR using the Enzyme Mix and the 
Second-Strand Mix from the TeloPrime Kit. The reactions were 

performed in a Veriti Cycler and the samples were purified on 
silica membranes (TeloPrime Kit) after the enzymatic reactions. 
The Qubit 2.0 and the Qubit dsDNA HS quantitation assays 
(Life Technologies) were used for measuring the concentration 
of the samples. A quantitative PCR reaction was carried out for 
checking the specificity of the samples using the Rotor-Gene Q 
cycler (Qiagen) and the ABsolute qPCR SYBR Green Mix from 
Thermo Fisher Scientific. A gene-specific primer pair (HSV-1 
us9 gene, custom made) was used for the test amplification. 
The PCR products were used for ONT library preparation and 
sequencing. The end-repair and adapter ligation steps were 
carried out as was described in the ‘Regular’ protocol, and in 
our earlier publication (Boldogkői et al., 2018). The ONT R9.4 
SpotONFlow Cells were used for sequencing.

Application of Terminator Exonuclease
Some of the non-Cap-selected samples were treated by 
Terminator exonuclease (Epicentre/Lucigen) in order to reduce 
the proportion of sequencing reads with incomplete 5’-UTR 
regions. The protocol has been carried out as recommended by 
the manufacturer. Briefly, 2 µl of buffer A, 1 µg of total RNA, 0.5 µl 
of RNaseOUT (Invitrogen), and 1 U of Terminator exonuclease 
were mixed and incubated at 30°C for 60 min. The same reaction 
was carried out using buffer B instead of buffer A, after which the 
two mixtures were pooled.

Oxford Nanopore Minion Platform— 
Direct RNA Sequencing
The ONT’s Direct RNA sequencing (DRS) protocol (version: 
DRS_9026_v1_revM_15Dec2016) and the ONT Direct RNA 
Sequencing Kit (SQK-RNA001) were used to examine the 
transcript isoforms without enzymatic reactions—to avoid the 
potential biases—as well as to identify possible base modifications 
alongside the nucleotide sequences. Polyadenylated RNA was 
extracted from the total RNA samples and it was subjected 
to DRS library preparation according to the ONT’s protocol 
(Boldogkői et al., 2018). The quantity of the sample was 
measured by Qubit 2.0 Fluorometer using the Qubit dsDNA HS 
Assay Kit (both from Life Technologies). The library was run 
on an ONT R9.4 SpotON Flow Cell. Basecalling was carried out 
using Albacore (v 2.3.1).

Mapping and Data Analysis
The minimap2 aligner (Li, 2018) was used with options -ax splice 
-Y -C5 –cs for mapping the raw reads to the reference genome 
(X14112.1), followed by the application of the LoRTIA toolkit 
(https://github.com/zsolt-balazs/LoRTIA) for the determination 
of introns, the 5’ and 3’ ends of transcripts, as well as for 
detecting the full-length reads. Putative introns were defined 
as deletions with the consensus flanking sequences (GT/AG, 
GC/AG, AT/AC). The complete intron lists are available as 
additional material. We used even stricter criteria: only those 
splice sites were accepted, which were validated by dRNA-Seq 
[used in our present work and in Depledge and coworkers’ 
study (Depledge et al., 2019)]. These transcripts all have the 
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canonical splice site: GT/AG and they are abundant (> 100 read 
in Sequel data).

The 5’ adapter and the poly(A) tail sequences were 
identified at the ends of reads by the LoRTIA toolkit based on 
Smith-Waterman alignment scores (Table 2). If the adapter 
or poly(A) sequence ended at least three nucleotides (nts) 
downstream from the start of the alignment, the adapter was 
discarded, as it could have been placed there by template-
switching. Transcript features such as introns, transcriptional 
start sites (TSS) and transcriptional end sites (TES) were 
annotated if they were detected in at least two reads and in 
0.1% of the local coverage. In order to reduce the effects of 
RNA degradation, only those TSSs were annotated, which 
were significant peaks compared to their ±50-nt-long 
windows according to Poisson distribution. Reads being 
connected a unique set of transcript features were annotated 
as transcript isoforms. Low-abundance reads detected in a 
single experiment were accepted as transcripts if the same 
TSS and TES were also used by other transcripts. In most 
cases, those reads were accepted as isoforms, which were 
detected in at least two independent experiments. The 5′-ends 
of the long low-abundance reads were checked individually 
using the Integrative Genome Viewer (IGV; https://software.
broadinstitute.org/software/igv/download). The workflow of 
the data analysis can be found in Supplementary Figure 1.

RESULTS

Analysis of the HSV-1 Transcriptome With 
Full-Length Sequencing
In this work, we report the application of two distinct LRS 
techniques (the PacBio Sequel and the ONT MinION platforms), 
and multiple library approaches for the investigation of the 
HSV-1 lytic transcriptome. We also reutilized our previous 
PacBio RS II data for the validation of novel transcripts. 
The PacBio sequencing is based on an amplified Iso-Seq template 
preparation protocol that utilizes a switching mechanism at the 5’ 
end of the RNA template, and is thereby able to produce complete 
full-length cDNAs (Zhu et al., 2001). We applied both cDNA 
and dRNA sequencing for the ONT technique. Additionally, we 
used Cap-selection for a fraction of samples. A single sample 
was treated by Terminator exonuclease, which selectively 
degrades uncapped and non-polyadenylated transcripts. ONT 
sequencing was also used for the kinetic analysis of HSV-1 
gene expressions. Sequencing reads were mapped to the HSV-1 

(X14112) genome using the Minimap2 alignment tool (Li, 2018) 
with default parameters.

