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ABSTRACT

In this paper we propose an end-to-end, automatic, online
camera-LIDAR calibration approach, for application in self
driving vehicle navigation. The main idea is to connect the
image domain and the 3D space by generating point clouds
from camera data while driving, using a structure from mo-
tion (SfM) pipeline, and use it as the basis for registration. As
a core step of the algorithm we introduce an object level align-
ment to transform the generated and captured point clouds
into a common coordinate system. Finally, we calculate the
correspondences between the 2D image domain and the 3D
LIDAR point clouds, to produce the registration. We evalu-
ated the method in various different real life traffic scenarios.

Index Terms— LIDAR, camera, calibration

1. INTRODUCTION

Autonomous driving systems [1], equipped with 3D LIDAR
sensors and electro-optical cameras can achieve accurate and
comprehensive environment perception. Accurate LIDAR
and camera calibration is essential for robust data fusion,
issues that are extensively studied in the literature. Existing
calibration techniques can be grouped based on various as-
pects: the necessity of user interaction, specific environmen-
tal conditions, operational requirements, semi- [2] of fully
automatic [3], target-based [2, 4, 5, 6] or targetless [3, 7],
offline [2] or online [7]. In self driving applications, however,
even a well calibrated system needs some re-calibration due
to vibration on the roads and some sensor artifacts, calling
for robust online registration techniques, which are able to
precisely calibrate LIDAR and camera sensors on the fly.

In this paper we propose a novel targetless fully automatic
extrinsic calibration method between a camera and a Rotating
Multi-Beam (RMB) LIDAR mounted on a moving car. We
only have to fix the sensors on the vehicle and start driving
in a typical urban environment, and the method will calculate
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Fig. 1. Main steps of the proposed approach.

all necessary registration parameters in situ, online. State-
of-the-art competing approaches extract features for corre-
spondence calculation from the observednaturalenvironment
without calibration objects. [3] transforms the range sensor’s
3D measurement into a so called Bearing Angle (BA) image,
and identifies point correspondences between the BA and the
camera image. Alternatively, mutual Information was used in
[8] to calibrate different range sensors with cameras. How-
ever, experiments show that the above techniques require a
critical point density of the point cloud for reliable opera-
tion, which is not ensured at the single RMB LIDAR frames
provided by a car during self-driving operation [8]. The cor-
respondences in [7] are detected based on automatically ex-
tracted sets of lines both in the 2D images and in the 3D
point clouds. According to [7] the method is preferably used
indoors, where the required number of line correspondences
can be often observed. However, such conditions cannot be
guaranteed in RMB LIDAR point cloud frames recorded in
outdoor urban environments, which are notably sparse and
their density rapidly decreases as a function of the distance
from the sensor. In summary, finding meaningful feature cor-
respondences between the 3D point cloud and the 2D image
domain is the main challenge in online, targetless calibration,
which we aim to overcome here in a novel way (Fig. 1).

2. THE PROPOSED APPROACH

To avoid feature (2/3D interest points, line and planar seg-
ments) detection we turn to a structure from motion (SfM)
based technique [9] to generate point clouds from the image



Fig. 2. (a) 4 from a set of 8 images to process. (b) Generated
sparse point cloud (2041 points). (c) Densified point cloud
(257796 points).

sequences recorded by the moving vehicle (Fig. 2-3), and we
perform an alignment between the LIDAR and the generated
point clouds. In this way, our main task can be interpreted as
a point cloud registration problem (Fig. 4). Most of the con-
ventional point level iterative registration techniques,such as
variants of ICP or NDT [10], may fail when the density char-
acteristic is quite different between the point clouds, andin
our case, they can also be misled by false correspondences on
the ground caused by the typical ring patterns of RMB LIDAR
data. To avoid such artefacts we proposed a robust object
level alignment approach between sparse RMB LIDAR point
clouds and a dense reference pont map in [11, 12]. This tech-
nique extracts object blob centers in both point cloud frames,
which are matched in the Hough domain, based on the idea
of a fingerprint minutiae matching algorithm [13]. Although
that approach is able to find a robust transformation between
two point sets even if the number of points are different, it
becomes sensitive to several false or inaccurate hits of the
object detector, which are present in our case since both the
RMB LIDAR and the SfM point clouds are quite sparse and
noisy. In particularly, we observed that vehicles in the SfM
clouds often fall into several pieces due to their homogeneous
surfaces (Fig. 4(b)(c)), causing false matches to the Hough-
based estimator [12]. The next key step is to usesemantic in-
formationfor eliminating many of the false object candidates.
While object segment classification in sparse point clouds is
notably challenging and often unreliable do to occlusion, we
can robustly detect vehicle instances in the original camera
images with deep neural networks such asMask R-CNN[14]
(Fig. 4(d)). By projecting the 2D class labels into 3D, vehi-
cle points can be efficiently identified even in deficient SfM
clouds (Fig. 4(e)) helping registration enhancement.

