SFM AND SEMANTIC INFORMATION BASED ONLINE TARGETLESS CAMERA-LIDAR
SELF-CALIBRATION

Balazs Nag¥?, Levente Kofics', Csaba Benedég*

Ynstitute for Computer Science and Control (MTA SZTAKI), Kengl. 13-17 Budapest, Hungary
2Pazmany Rter Catholic University, Faculty of Inf. Tech. and Bionicsater u. 50/A, Budapest

ABSTRACT Point cloud transformation (S.2.1)

. . . | . Img. se mentati0n|—>| StM
In this paper we propose an end-to-end, automatic, online Imageseq |_>I 2 l
camera-LIDAR calibration approach, for application infsel |SparseaDense point cloud
driving vehicle navigation. The main idea is to connect the
i i i i Object based point
image domain and thg 3D.s.pace by generating point clouds v cloun alignment (8.2.2)
f!’om Camer_a d‘?‘ta while d”\('ng* using a Strucwr_e fro_m mo- RMB LIDAR] [ |Object centers|,] Object-based | | Projections
tion (SfM) pipeline, and use it as the basis for registratis point cloud extraction alignment (3D-2D)

a core step of the algorithm we introduce an object levehalig
ment to transform the generated and captured point clouds
into a common coordinate system. Finally, we calculate the
correspondences between the 2D image domain and the 3D
LIDAR point clouds, to produce the registration. We evalu-
ated the method in various different real life traffic scévsr

Fig. 1. Main steps of the proposed approach.

all necessary registration parameters in situ, online.teSta
of-the-art competing approaches extract features foreeorr
Index Terms— LIDAR, camera, calibration spondence calculation from the obsermadural environment
without calibration objects. [3] transforms the range sess

3D measurement into a so called Bearing Angle (BA) image,
and identifies point correspondences between the BA and the
camera image. Alternatively, mutual Information was used i
48] to calibrate different range sensors with cameras. How-

comprehensive environment perception. Accurate LIDAREVED: expe_riments_show that the above techniques require a
and camera calibration is essential for robust data fusionc,rItICaI pom_t density of the point .ClOUd for reliable opera
issues that are extensively studied in the literature. tixjs t|on,_wh|ch IS not ensgred at th? ;mgle RME’ LIDAR frames
calibration techniques can be grouped based on various a%r_owded by a car during self-driving operation [8]. Thecor
pects: the necessity of user interaction, specific enviemm respondences n [7] are dgtected baspd on autom'atlcally ex-
tal conditions, operational requirements, semi- [2] ofyful tra_cted sets of Ilnes_both in the 2D Images and in the 3D
automatic [3], target-based [2, 4, 5, 6] or targetless [3, 7]_pomt clouds. According _to [7] the methoq is preferably used
offline [2] or online [7]. In self driving applications, hower, indoors, where the required number of line correspondences

even a well calibrated system needs some re-calibration dg&" be often observed. However, such conditions cannot be

to vibration on the roads and some sensor artifacts, Ca”ingugantee%m RMB LIDARt pomrt]_clr(])ud frarr][ezlrecorded n d
for robust online registration techniques, which are able t utdoor urban environments, which are notably sparse an

precisely calibrate LIDAR and camera sensors on the fly. their density rapidly decreaseg as a funcﬂ_on of the distanc
; from the sensor. In summary, finding meaningful feature cor-
In this paper we propose a novel targetless fully automatic

extrinsic calibration method between a camera and a Rgtatinrespondences between the 3D point cloud and the 2D image

Multi-Beam (RMB) LIDAR mounted on a moving car. We sz?gﬁlcvs’;?; ?;agsgriiuﬁg%zg ?nn!lnrfé\tzlr%vege?;caild;mat
only have to fix the sensors on the vehicle and start driving y(Fg. ).

in a typical urban environment, and the method will calcilat

1. INTRODUCTION

Autonomous driving systems [1], equipped with 3D LIDAR
sensors and electro-optical cameras can achieve accuadite

2. THE PROPOSED APPROACH
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National Excellence Program of the Ministry of Human Capesit based technique [9] to generate point clouds from the image



Fig. 3. (a) Sparse cloud with each point assigned a unique

olor. (b) One frame showing color coded 2D points that
contribute to the 3D point with the same color in (a) - also
showing 3 example correspondences.

