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Abstract

Background: Utilization of quantitative proteomics data on the network level is still a challenge in proteomics data
analysis. Currently existing models use sophisticated, sometimes hard to implement analysis techniques. Our aim
was to generate a relatively simple strategy for quantitative proteomics data analysis in order to utilize as much of
the data generated in a proteomics experiment as possible.

Results: In this study, we applied label-free proteomics, and generated a network model utilizing both qualitative,
and quantitative data, in order to examine the early host response to Human Immunodeficiency Virus type 1 (HIV-
1). A weighted network model was generated based on the amount of proteins measured by mass spectrometry,
and analysis of weighted networks and functional sub-networks revealed upregulation of proteins involved in
translation, transcription, and DNA condensation in the early phase of the viral life-cycle.

Conclusion: A relatively simple strategy for network analysis was created and applied to examine the effect of HIV-
1 on host cellular proteome. We believe that our model may prove beneficial in creating algorithms, allowing for
both quantitative and qualitative studies of proteome change in various biological and pathological processes by
quantitative mass spectrometry.
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Background
Utilization of state-of the art proteomics methods can
generate thousands of data points, and extensive infor-
mation on proteins present in the sample can be ob-
tained. High-resolution shotgun proteomics can provide
both qualitative and quantitative information about pro-
teins, and can be applied in an unbiased way to study
the complete proteome [1, 2]. Despite the high amount
of data available, it is sometimes difficult to acquire rele-
vant biological information, in which case sophisticated
analytical methods and capable software are needed [3].
Network analysis is widely used in biological data ana-

lysis for examination of transcriptomic, proteomic or
metabolomic datasets [4–6], and for analyzing interactions

between various molecules [7, 8]. In the cellular environ-
ment, most of the proteins exert their biological function
as part of a complex, or in the form of interactions with
other proteins, therefore, application of protein-protein
interaction (PPI) analysis methods is advantageous [9].
PPI networks can provide a new layer of information,
allowing for the utilization of currently available data, in
addition to possibly unravelling hidden biological phe-
nomena [10, 11].
New concepts on network analysis are emerging help-

ing the understanding of biological complexity [12],
however, in most cases, only the presence or absence of
the protein is considered, the available quantitative data
can hardly be incorporated into the network analyses.
The replication cycle of human immunodeficiency

virus-1 (HIV-1) is a complex, multi-step, and highly reg-
ulated process. The cycle typically begins with viral at-
tachment to cell surface receptors, and ending with the
production of infectious virions. Due to the multiple
processes involved, the replication cycle has been
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classically divided into two distinct phases; the early and
late phase. The early phase encompasses cell binding, fu-
sion, internalization, uncoating, reverse transcription, as
well as integration of the viral cDNA into the host gen-
ome. On the other hand, transcription of viral genome,
export of viral RNA, assembly of virions at the plasma
membrane, as well as budding and maturation of the re-
leased virions are parts of the late phase of the replica-
tion cycle [13, 14]. While late phase events are relatively
well characterized, the precise mechanism and regula-
tion of early phase steps remain poorly understood.
Genomics and proteomics studies were carried out to

investigate how HIV-1 hijacks the host cellular machinery,
avoiding being sensed by host immune responses. siRNA
screens were implemented to study the cellular genes and
proteins required for HIV-1 infection [9, 15, 16], HIV-1
protein – host protein protein-protein interaction net-
works were generated, and the data were deposited in
HIV-1 Human Interaction Database [17].
In case of HIV infection, the network-based examina-

tions have identified perturbed host cellular systems;
such as the proteasome and transcriptional regulation,
and have revealed that HIV-1 preferably interacts with
highly connected and central cellular proteins [18–20].
In this study, we have generated the protein expression

profiles of cells during early HIV-1 infection using pro-
tein mass spectrometry, and integrated the acquired data
with knowledge-based protein-protein interaction net-
work to understand how cellular network is perturbed
by HIV.

Results
Our aim was to analyze the proteomic landscape of the
early stage of HIV-1 based lentiviral vector transduction.
293 T cells were infected with VSV-G pseudotyped HIV-
1 vector, and 0, 4 and 12 h post-infection, cell lysates
were harvested. Label-free proteomics was applied to
examine protein-level changes. Duplicate samples for
three time points were collected (0, 4, and 12 h post-
transduction) in case of virus transduced samples and in
case of control, mock transduced samples. The collected
6 virus treated and 6 control samples were analyzed in
duplicates, allowing for the measurement of two tech-
nical and two biological replicates for each time point.
The mass spectrometry proteomics data have been de-

posited into the ProteomeXchange Consortium [21] via
the PRIDE partner repository with the dataset identifier
PXD010436 and https://doi.org/10.6019/PXD010436.
Identified proteins (Additional file 1) were manually

curated, and in the case of non-human or non-viral
identifications, the sequences were verified. In many in-
stances, they were mistakenly designated as non-human
proteins, in which case it was corrected. In few in-
stances, the non-human proteins could not be matched

to any of the human or viral proteins, and consequently,
these sequences were omitted from further analyses. The
data for Rhodobacter capsulatus cytochrome c, bovine
pancreatic trypsin inhibitor, bovine serum albumin and
pig trypsin were kept to serve as reference for quantita-
tive analyses, but were not used for further computa-
tions. The relative amount of proteins was computed
based on spectral counting and in case of each protein
the mean of the results of the four analyses correspond-
ing to each condition was calculated (Additional file 2).