Our final aim is to find correspondences between the
RMB LIDAR points and the pixels of the individual camera
images. Therefore, we calculate three matrices:T1 which
projects the points of the SfM cloud onto the image domain,
T2 which transforms the LIDAR frame to the coordinate sys-
tem of the SfM cloud, andT3 to project the LIDAR point
cloud directly onto the 2D image domain. The steps of the

Fig. 3. (a) Sparse cloud with each point assigned a unique
color. (b) One frame showing color coded 2D points that
contribute to the 3D point with the same color in (a) - also
showing 3 example correspondences.

new algorithm (Fig. 1) are presented in the following subsec-
tions in details.

2.1. Point cloud and transformation calculation

As the first step, we generate a sparse point cloud from a con-
tinuous series of camera images, using a modified OpenMVG
library [9][15], as described in the following.

We selectN ≥ 3 consecutive non-static camera frames
(N = 8 constant in this paper, resolution is1288 × 964
pixels), and feed the images into our structure from motion
pipeline:
1) Rectification: we rectify and store the selected frames.
2) Semantic segmentationof the rectified frames using Mask
R-CNN [14] to obtain pixel level class labels.
3) Extraction and matching(L2 fast cascade matching) using
SIFT feature points for the selected images.
4) Sparse point cloud calculation: Perform structure from
motion to generate a sparse point cloud (Fig. 2(b)), then i).
store the class labels - obtained in step 2 - of the feature points,
and ii). assign unique IDs and store the feature points that
contribute to the point cloud calculation. For each 3D point
we store the 2D image points (IDs and class) from all images
that contributed to the estimation of the 3D point. We also
assign unique IDs to all 3D points and save their associated
image points from the selected frames.
5) Using the stored 3D-2D point associations (Fig. 3(a-b))
we selectM points from each frame based on point density
(M = 45 constant), and from these 2D-3D associations we
calculate the transformationT1 using [16].
6) Densificationof the sparse point cloud (Fig. 2(c), Fig.
4(a)) using OpenMVS [17]. This cloud and the obtained
transformation will be used for alignment and registration.

The above steps can be performed on the fly, either in a
loop by selecting the nextN frames in a moving time win-
dow and updating the obtained transformations, or period-
ically, since the vehicle’s movements can cause sensor dis-
placements requiring regular updates.



Fig. 4. Results of the proposed object based alignment method. RMBLIDAR data is displayed with green, while the generated
SfM point cloud is shown with dark grey.

2.2. Object based point cloud alignment

According to [12] we extract connected components (ob-
jects) after ground removal, i.e., we extract two sets of object
centersO1 andO2 from the SfM-generated and the LIDAR-
captured point clouds. Using an iterative voting process [13]
we estimate an optimal matching between the two object sets.
In the LIDAR cloud, large objects such asfacade segments
and large vehiclesmay be only partially visible providing
invalid object centers. These large targets may mislead the
transformation estimation, so first we eliminate them based
on geometric constraints, and we only rely on compact blobs
containing mainly street furniture elements such aspoles,
traffic sings, trash binsor billboards. Dynamic objects from
the SfM point cloud are eliminated using the semantic infor-
mation by Mask R-CNN as mentioned earlier.

During the transformation estimation we take into account
the translation and the rotation component around theup-
wardsvector. Thus, we define the problem as a 3D rigid body
transformation which can be formulated as a rotation around
theupwardsvector with the properα value and a 3D transla-
tion among the three coordinate axes.

The transformation estimation is a discrete and finite
problem, so we divide the transformation space into equal
bins. We address a 4D voting arrayV [α, dx, dy, dz] by the
α rotation value and with the calculated translation compo-
nents. Iterating through allO1 andO2 object center pairs and
rotatingO2 with all α values we can calculate the Euclidean
distance between the rotated and the other center point:


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During the iteration we increase the evidence of each
candidate, we find the maximum value in the voting array
which determines the best transformation by the correspond-
ing rotation and translation components, and we transform
the LIDAR point cloud into the coordinate system of the
SfM-generated cloud (Fig. 4).