Altogether, we obtained 80,061 full-length ROIs mapping to 
the HSV-1 genome using Sequel sequencing, whereas PacBio 
RSII platform generated 38,972 ROIs (Supplementary Table 1). 
ONT sequencing produced altogether 1,505,848 sequencing 
reads mapping to the viral genome. The reason behind the 
relatively low proportion of the full-length read count within the 
MinION samples is that this method—compared to PacBio—
generates a higher number of 5’ truncated reads. We and 
others have reported in previous publications that the dRNA-
Seq method is not optimal for capturing entire transcripts 
(Moldován et al., 2017b; Moldován et al., 2018b; Workman 
et al., 2018): we found that short 5’ sequences of transcripts 
and in many cases the polyA-tails were missing from most of 
the reads. However, a recently published technique utilizing 
adapter ligation to the 5’ end of full-length mRNAs is able to 
solve this problem (Jiang et al., 2019). Another drawback of 
native RNA sequencing is its low throughput compared to 
cDNA sequencing. The advantage of dRNA-Seq is that it is free 
of false products which are typically produced by RT, PCR, and 
cDNA sequencing.

Table 3 shows the average read lengths of mapped full-length 
ROIs and MinION reads in the different samples. A detailed 
description of reads obtained from all libraries is found in 
Supplementary Table 1.

TABLE 2 | 5’ adapter sequences and settings for adapter detection with the LoRTIA pipeline. The scoring of the Smith-Waterman alignment was set to +2 for matches 
and -3 for mismatches, gap openings and gap extensions.

Method Adapter sequence Score limit Distance from the start of the alignment

PacBio AGAGTACATGGG 16 +5/–15
MinION TGCCATTAGGCCGGG 15 +5/–15
Teloprime TGGATTGATATGTAATACGACTCACTATAG 20 +5/–30

TABLE 3 | Average mapped read-lengths and transcript lengths. 

Technique Average length of the 
reads (bp)

Average length of the 
abundant full-length 

transcripts (bp)

PacBio RSII oligo(dT) 1,369 1,409
PacBio RSII random 924 NA
PacBio Sequel 1,923 1,789
ONT MinION 1D 
oligo(dT)

967 1,222

ONT MinION 1D random 766 NA
ONT MinION Cap-seq 
oligo(dT)

683 797

ONT MinION dRNA-Seq 823 NA
ONT MinION Terminator 873 1,225
ONT MinION Cap-seq 
random

388 NA

ONT MinION time points 826 1,232

The data obtained from the individual p.i. time-points are discussed in 
Supplementary Table 1.
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Cap-selection performed suboptimally in our experiment, 
because it produced relatively short average sequencing reads. 
Random RT-priming allowed the analysis of non-polyadenylated 
transcripts and helped the validation of TSSs and splice sites. 
Additionally, this technique proved to be superior for identifying 
the 5’-ends of very long transcripts, including polycistronic and 
complex RNA molecules. Terminator exonuclease was used for 
the enrichment of intact TSSs of the transcripts.

The following technical artifacts can be generated by RT and 
PCR: template switching, and nonspecific binding of oligod(T) 
or PCR primers. In addition to poly(A) tails, oligo(dT) primers 
occasionally hybridize to A-rich regions of transcripts and 
thereby produce false reads. These products were discarded 
from further analysis, albeit in some cases we were unsure 
about the non-specificity of the removed reads. We ran 
altogether 11 parallel sequencing reactions using 8 different 
techniques for providing independent reads. Additionally, in 
some cases, the same TSS, TES or splice junctions were found 
in other transcripts detected within the same sequencing 
reaction which further enhanced the number of independent 
sequencing reads. In our earlier publication (Tombácz et al., 
2017b), we could not detect all spurious products, therefore, 
in the present work, we have made a minor correction to our 
formerly published results.

We used a novel bioinformatics tool (LoRTIA) — 
developed in our laboratory — for the identification of TSS 
and TES positions, as well as splice donor and acceptor sites 
(Supplementary Figure 1). This software suite detected a total of 
1,677 putative TSSs 162 putative TESs and 379 putative introns 
(Supplementary Table 2). A putative TSS or TES was accepted 
as real if LoRTIA detected it in at least three independent 
samples in the case of longer isoforms, and five independent 
samples in the shorter variants, including 5’-truncated ORF-
containing RNAs. The reason for a more stringent selection 
criterion for the short isoforms is that these can be the result 
of fragmentation, which is not the case for longer isoforms. 
These analyses yielded altogether 537 TSSs and 77 TESs. Only 
those sequencing reads were accepted as transcripts, which 
contained a TSS and a TES annotated in the above way. This 
method yielded 667 transcripts (Supplementary Table 3). 
For very long transcripts (≥ 3,000 bp), we applied a different 
rule: a read was accepted as a transcript if it was longer than 
all annotated overlapping transcripts even if it was represented 
in a few copies and had no annotated TSS. A large number 
of very long transcripts were identified this way in most cases 
in the Sequel dataset. Thus, altogether 2,250 transcripts were 
identified in this study (Supplementary Table 3). We assume 
that much more low-abundance and very long transcripts 
are expressed by the HSV-1 genome than we detected with 
our very strict criteria. Our dataset is available for further 
investigations, which can confirm or reject these latter 
categories of putative transcripts.