Statistical analysis
Firstly, a qualitative analysis was carried out to detect
newly expressed or down-regulated proteins in the first 4
or 12 h after HIV-1 pseudovirion transduction. Only those
proteins were considered for statistical analysis which
could be quantified in at least 2 out of 4 replicates, and
were not quantified in other conditions. HIST1H1E,
HNRNPL, PRRC2A and TRIM28 were quantified only at
H04, and there were no proteins quantified solely in H12
time point (Additional files 1, 2). HIST1H1E interacts with
linker DNA between nucleosomes, and functions in DNA
condensation, HNRNPL and TRIM28 play a role in trans-
lation and transcription, while PRRC2A plays a role in in-
flammatory processes.
Some of the proteins were quantified in all time points

except H12. These include ALYREF, CCDC86, CSDA,
COX5A, HN1, MYL6, PPIF, SEPT2, SRSF6, TCOF1, and
TPM3 (Additional file 1). These proteins participate in
RNA binding (ALYREF, CCDC86, SRSF6, TCOF1), DNA
binding (CSDA), protein folding (PPIF), energy gener-
ation (COX5A), signalization (HN1) and cytoskeleton
assembly (MYL6, SEPT2, TPM3).
In order to examine changes in the amount of proteins,

statistical analysis was carried out (Additional file 3). The
amount of CSDA, EEF1A1, EEF1D, HN1, NPM1, PGAM1
and SRSF6 increased significantly, while that of
HIST1H1D and HSPA5 significantly decreased in H04
(Fig. 1). It is interesting to note that after peaking in H04,
CSDA, HN1 and SRSF6 were not quantified in H12. In
H12, compared to C12, the amount of COX6B1 and
PDIA3 increased, while that of EEF2 and GAPDH de-
creased significantly (Fig. 1). When the function of pro-
teins showing statistically significant changes was
examined, we observed an increase in the amount of pro-
teins implicated in RNA binding in H04, and an overall
decrease in their amount in H12.

Network analysis
To broaden our insight, and to better understand the
possible functional associations of protein changes upon
HIV-1 pseudovirion transduction, we have searched for
the available protein-protein interactions of the quanti-
fied proteins in our datasets. For evaluation of the
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interactions, the STRING database was used, which con-
tains information on known and predicted, direct phys-
ical, and indirect functional protein-protein interactions
[22]. Only interactions which were of high confidence
(interaction score in STRING database > 0.95) were
used. Initially, five binary interaction networks were gen-
erated: NW0 combined proteins from mock- and virion-
treated cell lysates collected at 0 time-point, C04 and
C12 networks contained proteins from the mock-treated
cells collected 4 h and 12 h post-infection, respectively,
and the H04 and H12 networks contained proteins from
the HIV-1 transduced cells collected at 4 and 12 h time-
points, respectively (Fig. 2). The number of nodes and
the number of edges of the networks show a decreasing
trend over time, with a marked shrinkage in H12.
These binary networks provide information solely on

the possibility of interaction between two proteins (Fig. 2,
Fig. 3a, b), hence, in order to gain more realistic informa-
tion, protein amounts measured by spectral counting were
implemented into the network using a simple statistical

model. In this way, binary edges were transformed into es-
timated protein pair’s interaction intensities in the sample,
which is proportional to the amounts of proteins partici-
pating in the interaction, and inversely proportional to the
number of interactions (Fig. 3c). The weighted networks
were examined, and the number of nodes (N), edges (E),
network strength (S), edge density (D) and functional and
non-functional edge ratio (R) were calculated (Fig. 4).
The number of nodes decreased significantly in H12,

indicating network shrinkage in H12, observed in the
binary network (Fig. 4a). The number of edges and net-
work strength did not change in a statistically significant
manner (Fig. 4b, c), however, edge density decreased sig-
nificantly in H04 while increasing significantly in H12
(Fig. 4d). These changes indicate the presence of a less
interactive network in H04, and a smaller; yet more ac-
tive, PPI network in H12 (Fig. 4a, d).
Next, we were eager to analyze the functionality of the

networks, and hence, we generated functional sub-
networks of proteins belonging to GO terms. All the

Fig. 1 Relative protein amounts showing statistically significant changes in HIV-1 treated samples compared to controls. The x axis shows the
time-points of sample collection in hours, and the y axis shows the relative protein amounts. Blue color refers to control (C), and yellow color to
the HIV-1 treated sample (H)
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Molecular Function, Biological Process and Cellular Com-
ponent GO terms listed as enriched by STRING in C04,
H04, C12 and H12; where at least 10 protein per GO
function in any of the networks were present, were con-
sidered. To visualize network changes, the GO.0044765
term was chosen randomly (Fig. 3d), and the change of
this sub-network was visualized in all time points (Fig. 5).
Proteins present in a given GO term listed as enriched by
STRING were considered as being part of the functional
sub-network (f), whereas proteins not being part of the
specific GO term, were considered as non-functional (n)
proteins. Three types of interactions were analyzed: i) inter-
actions between proteins belonging to functional sub-
networks (f), ii) interactions between proteins not belong-
ing to functional sub-network (n), and iii) interactions

between functional and non-functional proteins (c – cross)
(Fig. 3d). In order to better understand the changes, a stat-
istical approach was applied, and the following network pa-
rameters were calculated: in case of each functional (f)
network of proteins belonging to a specific GO term, the
Nf, Ef, Sf, Df, and Rf, while for non-functional (n) proteins
the Nn, En, Sn, Dn, and Rn network parameters were cal-
culated. In case of interactions between the functional and
non-functional proteins (c) the Ec, Sc, Dc, and Rc network
parameters were calculated (Additional file 4).
According to our hypothesis, those GO functions or

functional sub-networks might be responsible for the
changes induced by HIV-1, where the parameters in the
functional network change significantly, whereas in the
non-functional network, no statistically significant changes