Fig. 2. (a) 4 from a set of 8 images to process. (b) Generate
sparse point cloud (2041 points). (c) Densified point clou
(257796 points).

sequences recorded by the moving vehicle (Fig. 2-3), and we . . . .

perform an alignment between the LIDAR and the generate?ew "’?'90””‘.”‘ (Fig. 1) are presented in the following subsec
: . : X [ons in details.

point clouds. In this way, our main task can be interpreted as

a point cloud registration problem (Fig. 4). Most of the con-

ventional point level iterative registration techniquasch as  2.1. Point cloud and transformation calculation

variants of ICP or NDT [10], may fail when the density char- i .
acteristic is quite different between the point clouds, and AS the first step, we generate a sparse point cloud from a con-

our case, they can also be misled by false correspondences JiHOUS series of camera images, using a modified OpenMVG

the ground caused by the typical ring patterns of RMB LIDAR!IPrary [9][15], as described in the following.
data. To avoid such artefacts we proposed a robust object e SelectV'. > 3 consecutive non-static camera frames
level alignment approach between sparse RMB LIDAR poin{Y = 8 constant in this paper, resolution 1288 x 964
clouds and a dense reference pont map in [11, 12]. This teclﬁ’-!X9|_S)v and feed the images into our structure from motion
nigque extracts object blob centers in both point cloud frame PiPeline: _
which are matched in the Hough domain, based on the ided) Rectification we rectify and store the selected frames.
of a fingerprint minutiae matching algorithm [13]. Although 2) Semantic segmentatiar the rectified frames using Mask
that approach is able to find a robust transformation betweeR-CNN [14] to obtain pixel level class labels.
two point sets even if the number of points are different, it3) Extraction and matchingL. fast cascade matching) using
becomes sensitive to several false or inaccurate hits of thelFT feature points for the selected images.
object detector, which are present in our case since both tH Sparse point cloud calculationPerform structure from
RMB LIDAR and the SfM point clouds are quite sparse andmotion to generate a sparse point cloud (Fig. 2(b)), then i).
noisy. In particularly, we observed that vehicles in the SfMstore the class labels - obtained in step 2 - of the featurggoi
clouds often fall into several pieces due to their homogeseo and ii). assign unique IDs and store the feature points that
surfaces (Fig. 4(b)(c)), causing false matches to the Hougteontribute to the point cloud calculation. For each 3D point
based estimator [12]. The next key step is to semantic in- We store the 2D image points (IDs and class) from all images
formationfor eliminating many of the false object candidates.that contributed to the estimation of the 3D point. We also
While object segment classification in sparse point clouds igssign unique IDs to all 3D points and save their associated
notably challenging and often unreliable do to occlusioa, w image points from the selected frames.
can robustly detect vehicle instances in the original camer5) Using the stored 3D-2D point associations (Fig. 3(a-b))
images with deep neural networks suchvissk R-CNN14]  we select)M points from each frame based on point density
(Fig. 4(d)). By projecting the 2D class labels into 3D, vehi-(M = 45 constant), and from these 2D-3D associations we
cle points can be efficiently identified even in deficient SfMcalculate the transformatidhy using [16].
clouds (Fig. 4(e)) helping registration enhancement. 6) Densificationof the sparse point cloud (Fig. 2(c), Fig.
Our final aim is to find correspondences between the(a)) using OpenMVS [17]. This cloud and the obtained
RMB LIDAR points and the pixels of the individual camera transformation will be used for alignment and registration
images. Therefore, we calculate three matricés:which The above steps can be performed on the fly, either in a
projects the points of the SfM cloud onto the image domainloop by selecting the next/ frames in a moving time win-
T, which transforms the LIDAR frame to the coordinate sys-dow and updating the obtained transformations, or period-
tem of the SfM cloud, and’; to project the LIDAR point ically, since the vehicle’s movements can cause sensor dis-
cloud directly onto the 2D image domain. The steps of thglacements requiring regular updates.
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Fig. 4. Results of the proposed object based alignment method. RMBR data is displayed with green, while the generated
SfM point cloud is shown with dark grey.