For intron identification, we used the following criteria: 
the candidate intron had to carry one of the canonical splice 
junction sequences: GT/AG, GC/AG, AT/AC; and it had to 
be detected by dRNA-Seq and both cDNA-Seqs (PacBio and 

ONT platforms). Besides introns based on hard evidence, we 
enlist additional putative introns of which the criterion was 
their detection by both dRNA-Seq and at least one of the cDNA 
(PacBio or ONT) sequencings. The third category of introns 
includes very abundant splice variants and introns on very 
long transcripts that were exclusively identified using Sequel 
sequencing in most cases. This study identified a large number 
of rare variants with deletions, which represented less than 
5% of the total isoforms of a certain transcript. These putative 
splice variants were not accepted as transcripts. Altogether, 182 
introns were identified in terms of the above criteria, among 
which 155 carry canonical GT/AG, 22 GC/AG, and 2 AT/
AC splice junction sequences (Supplementary Table 2). Our 
analysis detected 80 transcripts containing one or more of these 
introns (Supplementary Table 3).

In Silico Analysis of Promoters  
and Poly(A) Signals
In order to detect promoter sequences, we analyzed the 
-150 to  +1 upstream region of the TSSs in silico (Figure  1). 
We found that 45% (371) of the TSSs are preceded by a 
canonical GC box sequence at a mean distance of 66.301nt 
(σ = 31.205), 4% (35) by a CAAT box at a mean distance of 
113.428nt (σ = 15.471), and 11% (91) by a TATA box at a 
mean distance of 30.373nt (σ = 2.058) (Mackem and Roizman, 
1982; Guzowski and Wagner, 1993). Some of the GC boxes 
may be nonfunctional, since they may be the result of the 
high GC-content of the viral genome. Earlier studies found 
a canonical initiator region (INR) ± 5 nt around the TSS 
of eukaryotic organisms (Lim et al., 2004; Xi et  al., 2007). 
These have been shown to be used during the early viral 
gene expression, whereas late transcription is initiated from a 
G-rich sequence (Huang et al., 1996; Lieu and Wagner, 2000). 
We detected 16 TSSs containing a CAG INR (TSS position 
underlined) and 89 TSSs having YANW (Y: cytosine/thymine, 
N: adenine/cytosine/thymine/guanine, W: thymine/adenine, 
TSS position underlined).

We found that TSSs expressed in every time point are 
abundant and their INRs exhibit high similarity to canonical 
eukaryotic INRs, whereas TSSs from late samples are similar to 
the VP5 promoter (Figure 1A). Furthermore, these late TSSs 
are expressed in low abundance (2.8% of all reads starting in 
these positions) but their ratio is seven-fold higher than those 
of early TSSs (Figure 1B). We carried out in silico analysis of 
the -50nt region located upstream the TESs and detected 59 
possible polyadenylation signals (PASs) at a mean distance 
of 21.779nt (σ  = 5.558). The number of TESs expressed in 
both early and late phases is slightly higher than the number 
of TESs expressed only in the late phase of the viral life cycle 
(Figure  1C). TESs expressed throughout the entire viral 
replication are characterized by canonical PASs, cleavage signals 
and GU-rich regions. This is in contrast with TESs expressed 
only in the late phase, which tend to have no canonical signals 
for polyadenylation and cleavage (Figure 1D). Additionally, 
these late TESs are low abundance, representing only 0.1% of 
the reads’ 3’ ends.
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Novel Putative mRNAs
5’-Truncated transcriptional reads were accepted as transcripts if 
they were present in at least five independent samples. The first 
base had to be located within a ±5 window range. Additionally, 
reads having less than a 5% proportion at the overlapping 
region were discarded. Present investigations revealed 182 novel 
5’-truncated mRNAs (tmRNAs) of HSV-1 (Supplementary 
Table  4), which were all produced from genes embedded in 
larger host genes of the virus. These 5’-truncated mRNAs are 
assumed to be generated by alternative transcription initiation 
from promoters located within larger genes. We could identify 
promoter modules for only 39 transcripts (we could not identify 
promoter consensus sequences for several canonical ORFs, too). 
These transcripts all contain in-frame ORFs. The first in-frame 
AUG triplet is assumed to encode the translation start codon. 
Further analyses have to be carried out to verify the coding 
potential of the ORF-containing tmRNAs. We detected a 
transcript — termed ‘RL-intron’ (RL2I) — with a TSS identical 
to that of the TSS of rl2 gene but with a TES located within the 
intronic region of this gene. Our BLAST searches resulted in 
hypothetical proteins predicted to this ORF, but according to our 
knowledge, no such transcript has been detected until now.

Novel Putative Non-Coding (or Coding) 
Transcripts
In this part of our study, we detected 18 putative non-coding 
RNAs, including antisense RNAs (asRNAs, termed as ASTs) 

and other putative long non-coding RNAs (lncRNAs) (Table 4). 
Furthermore, we validated and determined the base pair-
precision termini of the transcripts published earlier by us and 

TABLE 4 | Polyadenylated ncRNAs of HSV-1. (A) Previously detected and validated 
ncRNAs; (B) Novel ncRNAs. All transcripts are polyadenylated.

Name Genomic locations

A
LAT 0.7 kb - S 7,643 8,393
LAT 0.7 kb 7,643 8,423
AST-1 57,711 59,429
AST-2-L4* 78,315 80,725
AST-2-L3* 78,531 80,725
AST-2 sp 79,792 80,725
AST-2 79,792 80,725
AST-3* 103,152 103,512
AST-4*# 110,816 112,131
LAT 0.7 kb 117,948 118,728
LAT 0.7 kb - S 117,978 118,728
B
LAT 0.7 kb - ul1-2-3-3.5* 7,643 11,285
LAT 0.7 kb - S2 7,643 8,338
LAT 1.1 kb 7,643 8,733
AST-2-sp2 79,792 80,725
LAT 1.1 kb 118,033 118,728
LAT 0.7 kb - S2 117,638 118,728
LAT 0.7 kb - L* 115,083 118,728
AST-5 141,008 141,629

*unidentified 5’ end # unidentified 3’ end.