A

B

D E

C

Fig. 2 Protein-protein interaction network of the proteins quantified in each condition. The PPI networks were generated by STRING (confidence
0.95) using the list of quantified proteins presented in Additional file 2 in case of each condition. The number of nodes (N) and the number of
edges (E) according to STRING in case of each network is indicated. a. PPI network of proteins in the 0 h time point (NW), b. PPI network of
proteins in the 4 h time point in control, mock-transduced cells (C04). c PPI network of proteins in the 12 h time point in control, mock-
transduced cells (C12). d. PPI network of proteins in the 4 h time point in HIV vector-transduced cells (H04). e. PPI network of proteins in the 12 h
time point in HIV vector- transduced cells (H12). Red dots represent proteins belonging to transport GO term, blue dots indicate proteins having
a role in translation, while green dots indicate proteins with a role in RNA splicing according to the functional enrichment analysis provided
by STRING
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are shown. At the same time, those GO functions where
the parameters in the functional network do not change in
a statistically significant manner, yet do so in the non-
functional sub-networks, are thought to not explain the
changes related to HIV-1 transduction.
After statistical analysis and FDR correction of the re-

sults (Additional file 5), in case of some GO terms, sta-
tistically significant differences were observed. No
significant difference in edge and strength values were
observed in any of the functional sub-networks (Ef and
Sf), and the number of nodes was significantly reduced
in H12 only in the case of 5 functional sub-networks
(Additional file 6). Considering edge density (D) and

ratio (R), only those GO terms were further considered
where (i) the significant difference was present only in
the functional sub-network (Df and Rf, respectively) and
(ii) where the significant difference was present both in
the functional sub-network (Df and Rf) and in the cross
network (Dc and Rc) (Additional file 6). According to
our hypothesis, proteins belonging to the GO terms
listed in Table 1 and Table 2, are responsible for the
changes of cellular proteome observed in the H04 and
H12 networks in response to HIV-1 transduction. In
H04 sample, an increase in the node number (proteins
present in the network) was observed, however, this in-
crease was not significant. In the same time, a global

Fig. 3 Network generation pipeline. Representative network drawn by circlize, showing data for sample1 and interactions generated by STRING.
a. Binary network containing all the identified proteins arranged in alphabetical order on the external ring of the circular plot. Thin black curves
show the possible interactions generated by STRING. b. Binary network containing only the proteins with interactions. The isolated proteins (i.e.
without any connection) were eliminated. Thin black curves show the possible interactions generated by STRING. c. Weighted network containing
the interacting proteins. Orange lines represent interactions, the higher the intensity of the color and thickness of the line the higher the
interaction strength. d. Weighted network with functional feature. A randomly selected GO function (GO:0044765) is used to illustrate the
functional network. Red proteins are part of the functional sub-network, while black proteins are not, being considered as non-functional
proteins. The weighted interactions are color-coded according to the protein-pair classification: functional – functional interactions are orange,
non-functional – non-functional interactions are gray, and functional – non-functional interactions are green. The interaction strength is
represented by the intensity of the color and thickness of the line: the higher the intensity of the color and the thickness of the line, the higher
the interaction strength
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decrease in interactivity; represented by the number of
edges, was noticed. Proteins which might be responsible
for this reduced interactivity belong to the RNA
processing-related functions (splicing, RNA synthesis,
RNA catabolism, translation, transcription), regulation of
cell death, regulation of cellular response to stress, viral
life cycle (viral gene expression, viral transcription, viral
life cycle) and protein localization, and some very gen-
eral GO terms; such as protein binding, cellular macro-
molecular biosynthetic process, purine nucleotide
binding, organic substance transport, etc. (Table 1). In
spite of the reduced global interactivity, some functional
sub-networks; such as viral process, protein kinase bind-
ing, multi-organism process, de novo protein folding
and protein complex subunit organization, show signifi-
cantly increased interactivity (Table 1).
In H12, a statistically significant reduction of the node

numbers and shrinkage of the network; along with a sig-
nificant increase in interactivity, was observed (Fig. 4).
The proteins responsible for the increased interactivity

(increased Df and Rf values) belong to RNA binding, RNA
catabolic process, viral life cycle, viral process, negative
regulation of cell death, de novo posttranslational protein
folding, protein complex subunit organization, and cellu-
lar metabolic process, etc. (Table 2). The cell junction and
the myelin sheet GO terms also appear in H12, however,
when proteins belonging to these GO terms were exam-
ined, it was found that they are part of more general GO
terms from the list; such as intracellular non-membrane-
bounded organelle or nucleus, extracellular space, etc. In
case of biosynthetic process functional sub-network
(GO.0009058), a decrease in the Rf was observed.

Discussion
Genome-wide RNA interference-based screens were
carried out to evaluate more than 20,000 human gene
products to determine their alteration in HIV infec-
tion [23, 24]. A previous study showed an overall
downregulation of cellular genes encoding for nuclear
proteins, and genes involved in DNA replication and

A B

C D

Fig. 4 Network parameters. a. Number of nodes (N), b. number of edges (E), c. network strength (S), d. strength or edge density (D) in case of
networks observed in the examined conditions. The y axis show the mean value characteristic for each parameter, and the x axis indicates the
time points. Blue color refers to control, while the yellow color to the HIV-1 treated conditions
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protein synthesis in the early stages of the early phase
of viral infection [25], in a pattern that was confirmed
by our analysis (Table 1). Upregulation of cellular
genes was only found to occur at a later time point,
peaking at 22 h post-infection, additionally, analysis
on T cells showed that the most profound changes in

cellular proteome appear 24 h after infection, at time
points related to the late phase of infection [26].
It was found that up to 300 host cellular genes were

involved in the life cycle of HIV-1, and while the identity
of the genes was divergent among different studies, they
were found more or less to belong to similar pathways

Fig. 5 Network changes visualized in case of a representative functional sub-network. The representative figure shows the changes in weighted
networks in case of proteins belonging to randomly selected GO:0044765 GO term. NW represents the weighted PPI network of interacting
proteins in the 0 h time point, C04 and C12 correspond to PPI networks of interacting proteins in the 4 h and 12 h time point, respectively, in
control, mock-transduced cells. H04 and H12 represent the weighted PPI network of interacting proteins in the 4 h and 12 h time point,
respectively, in HIV vector-transduced cells. Red proteins are part of the functional sub-network, while black proteins are non-functional proteins.
The weighted interactions are color-coded according to the protein-pair classification: functional – functional interactions are orange, non-
functional – non-functional interactions are gray, and functional – non-functional interactions are green. The interaction strength is represented
by the intensity of the color and thickness of the line: the higher the intensity of the color and the thickness of the line, the higher the
interaction strength
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Table 1 List of GO terms with significantly different changes in the functional sub-network in H04