At the last step we project the points of the LIDAR point
cloud onto the image domain using transformationT1 and
using the inverse ofT2 we transform the LIDAR point cloud
to the original position. To calculate transformationT3 which
is able to project the 3D points directly to the image do-
main without the intermediate transformationT2 we use [16]
(knowing the internal parameters of the camera).

3. EVALUATION

We evaluated the proposed method on a new manually an-
notated dataset (with ground truth) and we compared it with
a state-of-the-art target based offline calibration [2] method.
To demonstrate the significance of the Mask R-CNN-based
semantic filtering of the SfM point cloud, we also compared
two variants of the proposed method: first we matched the LI-
DAR frame to the raw SfM point cloud; second - as described



(a) Proposed approach based on raw SfM (b) SfM cloud with 3D semantic information (c) Prop. approach using Mask-R CNN filter

Fig. 5. Qualitative results of the proposed online LIDAR-camera self-calibration approach. Projections of the LIDAR points
are displayed with green over the camera image. The improvement due to the Mask-R CNN filter is clearly observable by
comparing (a) and (c).

Set Method
x-error y-error

Avg. Dev. Avg. Dev.

Slow
Target-based reference [2] 2.87 0.47 3.57 0.86
Prop. based on raw SfM 6.62 1.35 7.69 1.01
Prop. using Mask-R CNN 5.35 0.98 5.97 0.65

Fast
Target-based reference [2] 4.78 1.04 6.21 1.03
Prop. based on raw SfM 6.75 1.28 7.43 0.97
Prop. using Mask-R CNN 5.49 1.17 5.78 0.87

Table 1. Performance analysis of the proposed automatic
target-less self-calibration approach. Error values are mea-
sured in pixels. Test set namesSlow and Fast refer to the
speed of the data acquisition platform.

in Sec. 2 - we eliminated dynamic parts from the generated
SfM point cloud, through propagating the semantic labeling
information of the Mask R-CNN through the SfM pipeline.

Pixel level projection errors and standard deviations are
shown in Table 1, and qualitative results are in Fig. 5. Al-
though results show that the offline target-based calibration
method can have higher accuracy, calibrating the camera and
the LIDAR with [2] method is a lengthy process, taking more
than1 hour. When parameters change during measurements
(e.g., sensor displacement) one needs to stop driving and re-
peat the offline calibration process.

Another artifact of conventional offline calibration [2]
comes from platform motion: because of the nature of the
RMB scanning, as the speed of the sensor increases the shape
of the point cloud gets distorted. Since offline calibration
can only be performed with a static vehicle, its accuracy may
decrease as the car moves with higher speed. The effect of
this phenomenon is also demonstrated in Table 1.

The proposed method calculates the correspondences be-
tween camera and LIDAR online during the operation of the
vehicle and calculations can be repeated online periodically,
thus, the average5 − 6 pixel error can be considered accept-
able considering we process camera images with relatively
large resolution (1288 × 964). At this resolution with5 − 6

pixel error we are able to robustly assign the 3D objects to the
corresponding image regions using the calculated projection
matrix, and this data fusion enables the autonomous vehicles
to extract more visual features from the surroundings.

There can be situations when we cannot produce a ro-
bust cloud, which might increase registration errors. How-
ever, the intended use case of the proposed approach is to
periodically repeat the online alignment, and only update the
calibration when the current estimation improves the previ-
ously used one. Currently we perform such updates at fixed
time intervals, however, in the future we also plan to include
an automatic step to intelligently find suitable locations based
on the current camera images.

Since the proposed approach is based on an object level
alignment method, the quality of the registration is greatly de-
pend on the amount and the type of the detected objects. Our
experiments show that the proposed method performs better
if the scenes contain vertical objects such astraffic signs, tree
trunksandpoles, so after the object detection we count such
objects based on simple geometric constraints and we only
calculate the calibration if the given scene seems appropri-
ate. Typically in the case of main roads and larger crossroads
containing several vertical landmark objects the proposedal-
gorithm works more robustly.

4. CONCLUSION

This paper proposed a targetless camera-LIDAR sensor self-
calibration approach using 2D-3D data fusion, that can be per-
formed on the fly, and updated periodically during the data
capturing process, thus eliminating the need of lengthy of-
fline sensor calibrations. The method uses a series of camera
frames, along with their semantic segmentations, from a con-
tinuous time-window and the captured LIDAR sensor data to
perform automatic 2D-3D registration and alignment.
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