FIGURE 1 | In silico analysis of INR and PAS sequences. (A) The initiator region (INR) of early samples is similar to the canonical eukaryotic INR sequence, while late 
INRs show homology with the VP5 promoter. (B) The proportion of TSSs present in both early and late or exclusively late time points of infection. (C) The proportion 
of TESs present in both early and late or exclusively late time points of infection. (D) The probability of expression of nucleotides in the ±50nt region of TESs 
throughout the entire infection period compared to those nucleotides that expressed only in late time points. TESs expressed during the entire period of infection 
(E+L) contain a canonical poly(A) signal, the C/A cleavage site and GU-rich downstream region. Late TESs lack a PAS and the canonical downstream elements, but 
they contain a GC-rich sequences 15-20nt downstream of the cleavage site.
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by others. Supplementary Table 5 shows the potential peptides 
encoded by the ORFs on these transcripts. Further studies have 
to confirm whether these ORFs are translated. If so, they are 
novel protein-coding genes.

(1) Antisense RNAs These transcripts can be controlled 
by their own promoters or by the promoter of another 
(mRNA) gene. It has earlier been reported that the 0.7-kb LAT 
transcript is not expressed in strain KOS of HSV-1 (Zhu et al., 
1999). Here we demonstrate that this is not the case, since we 
were able to detect this transcript. The existence of the shorter 
LAT-0.7kb-S (Tombácz et al., 2017b) was also confirmed. 
Additionally, we detected asRNAs being co-terminal with 
the LAT-0.7 transcripts, but having much longer TSSs. The 
LAT region and its surrounding genomic sequences are 
illustrated in Figure 2A. Using random oligonucleotide-based 
LRS techniques, we obtained a large number of antisense-
oriented reads, most of them without identified 5’-ends. We 
also detected antisense transcripts without defined TSSs 
and TESs within 27 HSV-1 genes (rl1, rl2, ul1, ul2, ul4, ul5, 
ul10, ul14, ul15, ul19, ul23, ul29, ul31, ul32, ul36, ul37, ul39, 
ul42, ul43, ul44, ul49, ul50, ul53, ul54, us4, us5, us8). The 
expression level of these asRNAs is low, in most cases only 
a few reads were detected per gene locus. However, a high 
level of antisense RNA expression was identified within the 
locus of ul10 gene. A special class of asRNAs is produced by 
divergent genes, and read-through RNAs (rtRNAs) generated 
by transcriptional read-through between convergent gene 
pairs. These transcripts are mRNAs with long stretches of 
antisense segments. For example, we detected an antisense 
transcript originated within the 3’ region of ul4 gene and 
co-terminated with UL6-7 bicistronic transcript. This RNA 
molecule contains three splice sites, and can be considered as 
a very long TSS isoform of the UL6-7 transcript.

(2) Intergenic ncRNAs A ncRNA (termed “intergenic 
ncRNA”; IGEN-1) located between the ul26 and ul27 genes was 
also identified. This transcript is co-terminal with the UL27-AT 
RNA, which is a longer TES isoform of UL27 transcript 
(Figure  2B). Another non-coding transcript (IGEN-2) with 
unidentified transcript ends was detected to be expressed in the 
outer termini of the HSV-1 unique long region. The potential 
function of IGEN transcripts remains unclear. A bidirectional, 
low-level expression from the intergenic region between the rl2 
(icp0) and LAT genes was also observed. These RNA molecules 
are co-terminal with the LAT-0.7kb transcript and may be parts 
of the potential RL2-LAT-UL1-2-3 transcript (Tombácz et al., 
2017b). Additionally, we detected RNA expression in practically 
every intergenic region.

(3) Intra-intronic ncRNAs A ncRNA was identified within 
the intron of the rl2 gene, which was designated as NCIRL2. This 
transcript is expressed in a low abundance.

Replication-Associated Transcripts
We identified five replication-associated RNAs (raRNAs) 
designated OriL-RNA1-2, and OriS-RNA1-3, which overlap 
the replications origins OriL and OriS, respectively. OriL-RNA1 
is a long TSS isoform produced from the ul30 gene, whereas 

OriS-RNA2 is a TSS variant of rs1 (icp4) (Figure 3). OriL-RNA2 
is a transcript without an annotated TES. We suppose that this 
transcript is the long TSS variant of the ul29 gene. We were only 
able to detect certain segments but not the entire OriS-RNA1 
described by Voss and Roizman (1988). We also detected a longer 
TSS isoform of the us1 gene (US1-L2 = OriS-RNA3) which 
overlaps the OriS located within the terminal repeat of US region 
(TRS) (Figure 3). Additionally, OriS is also overlapped by a longer 
5’ variant of the us12 gene (US12-11-10-L2 = OriS-RNA-4).

TSS and TES Isoforms
The multiplatform system allowed the discovery of novel 
RNA isoforms and reannotation of the transcript termini 
published earlier by others and us (Tombácz et al., 2017b; 
Depledge et al., 2019). The LoRTIA software suit — used for 
the detection of TSS and TES positions — identified 218 TSS 
and 56 TES positions (Supplementary Table 2). Altogether 
53 genes produce at least one TSS isoform, besides the most 
frequent variants (Supplementary Table 3). Fifteen genes 
were found to produce three different transcript length 
isoforms (including the most frequent versions). The recent 
LRS analysis discovered 51 protein-coding and 2 (0.7 kb 
LAT, and RS1) non-coding transcripts with alternative TSSs. 
However, a few transcripts with unannotated 5’-ends were also 
detected (Supplementary Table 3). The alternative TSSs may 
lead to transcriptional overlap or they may enlarge the extent 
of existing overlaps especially between divergently transcribed 
genes. Some transcripts (e.g. UL19 and UL10) exhibit an 
especially high complexity of TSS isoforms (Figure  4A). 
The ul21 gene produces nine different 5’ length variants, 
the longer ones overlap the divergently oriented ul22 gene) 
(Figure  4B). Additionally, long TSS isoforms are responsible 
for the overlaps of each replication origin of HSV-1, which is 
not the case in PRV, its close relative (Tombácz et al., 2015; 
Boldogkői et al., 2019a). Many of the longer TSS variants 
contain upstream ORFs (uORFs), which may carry distinct 
coding potentials as described by Balázs and colleagues in 
the human cytomegalovirus (Balázs et al., 2017a). Two novel 
3’-UTR variants were also identified in this study.