GO code GO term Significantly changed parameter Direction of change in H04

GO.0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay Df decrease

GO.0000228 nuclear chromosome Df decrease

GO.0000375 RNA splicing, via transesterification reactions Df decrease

GO.0000398 mRNA splicing, via spliceosome Df decrease

GO.0000956 nuclear-transcribed mRNA catabolic process Df decrease

GO.0003735 structural constituent of ribosome Df decrease

GO.0005198 structural molecule activity Df decrease

GO.0005515 protein binding Df decrease

GO.0005524 ATP binding Df, Dc decrease

GO.0005622 intracellular Df decrease

GO.0005737 cytoplasm Df decrease

GO.0005739 mitochondrion Df decrease

GO.0005840 ribosome Df decrease

GO.0006351 transcription, DNA-templated Df, Dc decrease

GO.0006366 transcription from RNA polymerase II promoter Df, Dc decrease

GO.0006367 transcription initiation from RNA polymerase II promoter Df decrease

GO.0006396 termination of RNA polymerase II transcription Df decrease

GO.0006397 mRNA processing Df decrease

GO.0006401 RNA catabolic process Df decrease

GO.0006402 mRNA catabolic process Df decrease

GO.0006412 translation Df decrease

GO.0006413 translational initiation Df, Dc decrease

GO.0006414 translational elongation Df, Dc decrease

GO.0006415 translational termination Df decrease

GO.0006417 regulation of translation Df, Dc decrease

GO.0006518 peptide metabolic process Df decrease

GO.0006605 protein targeting Df decrease

GO.0006614 SRP-dependent cotranslational protein targeting to membrane Df decrease

GO.0006732 coenzyme metabolic process Df, Dc decrease

GO.0006886 intracellular protein transport Df decrease

GO.0008104 protein localization Rf decrease

GO.0008152 metabolic process Df decrease

GO.0008380 RNA splicing Df decrease

GO.0009056 catabolic process Df decrease

GO.0009892 negative regulation of metabolic process Df decrease

GO.0009987 cellular process Df decrease

GO.0010468 regulation of gene expression Df decrease

GO.0010556 regulation of macromolecule biosynthetic process Df decrease

GO.0010608 posttranscriptional regulation of gene expression Df, Dc decrease

GO.0010941 regulation of cell death Df decrease

GO.0015031 protein transport Df decrease

GO.0016032 viral process Df increase

GO.0016043 cellular component organization Df decrease

GO.0016070 RNA metabolic process Df, Dc decrease
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Table 1 List of GO terms with significantly different changes in the functional sub-network in H04 (Continued)

GO code GO term Significantly changed parameter Direction of change in H04

GO.0016071 mRNA metabolic process Df decrease

GO.0016482 cytoplasmic transport Df decrease

GO.0016604 nuclear body Df, Dc decrease

GO.0017076 purine nucleotide binding Df, Dc decrease

GO.0018130 heterocycle biosynthetic process Df, Dc decrease

GO.0019058 viral life cycle Df decrease

GO.0019080 viral gene expression Df decrease

GO.0019083 viral transcription Df decrease

GO.0019222 regulation of metabolic process Df decrease

GO.0019438 aromatic compound biosynthetic process Df, Dc decrease

GO.0019538 aromatic compound biosynthetic process Df decrease

GO.0019899 enzyme binding Df decrease

GO.0019900 kinase binding Df, Dc increase

GO.0019901 protein kinase binding Df increase

GO.0022607 cellular component assembly Df decrease

GO.0022626 cytosolic ribosome Df decrease

GO.0030554 adenyl nucleotide binding Df, Dc decrease

GO.0031625 ubiquitin protein ligase binding Df, Dc decrease

GO.0031974 membrane-enclosed lumen Df decrease

GO.0032550 purine ribonucleoside binding Df, Dc decrease

GO.0032553 ribonucleotide binding Df, Dc decrease

GO.0032555 purine ribonucleotide binding Df, Dc decrease

GO.0032774 RNA biosynthetic process Df, Dc decrease

GO.0034248 regulation of cellular amide metabolic process Df decrease

GO.0034613 cellular protein localization Rf decrease

GO.0034622 cellular macromolecular complex assembly Df decrease

GO.0034645 cellular macromolecule biosynthetic process Df decrease

GO.0034654 nucleobase-containing compound biosynthetic process Df, Dc decrease

GO.0034655 nucleobase-containing compound catabolic process Df decrease

GO.0035639 purine ribonucleoside triphosphate binding Df, Dc decrease

GO.0036094 small molecule binding Df, Dc decrease

GO.0042981 regulation of apoptotic process Df decrease

GO.0043065 positive regulation of apoptotic process Df decrease

GO.0043066 negative regulation of apoptotic process Df, Dc decrease

GO.0043226 organelle Df decrease

GO.0043227 membrane-bounded organelle Df, Dc decrease

GO.0043229 intracellular organelle Df decrease

GO.0043231 intracellular membrane-bounded organelle Df decrease

GO.0043233 organelle lumen Df decrease

GO.0044085 cellular component biogenesis Df decrease

GO.0044237 cellular metabolic process Df decrease

GO.0044238 primary metabolic process Df decrease

GO.0044248 cellular catabolic process Df decrease

GO.0044249 cellular biosynthetic process Df decrease
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[27, 28]. Network analysis is widely used in the examin-
ation of protein-protein interactions, providing informa-
tion regarding protein changes on a different level,
giving a more ample view of the alterations and pertur-
bations of the biological systems as a result of a particu-
lar treatment. During analysis of PPIs, the presence or

absence of a protein is evaluated, and the interactions, in
light of existing evidence (ex. experimental data, litera-
ture search, computational methods), are displayed [29,
30]. STRING is a widely used, constantly updated, and
expanding database of PPIs [22], used for the examin-
ation of verified, or potential interactions among

Table 1 List of GO terms with significantly different changes in the functional sub-network in H04 (Continued)

GO code GO term Significantly changed parameter Direction of change in H04

GO.0044260 cellular macromolecule metabolic process Df decrease

GO.0044265 cellular macromolecule catabolic process Df decrease

GO.0044267 cellular protein metabolic process Df decrease

GO.0044271 cellular nitrogen compound biosynthetic process Df, Dc decrease

GO.0044391 ribosomal subunit Df decrease

GO.0044422 organelle part Df decrease

GO.0044424 intracellular part Df decrease

GO.0044444 cytoplasmic part Df decrease

GO.0044446 intracellular organelle part Df decrease

GO.0044451 nucleoplasm part Df, Dc decrease

GO.0044454 nuclear chromosome part Df decrease

GO.0044802 single-organism membrane organization Df, Dc decrease

GO.0045184 establishment of protein localization Df decrease

GO.0046907 intracellular transport Df, Dc decrease

GO.0051084 de novo posttranslational protein folding Df increase

GO.0051704 multi-organism process Df, Dc increase

GO.0060255 regulation of macromolecule metabolic process Df decrease

GO.0060548 negative regulation of cell death Df, Dc decrease

GO.0065003 macromolecular complex assembly Df decrease

GO.0070013 intracellular organelle lumen Df decrease

GO.0070972 protein localization to endoplasmic reticulum Rf decrease

GO.0071013 catalytic step 2 spliceosome Df decrease

GO.0071702 organic substance transport Df, Dc decrease

GO.0071704 organic substance metabolic process Df decrease

GO.0071705 nitrogen compound transport Df, Dc decrease

GO.0071822 protein complex subunit organization Df increase

GO.0071840 cellular component organization or biogenesis Df decrease

GO.0072594 establishment of protein localization to organelle Df decrease

GO.0080090 regulation of primary metabolic process Df decrease

GO.0080135 regulation of cellular response to stress Df, Dc decrease

GO.0090304 nucleic acid metabolic process Df, Dc decrease

GO.0097367 carbohydrate derivative binding Df, Dc decrease

GO.1901362 organic cyclic compound biosynthetic process Df, Dc decrease

GO.1901566 organonitrogen compound biosynthetic process Df decrease

GO.1901575 organic substance catabolic process Df decrease

GO.1901576 organic substance biosynthetic process Df decrease

GO.1902580 single-organism cellular localization Df decrease

In case of each GO term where statistically significant changes were observed in network parameters in HIV-1 treated cells at 4 h time-point the GO identifier, the
changed parameter and the direction of change is indicated
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Table 2 List of GO terms with significantly different changes in the functional sub-networks in H12

GO code GO term Significantly changed parameter Direction of change in H12

GO.0005759 mitochondrial matrix Nf decrease

GO.0003674 molecular function Df, Dc increase

GO.0003723 RNA binding Rf, Rc increase

GO.0005488 binding Df, Dc increase

GO.0005615 extracellular space Rf, Rc increase

GO.0005634 nucleus Df, Dc increase

GO.0005654 nucleoplasm Df, Dc increase

GO.0005739 mitochondrion Df increase

GO.0005743 mitochondrial inner membrane Df, Dc increase

GO.0005759 mitochondrial matrix Df increase

GO.0005856 cytoskeleton Df, Dc increase

GO.0006401 RNA catabolic process Df, Dc increase

GO.0006402 mRNA catabolic process Df, Dc increase

GO.0009058 biosynthetic process Rf, Rc decrease

GO.0009987 cellular process Df, Dc increase

GO.0010467 gene expression Rf, Rc increase

GO.0016032 viral process Rf increase

GO.0016604 nuclear body Nf decrease

GO.0017076 purine nucleotide binding Df, Dc increase

GO.0019058 viral life cycle Df, Dc increase

GO.0022607 cellular component assembly Df increase

GO.0030054 cell junction Df increase

GO.0031966 mitochondrial membrane Df, Dc increase

GO.0031981 nuclear lumen Df, Dc increase

GO.0043066 negative regulation of apoptotic process Df increase

GO.0043209 myelin sheath Df increase

GO.0043232 intracellular non-membrane-bounded organelle Df increase

GO.0043933 macromolecular complex subunit organization Rf, Rc increase

GO.0044237 cellular metabolic process Df increase

GO.0044265 mitochondrial nucleoid Df, Dc increase

GO.0044428 nuclear part Df, Dc increase

GO.0044430 cytoskeletal part Df, Dc increase

GO.0044451 nucleoplasm part Nf decrease

GO.0044712 single-organism catabolic process Nf decrease

GO.0044765 single-organism transport Df, Dc increase

GO.0044822 poly(A) RNA binding Rf increase

GO.0051084 de novo posttranslational protein folding Rf, Rc increase

GO.0051704 multi-organism process Rf, Rc increase

GO.0060548 negative regulation of cell death Df increase

GO.0071013 catalytic step 2 spliceosome Df increase

GO.0071705 nitrogen compound transport Nf decrease

GO.0071822 protein complex subunit organization Rf increase

GO.1901575 organic substance catabolic process Df increase

In case of each GO term where statistically significant changes were observed in network parameters in HIV-1 treated cells at 12 h time-point the GO identifier,
the changed parameter and the direction of change is indicated
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proteins of interests. These networks are rich in infor-
mation on protein clusters and functions based on Gene
Ontology (GO), however, enrichment of GO terms does
not handle protein amounts, therefore, reflecting theor-
etical, rather than actual parameters. Meanwhile, the use
of highly accurate mass spectrometry techniques provide
analytical data that is wealthy in quantity as well as qual-
ity. There were few attempts made to introduce the
quantitative data into the network analysis [31, 32]. In
order to implement quantitative data into the PPI net-
works, instead of the widely used binary networks, a
weighted network often utilized in information science
[33] was used in this study. Taking into account the pro-
tein amount reflected by the normalized total spectra,
instead of the probabilistic assumption [32], we choose a
simple statistical model. In our model, the protein pair’s
interaction is proportional to their amount in the sam-
ple, and inversely proportional to the number of possible
interactions listed in the PPI network generated by
STRING for proteins present in the sample. After in-
cluding the interaction density values as network edge
weights; calculated by our method, we could determine
a sort of weighed network parameters for the statistical
investigation of network alterations.
In our study, we aimed at characterizing the cellular