Novel Splice Sites and Splice Isoforms
In this study, we also used dRNA sequencing, which provides 
a fundamentally different method from cDNA sequencing 
and hence can be utilized to filter out spurious splice sites. 
The splice donor and acceptor sites were also detected by 
using the LoRTIA tool. Altogether, using different sequencing 
techniques and bioinformatics analyses, we were able to verify 
the existence of 5 previously described and 30 novel splice 
sites. Table 5 contains the list of introns, which were confirmed 
by dRNA-Seq (Figure  5). By far the most complex splicing 
pattern was detected in RNAs produced from the ul41-45 
genomic region.

Novel Multigenic Transcripts
Our earlier survey has revealed several novel multigenic RNAs, 
including polycistronic and complex transcripts (Tombácz 
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FIGURE 2 | Non-coding HSV-1 RNAs. (A) Schematic representation of the LAT region and surroundings. Besides the previously published coding and non-coding 
transcripts, this figure illustrates the newly discovered shorter TSS version of the 0.7 kb LAT, as well as the oppositely oriented transcript isoforms, which are 
co-terminal with the 3’ ends of the UL2 or UL3 transcripts. (B) A novel non-coding transcript designated IGEN-1 is co-terminal with UL27-AT which is a longer TES 
isoform of UL27. Several other 5’ UTR length variants were discovered and annotated in the UL26-UL27 region.
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et al., 2017b). In this work, we identified 201 multigenic 
transcripts containing two or more genes (Supplementary 
Table 3). The cxRNAs are long RNA molecules with at least 2 
genes standing in opposite orientation relative to one another. 
Our intriguing findings are the RL1-RL2 (ICP34,5-ICP0) 
bicistronic transcript, as well as the 0.7. kb LAT-UL1-2-3-3.5 
cxRNA (Figures  2A,  B). Most of the novel multigenic 
transcripts are expressed at low levels, which can explain why 
they had previously gone undetected. In this work, we also 
identified four novel complex transcripts (0.7 kb LAT-UL1-
2-c, UL18-15.5-c, UL20-21-c, US4-3-2-c) with unannotated 
TSSs (Figure 2A). We were able to detect these transcripts 
by cDNA sequencing and by the reanalysis of a MinION 
dRNA sequencing dataset (Depledge et al., 2019). Our novel 

experiments validated previously published cxRNAs. This 
study demonstrates that full-length overlaps between two 
divergently-oriented HSV-1 genes are an important source 
for the cxRNA molecules. The likely reason for the lack of 
cxRNA TSSs in many cases is that they are very long and 
low-abundance transcripts. It cannot be excluded with 
absolute certainty that some of the low-abundance multigenic 
transcripts are artefacts produced by the template–switch 
mechanism; other approaches are needed for the validation of 
their existence one-by-one.

Novel Transcriptional Overlaps
This study revealed an immense complexity of transcriptional 
overlaps (Figure 6 and Table 6). These overlaps are produced by 

FIGURE 3 | Replication associated transcripts of HSV. (A) A novel shorter 5’-UTR isoform of the UL30, and a non-coding transcript sharing the TSS with UL29 but 
terminating within its ORF was discovered in the vicinity of Ori-L. (B) Two isoforms with shorter 5’-UTRs, seven splice isoforms and six novel putative protein-coding 
transcripts were annotated downstream of Ori-S.
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either transcriptional read-through events between transcripts 
oriented in parallel [as described in Kara et al. (2019)], or in a 
convergent manner (thereby generating rtRNAs), or through 
the use of long TSS isoforms pertaining to one or of both partners 

of divergently-oriented genes. Transcriptional overlaps can 
also be produced by antisense transcripts controlled by their 
own promoters, as seen in LAT transcripts. Besides the ‘soft’ 
(alternative) overlaps, adjacent genes can also produce ‘hard’ 

FIGURE 4 | Complexity of TSSs. (A) The TSS pattern of UL10 transcript exhibits an especially high complexity. Several TSSs are located downstream from the 
translation initiation site, resulting in truncated ORFs. RNAs harboring these truncated ORFs may code for N-terminally truncated transcripts or may be non-coding 
RNA. (B) Divergent overlaps between the ul20 and ul21 genes. These overlaps are caused by the high variability in the TSS of UL21.

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Transcriptomic Survey of the Herpes Simplex VirusTombácz et al.