proteome changes in the early stage of HIV-1 infection,
within the 0–12 h time interval. Generation of weighted
networks, and analysis of functional sub-networks re-
vealed that the dynamics of protein level changes in sub-
networks is different in HIV-1 transduced samples 12 h
post-infection. Expectedly, in the very early stages of in-
fection, proteins involved in translation, transcription
and DNA condensation were upregulated, notably
HIST1H1E, HNRNPL, PRRC2A and TRIM28. Some
other proteins; such as ALYREF, CCDC86, CSDA,
COX5A, HN1, MYL6, PPIF, SEPT2, SRSF6, TCOF1, and
TPM3, prominently associated with RNA binding, cyto-
skeleton assembly, and signaling were quantified in all
time points except H12.
Examining the binary networks, two protein clusters

could be observed. One comprising proteins having a
role in translation and ribosome biogenesis, and the
other containing proteins from the hnRNP family with a
role in RNA splicing (Fig. 2). The functional sub-
network containing the ribosome component proteins
did not show a statistically significant change, and with
this, we can demonstrate on protein level the same find-
ings observed by Kleinman et.al. at gene level, who could
not observe statistically significant difference in case of
genes having a role in ribosome biogenesis at 12 h time
point [34]. Regarding the other cluster containing mainly
hnRNP proteins, we could not observe a statistically sig-
nificant change in network parameters among the differ-
ent time points. However, literature data show that host

RNA splicing is altered upon HIV-1 infection, and the
level of class A/B and H of hnRNP proteins changes; ini-
tially decreased 6–12 days post infection, thereafter in-
creased [35]. At the same time, it was shown that some
proteins of this cluster; such as HNRNPH1, HNRNPU
and SRSF6, are so called HIV-1 dependency factors [36]
and are required by HIV-1. These data are derived from
later time-points, as most of the experiments do not
examine such early events at 4 h or 12 h post infection.
Considering the results of the analyses, based on the

weighted networks, we could identify increased cellular
metabolic processes comprising increased RNA binding
and catabolism, cellular component assembly, along with
increased viral process and inhibition of apoptosis (in-
creased negative regulation of apoptotic process). RNA
binding was shown to be increased upon RNA virus in-
fection; Garcia-Moreno et al. observed an increased ac-
tivity of RNA-binding proteins upon sindbis virus
(SINV) infection at 18 h time point [37]. At the same
time, they observed an increased binding of RNA bind-
ing proteins to viral RNAs. This implies a massive down-
regulation of the host mRNAs 18 h post infection,
involving mainly the housekeeping genes [37]. In case of
HIV-1 infection, global siRNA studies indicate that a sta-
tistically significant portion of the host factors partici-
pate in mRNA transport [18].
Cells infected with HIV-1 usually die by apoptosis,

hence prevention of apoptosis might help maintain the
viral reservoir in the host [18, 38]. It was shown that a
fraction of infected immune cells survive, highlighting
the importance of escaping from apoptosis in the devel-
opment of viral reservoirs [38]. A mixed pattern of up-
regulation and downregulation of genes involved in
antiviral defense and cell death signaling were observed
by Mohammadi et al. at early time points [24]. Inhibition
of apoptosis increases the virus production in HIV-1 in-
fected cells [39], and modulation of this system might be
a good possibility for a therapeutic intervention [40].
Based on our data on the weighted networks, HSPA8

shows an increased interactivity in H12 datasets (Fig. 5a).
HSPA8 and other members of the Hsp70 family play a key
role during viral infection either as receptors for the virus,
as chaperons aiding the protein folding, or as transporters
between organelles [18, 41, 42].
Hijacking of the host system by HIV-1 is a complex

phenomenon with early and late events. In the early
phases of the viral infection, the virus utilizes cellular
RNA and protein production machinery for its replication.
It was observed that by 15 h post infection, all viral tran-
scripts were produced by the cells, and 18 h after infec-
tion, the virus budding commences [24]. Chang et al.;.
using next generation sequencing, observed a considerable
viral mRNA level in infected cells 12 h post-infection [43].
In this sense, examining the host response 48 h [15, 44] or
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6 days post-infection [45] cannot provide us with informa-
tion on the very early events. Observations made by Klein-
mann et al. analyzing the dataset generated by Chang et
al., show that at 12 h post infection, the gene expression
profiles are similar to the mock samples, and clear distinc-
tions could only be made after 24 h, highlighting the ne-
cessity of more sensitive methods for the examination of
early events of HIV-1 infection.
It is challenging to properly compare our results to

those presented in the scientific literature, since the
commonly used starting time point examined is 48 h
post infection, in case of HIV-1. However, considering
the findings presented by different groups; either on
HIV-1 or other RNA virus infections, our findings are
in good agreement with previous studies analyzing
transcriptomic and proteomic changes upon virus in-
fection in these very early time points. The use of
non-primary HIV-1 cell targets; such as HEK, and
pseudotyped virions, and the application of data-
dependent sampling [46], may indeed limit interpret-
ation of the results. The utilization of other cell types
and data acquisition methods with higher reproduci-
bility; such as parallel reaction monitoring [2] or data
independent acquisition [47], might give more accur-
ate input data. In spite of the above limitations, we
believe that this model of proteomic data evaluation
serves as a good starting point for further develop-
ment of algorithms implementing not only qualitative,
but also quantitative data generated in a given prote-
omic experiment, and that such a combination will
undoubtedly aid in the understanding and deciphering
of complex biological phenomena.

Conclusion
A weighted network model facilitating the use of both
qualitative and quantitative data, acquired in a label-
free proteomics experiment was generated and applied
to examine the early host response to HIV-1. Upregu-
lation of proteins involved in translation, transcription
and DNA condensation in the early phase of the viral
life-cycle could be observed, highlighting the utility of
our weighted PPI network data analysis approach.
More studies are required to further demonstrate the
utility of this new data-driven weighted network
based analysis, and it should be noted that the
current model has a serious limitation. The strength
of different protein-protein interactions in the edge
weight calculation; due to the lack of information, is
not yet included. However, the applied weight-model
can easily be extended to use this type of information
as soon as any public database becomes available. We
hope that this approach can open new ways for creat-
ing algorithms, allowing for both quantitative and
qualitative studies of proteome change in various

biological and pathological processes by quantitative
mass spectrometry.