12 Month 2019 | Volume 10 | Article 834Frontiers in Genetics | www.frontiersin.org

overlaps when only overlapping transcripts are produced from 
the same gene pairs. An important novelty of this study is 
the discovery that practically each convergent gene produces 
rtRNAs crossing the boundaries of the adjacent genes. Two of 
the convergent gene pairs (ul3-ul4 and ul30-ul31) form ‘hard’ 
transcriptional overlaps, whereas the other gene pairs form 
‘soft’ overlaps. The ‘softly’ overlapping convergent transcripts 
are likely to be non-polyadenylated, since we were only able to 
detect most of them by the random primer-based sequencing 
technique. The ul3-ul4 and ul30-31 gene pairs also express 
non-polyadenylated rtRNAs that extend beyond their poly(A) 
sites. Transcriptional read-troughs were detected between each 
convergent gene pair in most cases from both directions, except 
in the UL43-44-45/UL48-47-46 cluster (Figure 6 and Table 6). 
Another important novelty of this study is the discovery of 
very long TSS variants of divergent transcripts, the 5’-UTRs 
of which entirely overlap the partner gene. We detected very 
long transcripts which overlap the following divergent gene 
clusters: ul4-5/ul6-7, ul4-5/ul6-7, ul4-5/ul6-7, ul4-5/ul6-7, 
ul9-8/ul10, ul9-8/ul10, ul14-13-12-11/ul15, ul17/ul15e2, ul20-
19-18/ul21, ul20-19-18/ul21, ulL23-22/ul24-25-26, ul29/OriL/

ul30, ul29/OriL/ul30, ul32-31/ul33-34-35, ul37/ul38-39-40, 
ul41-ul42, ul49.5.49/ul50, ul51/ul52-53-54, us2/US3, us2/us3, 
us2/us3. Altogether, our results show that practically every 
nucleotide of the double-stranded HSV-1 DNA is transcribed.

Kinetics of HSV-1 Transcripts
Cultured Vero cells were incubated with HSV-1 for 1, 2, 4, 
6, 8, 10, 12, or 24 h. Altogether, we obtained 1,028,840 viral 
reads in the kinetic part of the study (Supplementary Table 1). 
The distribution of TSSs and TESs along the HSV-1 genome 
is illustrated in Figure 7 (see in detail in Supplementary 
Figure  2) and Figure 8. The dynamics of various transcript 
categories is exemplified in Figure 9, including tmRNAs 
(panel A), TSS isoforms (panel B), TES isoforms (panel C), 
splice variants (panel D), and polycistronic RNAs (panel E). 
Many mono- and polycistronic RNAs and transcript isoforms 
are differentially expressed throughout the replication 
cycle of the virus. The  cumulative abundance of transcript 
isoforms in distinct period of HSV infection is depicted in 
Supplementary Figure 3.

DISCUSSION

In the last couple of years, LRS approaches revealed that 
the viral transcriptome is substantially more complex than 
previously thought (Boldogkői et al., 2019b). In this study, 2 
sequencing platforms (PacBio Sequel and ONT MinION) and 8 
library preparation methods were applied for the investigation 
of the HSV-1 lytic transcriptome, including both poly(A)+ 
and poly(A)- RNAs. This research yielded a number of novel 
transcripts and transcript isoforms. We identified novel tmRNAs 
embedded into larger host viral genes. All of these short novel 
transcripts contain in-frame ORFs, but it does not necessarily 
mean that this coding potency is realized in translation. Indeed, 
most of the putative tmRNAs are expressed in low abundance 
(these were not accepted as transcripts), which raises doubts as 
to whether they code for proteins. These transcripts might have 
a regulatory role in certain step(s) of gene expression, but we 
cannot exclude that they represent mere transcriptional noise.

This study also identified a large number of transcript length 
isoforms varying in their TSSs or TESs. In certain genes, we 
obtained very high number of TSS isoforms, therefore we did 
not name them individually. Many of these length variants 
are expressed in low abundance. It is unknown whether these 
transcripts have distinct roles, or their function is exactly the 
same as the high-abundance variants. It is possible that increasing 
coverage further would reveal that transcripts are initiated from 
a promoter at each nucleotide within a certain stretch of DNA 
with varying probabilities. In the human cytomegalovirus and 
HSV it has been shown that the longer TSS variants may contain 
uORFs which may have a role in the translational regulation of 
downstream ORFs, and shorter TSSs, on the other hand, often 
contain N-terminally truncated ORFs (Stern-Ginossar et al., 
2012; Balázs et al., 2017a; Whisnant et al., 2019).

In this work, we also detected novel splice sites and splice 
isoforms. We applied very strict criteria for the identification 

TABLE 5 | The most frequent splice sites of the HSV-1 transcriptome. 

Intron 
start

Intron 
end

Read 
count

DNA 
strand

Splice donor/
acceptor

2,318 3,082 20 + GT/AG
3,750 3,888 6 + GT/AG *
3,750 3,885 8 + GT/AG
13,449 13,931 37 – GT/AG *
30,049 33,634 198 + GT/AG
69,593 69,923 12 + GT/AG *
69,670 69,923 20 + GT/AG *
71,622 71,712 2 – GC/AG *
71,622 71,718 6 – GC/AG *
71,622 71,724 2 – GC/AG *
71,622 71,736 2 – GC/AG *
71,622 71,748 4 – GC/AG *
91,553 92,535 120 + GT/AG
97,724 97,949 228 + GT/AG
113,428 113,786 40 + GT/AG *
122,483 122,621 7 – GT/AG *
122,486 122,621 8 – GT/AG *
123,289 124,053 20 – GT/AG *
132,373 132,540 74 + GT/AG *
132,373 132,506 269 + GT/AG *
132,373 132,487 34 + GT/AG *
132,373 132,543 2 + GT/AG *
132,381 132,518 2,995 – GT/AG *
132,386 132,540 11 + GT/AG *
132,386 132,506 34 + GT/AG *
132,386 132,509 31 + GT/AG *
145,646 145,820 66 – GT/AG *
145,646 145,860 34 – GT/AG *
145,649 145,820 1,077 – GT/AG *
145,649 145,860 824 – GT/AG *
145,649 145,847 3 – GT/AG *
145,671 145,852 23 + GT/AG *
145,671 145,873 13 + GT/AG *
145,680 145,847 7 – GT/AG *
145,683 145,860 53 – GT/AG *
145,683 145,847 17 – GT/AG *

The newly discovered splice sites are labeled with asterisks.
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of introns, therefore, many low-abundance introns have been 
eliminated. Indeed, after the submission of our manuscript, Tang 
et al. (2019) have reported the existence of several hundreds of 
splice sites in HSV-1. Further studies have to decide whether 
these putative introns are artifacts or they really exist.