Methods
Production of viral particles
Viral particles were produced with some modifications
of a previously utilized protocol [48]. Briefly, recombin-
ant viruses were produced by transient transfection of
293 T cells (ATCC® CRL3216™) using pWOX-CMV-GFP
(transfer vector plasmid), pMDLg/pRRE (packaging plas-
mid), pRSV.rev (Rev-coding plasmid), and pMD. G
(VSV-G envelope protein-coding plasmid). Vectors were
a kind gift from D. Trono (University of Geneva Medical
School, Geneva, Switzerland) [49], and were subse-
quently modified by our research group [48]. Salmon
sperm DNA (Sigma-Aldrich) was also added. Media
containing virus particles was concentrated by Ultracel-
100 K Amicon Ultra Centrifugal Filter (Millipore), and
stored in − 70 °C. Quantity of pseudovirions produced
was assessed by measurement of reverse transcriptase
(RT) activity using a colorimetric kit (Sigma-Aldrich,
Roche).

Transduction and sample collection
293 T cells in T-25 cell culture flasks were either mock-
treated or transduced at 50% confluency with 5 ng RT
equivalent of the HIV-based pseudovirions, in the pres-
ence of 4 μg/ml polybrene (Sigma-Aldrich), in 1 ml total
volume, and incubated at 37 C°. After 0, 4, and 12 h,
cells were trypsinized for 10 min, then washed tree times
with ice-cold PBS to remove non-fused pseudovirion
particles. The final pellet was suspended in 4 ml lysis
buffer (150 mM sodium chloride, 1.0% Triton X-100,
0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate
(SDS), and 50 mM Tris) pH 8.0, supplemented with
cOmplete protease inhibitor cocktail (Sigma-Aldrich),
incubated for 30 min at room temperature, centrifuged,
and the supernatant was mixed with 24 ml cold (− 20
C°) acetone and stored at − 20 C° overnight.

Mass spectrometry analysis
The cleared cell lysates were acetone-precipitated with
six volumes of cold acetone overnight. The precipitates
were re-dissolved in 25mM ammonium bicarbonate
(Sigma-Aldrich) and digested in-solution with trypsin
[50]. The tryptic fragments were used for replicate LC-
MS/MS analyses at University of Arizona in Tucson,
AZ, USA.
500 ng per 5 μL injected protein lysate spiked with 300

fmol of Rhodobacter capsulatus cytochrome c T33 V
mutant, was analyzed using a LTQ Orbitrap Velos mass
spectrometer (Thermo Fisher Scientific) equipped with
an Advion nanomate ESI source (Advion), after Omix
(Agilent Technologies) C18 sample clean-up according
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to the manufacturer’s instructions. Peptides were eluted
from a C18 precolumn (100-μm× 2 cm, Thermo Fisher
Scientific) onto an analytical column (75-μm× 10 cm,
C18, Thermo Fisher Scientific) using a 165 min gradient
of solvent A (water, 0.1% formic acid) and solvent B
(acetonitrile, 0.1% formic acid). The flow rate was 500
nl/minute. Data-dependent analysis (DDA) was per-
formed by the Xcalibur v 2.1.0 software [51] using a sur-
vey mass scan at 60,000 resolution in the Orbitrap
analyzer scanning mass/charge 350–1600, followed by
collision-induced dissociation tandem mass spectrom-
etry (MS/MS) at 35 normalized collision energy of the
14 most intense ions in the linear ion trap analyzer. Pre-
cursor ions were selected by the monoisotopic precursor
selection setting with selection or rejection of ions held to a
+/− 10 ppm window. Singly charged ions were excluded
from MS/MS. Dynamic exclusion was set to place any se-
lected m/z on an exclusion list for 45 s after a single MS/
MS. Tandem mass spectra were searched against the Uni-
protKB/Swiss-Prot release available on December 12, 2014
without species restriction. At the time of the search, this
database contained 459,734 entries. All MS/MS spectra
were searched using Thermo Proteome Discoverer 1.3
(Thermo Fisher Scientific) considering fully tryptic peptides
with up to 2 missed cleavage sites. Variable modifications
considered during the search included methionine oxida-
tion (15.995 Da), and cysteine carbamidomethylation
(57.021 Da). The parent ion mass tolerance was 10 ppm,
while the fragment tolerance was 0.8 Da. Proteins were
identified at 99% confidence with XCorr score cut-offs [52]
as determined by a reversed database search. The protein
and peptide identification results were validated with Scaf-
fold v4.4.6. (Proteome Software Inc.) [1]. Peptide identifica-
tions were accepted if they had greater than 89%
probability to achieve an FDR less than 0.1% by the Scaffold
Local FDR algorithm. Protein identifications were accepted
if they had greater than 99% probability and contained at
least 2 identified peptides. Protein probabilities were
assigned by the ProteinProphet algorithm [53]. Proteins
that contained similar peptides and could not be differenti-
ated based on MS/MS analysis alone were grouped to sat-
isfy the principles of parsimony. Proteins sharing significant
peptide evidence were grouped into clusters.
Protein quantification was done based on spectral count-

ing; the quantitative values were generated by the Scaffold
program based on the normalized total spectra. In case of
protein clusters, each peptide was used only once for quan-
tification for the first human protein in the cluster, as listed
by Scaffold. All quantitative data were used for statistical
analyses; none of the data points were removed.