Here, we also report the identification of several multigenic 
RNA molecules including polycistronic and complex transcripts. 
The existence of cxRNAs, expressed from convergent gene pairs, 
indicates that transcription does not stop at gene boundaries 
but occasionally continues across genes standing in opposite 
directions of one another. The cxRNAs are typically expressed in 
low amount: however, their abundance is difficult to determine 
precisely because the amount of long transcripts is significantly 
underestimated by LRS techniques.

We have also detected pervasive antisense transcript 
expression throughout the entire viral genome especially 

with the random primer-based sequencing method. Novel 
antisense RNAs are typically transcriptional read-through 
products specified by the promoter of neighboring convergent 
genes. These normally low-abundance, non-polyadenylated 
transcription reads contain varying 3’ends. The reason of 
this phenomenon is the use random nucleotide primers for 
the RT. The HSV-1 genome also expresses antisense RNAs 
controlled by their own promoters. For example, we identified 
a very long 5’-UTR isoform of LAT-0.7 transcript. The LAT 
RNAs have been shown to play a role in latency (Nicoll et al., 
2016). LAT has also been shown to be a source of miRNAs 
(Lieberman, 2016). Further studies are needed to establish the 
potential function of LAT expression during the lytic cycle. 
We also detected novel divergent transcriptional overlaps: 
in two cases these transcripts appear to be initiated from the 
3’-ends of the adjacent genes.

FIGURE 5 | Complexity of spliced transcripts. (A) The splice sites of UL34-35 transcript were confirmed by dRNA sequencing. The splicing event leads to 
frameshifting of the ul34 ORF in UL34-35-SP2 and UL34-35-L-SP2 and in the deletion of the translational initiation site of the ul34 ORF in UL34-35- SP1 UL34-35-
L2-SP1. (B) The splicing complexity of RL2 and novel non-coding and potentially coding transcripts overlapping RL1 and the 5’ UTR of RL2. Alternative splicing in 
RL2-SP1 produces a frameshift in the second half of the ORF, while alternative splicing in RL2-SP2 and in RL2 results in premature stop codons. Two novel 5’-UTR 
length isoforms of the RL2 transcripts are shown, one of which may contain a truncated form of the RL1 ORF. This truncation is caused by a splicing event. A novel 
isoform of the RL1 with longer 5’ and 3’ UTRs (designated as RS1-L1-AT) was discovered. Another novel putative protein coding transcript is the RS2-ALT, which is 
co-terminal with RS1-L1-AT.
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In another article, we proposed a potential function for the 
complex overlapping meshwork formed by transcriptional 
read-throughs, divergent overlaps, antisense RNAs, as well 
as polygenic transcripts. We suggest the existence of a novel 
regulatory layer based on genome-wide interactions between 
closely located genes through the collision of and competition 
between their transcriptional machineries (Boldogkői 
et al., 2019c).

Moreover, we could also identify 2 novel replication-associated 
transcripts—OriL RNA-1 and OriS  RNA-3—overlapping OriL 
and OriS, respectively. Both raRNAs are long TSS isoforms 
produced from the neighboring genes, us1 for OriS, and ul30 for 
OriL. Similar transcripts have also been recently described in other 
alphaherpesviruses (Moldován et al., 2017b; Boldogkői et al., 2018; 
Prazsák et al., 2018). Intriguingly, since the replication origin is 
located at different genomic regions of herpesviruses, the sequences 

FIGURE 6 | Transcriptional overlaps. (A) A hard convergent overlap between the 3’-UTR regions of UL30 and UL31 transcripts shown by sequencing reads and 
annotations. (B) Occasional overlapping events between UL10-AT2 and UL11 and between UL11-AT and UL10 termed “soft convergent overlap”. The reads 
representing UL10-AT2 and UL11-AT are shown in dark red. Reads were visualized using IGV.
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of raRNAs are non-homologous. The function of these transcripts 
may be the regulation of the initiation of replication fork as in 
bacterial plasmids (Tomizawa et al., 1981; Masukata and Tomizawa, 
1986), or the regulation of replication orientation through a 
collision-based mechanism, as suggested earlier (Tombácz et al., 
2015; Boldogkői et al., 2019a). In the latter case, raRNAs are mere 
byproducts of a regulatory mechanism, but it does not exclude the 
possibility that these transcripts have their own functions, which 
are at least partly different from those of shorter isoforms.

The analysis of the HSV-1 dynamic transcriptome has revealed 
a temporally differential expression of transcript isoforms, which 
suggests a function of these forms of diversity.

The prototypic organization of herpesvirus transcripts with 
respect to the location of genes is as follows (in the case of 
adjacent genes): abcd, bcd, cd, and d. However, there are some 
exceptions to this rule, e.g. the ul41-43 and ul51-49 regions. Both 
the regular and the irregular gene clusters exhibit time course 
differences in their location in mono- and various polycistronic 
RNAs. Genes are also transcribed in various combinations 
on RNA molecules but the expression of most genes follows 
the prototypic organization. All in all, this study identified 
several novel RNA molecules, and transcript isoforms. Further 
studies have to be carried out to ascertain the function of these 
transcripts. The question might be raised as to whether the low-
abundance transcripts have any function at all, or whether they 
are the product of transcriptional noise. These transcripts may 
also be the by-products of a genome-wide regulatory mechanism 
discussed above, or they may also be functional.