Statistical analysis of proteomics data
For both statistical and network analysis, we used in-
house developed R-software based on STRING [54–57],

circlize (https://jokergoo.github.io/circlize_book/book/),
MASS [55], lsmeans [56], matrixStats [57], reshape2 [58]
and ggplot2 [59] packages. Assuming that data from
technical repetitions are often characterized by Poisson
distribution [60], and the large variances of biological
replicas can be modelled by negative binomial distribu-
tion [61], we used modified general linear models to de-
scribe group-level differences in measured protein data
in the 4 and 12 h time points. For each protein; after fit-
ting negative binomial generalized linear model [55], we
performed a post-hoc analysis [62] to characterize time-
dependent mean differences by z score, and corrected p
values for multiple comparisons.

Network analysis
Gene names of the identified human proteins were sub-
jected to STRING database [22] and five PPI networks
were generated. The NW0 combined proteins from
mock- and HIV-1 plasmid-treated cell lysates collected
at 0 time-point, the C04 and C12 networks contained
proteins from the mock cells collected 4 and 12 h post-
infection, respectively, while the H04 and H12 networks
contained proteins from the HIV-1 treated cells col-
lected at 4 and 12 h time-points, respectively. Very high
confidence interactions (interaction score > 0.95) in be-
tween the query proteins were used for the generation of
each binary network. In these networks, the nodes were
the proteins and the edges indicated the interactions be-
tween proteins as they were present in STRING. For
network generation, the SRING R-package and the
STRING database was applied, and the 0.95 combined
score value to generate the binary networks Bt,s (B0,
B4h,C, B4h,H, B12h,C, B12h,H) corresponding to the protein
sets. In these networks, the binary edges indicated only
the possibility of the interactions, taking no notice of the
quantity.
To estimate the real interaction density, binary net-

works (Bt,s) generated by STRING were further modi-
fied, and the amount of proteins measured by spectral
counting was used to add wij weights to the edges. In
this way, the existence of edges provides information on
the existence of interaction, and the strength of protein
pair’s interactions were estimated by this edge-weight
model:

wi j ¼ ni
ki

n j

k j
ð1Þ

where wij represents the interaction density between
protein Pi and Pj; ni, nj means the quantity while ki, kj
denote the degree (the number of edges) of Pi and Pj in
the given Bt,s binary network.
In this calculation, we used the measured data (ni, nj),

which enabled us to alter the theoretical binary PPI
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network into a realistic, sample related interaction net-
work, in which the weights of the edges are in direct
proportion to the quantities and in inverse proportion to
all interaction possibilities of the connected proteins in
the given sample.
Because we can consider the ni as the number of mol-

ecules of the protein Pi, the ni/ki ratio represents the
number of Pi molecules involved in one interaction of Pi,
and thus, the interaction density between Pi and Pj can
be described by the product of ni/ki and nj/kj. It should
be mentioned that the used edge-weight model in the
absence of a strong interactor protein may overestimate
the effect of other weak interactor proteins, also, inter-
action strength data cannot be achieved in a classical
quantitative proteomics experiment, and currently are
unavailable in publicly accessible databases.

Functional subnetwork construction
In order to investigate the PPI networks of the proteins be-
longing to GO (geneontology.org/) terms, we marked in each
Wt,s the nodes by a function flag, which indicated whether
or not the protein belongs to a given f-function; in our case,
to a GO term. The so-called functional enrichment accord-
ing to GO terms was done by STRING, using default set-
tings and the Molecular Function, Biological Process and
Cellular Component GO terms listed as enriched by
STRING in C04, H04, C12 and H12, where at least 10 pro-
tein per GO function in any of the networks was present,
were considered. This procedure defined a sort of Wf

t,s

functional networks, and divided them into two disjunctive
sub-networks (F f

t,s functional, belonging to the GO term
and NF f

t,s non-functional not being part of the respective
GO term), containing the functional and the non-functional
nodes, respectively. Because of this separation, the edges (i.e.
the interactions) were also classified into three classes: func-
tional edges between the functional nodes, non-functional
edges between non-functional nodes and cross-edges in be-
tween functional and non-functional nodes, depending on
the f-markers of the connected proteins.

Examination of the global characteristics of the evaluated
PPI networks
Any undirected weighted PPI network W(N,E) consists
of two sets: N nodes and E edges. Each of the links (in-
teractions) is defined by a couple of nodes (proteins) Pi
and Pj, and its value is wij. Since the direction of inter-
action cannot be ordered, the connectivity matrix be-
came symmetric: wij = wji.

Number of nodes (N) and edges (E)
N, Nf and Nn denotes the number of nodes (i.e. pro-
teins) in the whole network and the functional and non-
functional sub-networks, respectively, with the following
relation:

N ¼ Nf þNn ð2Þ
E denotes the number of edges (i.e. interactions) in the

whole network. Ef and En are the number of edges
within the functional and the non-functional sub-
networks, respectively. The number of cross-edges (Ec)
shows the connected proteins between the functional
and the non-functional sub-networks. The edge numbers
follow the next relation:

E ¼ Ef þ Enþ Ec ð3Þ

Network strength and averaged node strength (S)
We defined the network strength S as the total sum of
the weights of edges:

S ¼ 1
2

XN

i; j¼1
wi; j ð4Þ

In the functional networks we can calculate strength
of whole network (S), and the functional (Sf ) and non-
functional sub-networks (Sn), as well. The sum of cross
connection edges can be calculate as follows:

Sc ¼ S‐Sf‐Sn ð5Þ

Edge-weight density or strength density (D)
the edge-weight density measures how the weighted net-
work is saturated by strong edges:

D ¼ S

wmax
N N−1ð Þ

2

ð6Þ

In the functional networks we can measure the edge-
weight density of the whole network (D) and the func-
tional (Df) and non-functional sub-networks (Dn), as
well.
Edge-weight ratio (R): using the network strength we

can define the edge-weight ratio parameter for the two
sub-networks:

Rf ¼ Sf
S

ð7Þ

and the non-functional relative edge-weight density:

Rn ¼ Sn
S

ð8Þ

Since the distribution of network parameters was not
Gaussian or negative binomial, we used Wilcoxson tests
[63] to characterize the group-related differences at the
4 and 12 h time points. The evaluated p-values were cor-
rected for multiple comparisons by false discovery rate
methods [64].
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