TABLE 6 | Read-through RNAs. (A) Novel ncRNAs with unidentified 3’ ends; 
(B) Novel ncRNAs with unidentified 5’ and 3’ ends.

Name Genomic locations

A
rtUL3-4 11,212 12,316
rtUL8-7 17,579 18,659
rtUL16-15L1 30,000 31,607
rtUL51-S-50 107,877 109,169
rtUL51-50 108,179 109,305
rtUL56-55-54-c 114,529 117,080
rtUS2-US1 133,243 135,306
rtUS1-US2 132,127 135,322
rtUS11-10-9 143,185 145,461
rtUS12-11-10-9 143,752 146,102
B
IGEN-2 (earlier name: ULTN) 6,154 6,608
rtUL4-UL3 11,697 12,500
rtUL7-8 17,931 19,042
rtUL15-18 29,241 35,597
rtUL18-15 34,818 35,068
rtUL21-22 42,780 45,087
rtUL22-21/1 41,950 44,076
rtUL22-21/2 43,654 46,359
rULl26-27 52,662 54,774
rtUL36-35 71,000 71,520
rtUL41-40 89,898 91,274
rtUL40-41 90,900 91,712
AST-3-L 101,939 103,511
AST-3-UL49.5 rtRNA 102,801 103,952

These rtRNAs are probably non-polyadenylated because most of them were detected 
by random-primed sequencing alone. The genomic locations indicate the mapping of 
the transcription reads and not the transcript termini. “rt” stands for “read-through”, “c” 
for “complex”.

FIGURE 7 | Genome-wide kinetics of the TSSs of HSV-1. The TSSs were determined using the LoRTIA software suite in each sample. Blue dashes represent TSSs 
on the forward strand, while red dashes represent TSSs on the reverse strand. Black dashes represent previously known TSSs, whereas grey lines starting from 
the TSS and spanning to the bottom of the figure show the locations of known TSSs in every sample. Orange rectangles represent the ORFs. A higher resolution 
illustration is presented in Supplementary Figure 2.
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FIGURE 8 | Genome-wide kinetics of the TESs of HSV-1. The TESs were determined using the LoRTIA software suite in each sample. Blue dashes represent TESs 
on the forward strand, while red dashes represent TESs on the reverse strand. Black dashes represent previously known TESs, whereas grey lines starting from 
these and spanning to the bottom of the figure show the locations of known TESs in every sample. Orange rectangles represent the ORFs.

FIGURE 9 | Continued
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ACCESSION NUMBER

The PacBio RSII sequencing files and data files have been 
uploaded to the NCBI GEO repository and can be found with 
GenBank accession number GSE97785. The alignment files from 
MinION pooled samples, individual time points and Sequel 

sequencing have been deposited to the European Nucleotide 
Archive (ENA) under accession number PRJEB25433. 
Additional data from other sources utilized in this work for 
validation of rare transcripts and isoforms are available at the 
ENA with the study accession code PRJEB27861 (MinION 
dRNA-seq).

 

FIGURE 9 | Dynamic HSV-1 transcriptome—examples. The structure of transcript isoforms and of their position on the HSV-1 genome is shown by the annotations, 
while their abundance in distinct time points of the infection is represented on a log10 scale by bar plots on the right side of the annotation. Transcripts annotated in 
other works are marked with an asterisk (*). Transcript structures and counts were determined using the LoRTIA software suite. (A) The change in abundance of the 
5’-UTR and 5’ truncated isoforms of UL10. (B) Expression of UL27 RNA and its isoforms, including those with alternative termination. (C) Transcription kinetics of 
the US1 splice variants. (D) The change in abundance of polycistronic and monocistronic transcripts in the coterminal transcript at the UL11-UL14 region.  
(E) Transcription kinetics abundance of polycistronic and monocistronic transcripts in the UL42-UL45 region. Some of these transcripts are coterminal, while others 
have alternative terminations.
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SUPPLEMENTARY FIGURE 1 | Workflow of the data analysis.

SUPPLEMENTARY FIGURE 2 | High resolution TSS kinetics. TSSs and TESs 
were determined using the LoRTIA software suite in each sample. Blue dashes 
represent TSSs on the forward strand, while red dashes represent TSSs on the 
reverse strand. Orange rectangles represent the ORFs.

SUPPLEMENTARY FIGURE 3 | The cumulative abundance of transcript 
isoforms. Transcript isoforms were annotated and counted in separate stages 
of the viral infection using the LoRTIA software suite. The names of isoforms 
annotated in previous works by other methods are in red, whereas the isoforms 
detected by long-read sequencing are in black.

SUPPLEMENTARY TABLE 1 | Reads’ statistics.

SUPPLEMENTARY TABLE 2 | TSSs, TESs and introns.

SUPPLEMENTARY TABLE 3 | (A) Genome coordinates and abundance of 
transcripts identified by software. TSSs with bold letters were detected in at least 
3 independent samples. (B) Spliced transcripts with genome coordinates and 
intron abundances. Abbreviations: HA: highly abundant, A, abundant; LA, low 
abundance.

SUPPLEMENTARY TABLE 4 | Novel 5’-truncated transcripts with putative 
coding potential. This table summarizes novel and the previously published 
embedded mRNAs, as well as their genomic positions. Asterisks indicate 
transcripts that were also detected in our earlier study (Tombácz et al., 
2017b).

SUPPLEMENTARY TABLE 5 | NcRNA_codepot table. The table enlists the 
transcript start and end positions, the ORF composition, excluding introns for 
spliced ORFs, the orientation of the ORFs, the size of the ORF and the amino 
acid sequence of the ORF. Homology of these ORFs was analyzed by aligning 
them to Non-redundant protein database using the BLASTp suite. Hits with the 
highest E-score were included in the table.
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