2.2. Object based point cloud alignment

According to [12] we extract connected components (ob- dz* cosa*  sina* 0
jects) after ground removal, i.e., we extract two sets oéobj dy* | =01 — | —sina® cosa® 0 | oy
centersO; andO- from the SfM-generated and the LIDAR- dz* 0 0 1

captured point clouds. Using an iterative voting proces$ [1

we estimate an optimal matching between the two object sets. During the iteration we increase the evidence of each
In the LIDAR ClOUd, |arge Objects such fscade Segments candidate, we find the maximum value in the VOting array
and |arge Vehic'esmay be on|y part|a”y Visib'e providing which determines the best transformation by the COI’reS-pond
invalid object centers. These large targets may mislead tH89 rotation and translation components, and we transform
transformation estimation, so first we eliminate them baseéhe LIDAR point cloud into the coordinate system of the
on geometric constraints, and we only rely on compact blob§fM-generated cloud (Fig. 4).

containing mainly street furniture elements suchpates At the last step we project the points of the LIDAR point
traffic sings trash binsor billboards Dynamic objects from cloud onto the image domain using transformatinand
the SfM point cloud are eliminated using the semantic inforusing the inverse af’; we transform the LIDAR point cloud
mation by Mask R-CNN as mentioned earlier. to the original position. To calculate transformatiBnwhich

During the transformation estimation we take into accountS able to project the 3D points directly to the image do-
the translation and the rotation component aroundupe ~Main Wlthout Fhe intermediate transformatidhwe use [16]
wardsvector. Thus, we define the problem as a 3D rigid bodyknowing the internal parameters of the camera).
transformation which can be formulated as a rotation around
theupwardsvector with the propet value and a 3D transla- 3. EVALUATION
tion among the three coordinate axes.

The transformation estimation is a discrete and finiteNe evaluated the proposed method on a new manually an-
problem, so we divide the transformation space into equalotated dataset (with ground truth) and we compared it with
bins. We address a 4D voting arr&{«, d,, d,,d.] by the  a state-of-the-art target based offline calibration [2] et
« rotation value and with the calculated translation compoTo demonstrate the significance of the Mask R-CNN-based
nents. Iterating through ald; andO object center pairs and semantic filtering of the SfM point cloud, we also compared
rotating O, with all « values we can calculate the Euclideantwo variants of the proposed method: first we matched the LI-
distance between the rotated and the other center point:  DAR frame to the raw SfM point cloud; second - as described
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(a) Proposed approach based onraw SfM  (b) SfM cloud with 3D semantic information  (c) Prop. approach using Mask-R CNN filter

Fig. 5. Qualitative results of the proposed online LIDAR-camegH-salibration approach. Projections of the LIDAR points
are displayed with green over the camera image. The impremeniue to the Mask-R CNN filter is clearly observable by
comparing (a) and (c).

Set | Method X-error y-error pixel error we are able to robustly assign the 3D objectseo th
Avg. | Dev. | Avg. | Dev. | corresponding image regions using the calculated projecti
Target-based reference [2] 2.87 | 0.47 | 3.57 | 0.86 | matrix, and this data fusion enables the autonomous vehicle
Slow | Prop. based onraw SfM | 6.62 | 1.35 | 7.69 | 1.01 |t extract more visual features from the surroundings.
'T;?gétus:sgegﬂrisfz}in%g”;]232 g'gi 2'21 (1)'82 There can be situations when we cannot produce a ro-
- 4 . . . . H H H H H
Fast | Prop. based on raw StM | 6.75 | 1.28 | 7.43 | 0.97 bust clouq, which might increase registration errors. Hoyv-
Prop. using Mask-R CNN| 5.49 | 1.17 | 5.78 | 0.87 ever, t.he intended use case of the proposed approach is to
periodically repeat the online alignment, and only updaée t
calibration when the current estimation improves the previ
Table 1. Performance analysis of the proposed automatiously used one. Currently we perform such updates at fixed
target-less self-calibration approach. Error values aga-m time intervals, however, in the future we also plan to inelud
sured in pixels. Test set nam&ow and Fast refer to the  an automatic step to intelligently find suitable locatioaséx
speed of the data acquisition platform. on the current camera images.
Since the proposed approach is based on an object level
] o ] alignment method, the quality of the registration is gredd-
in Sec. 2 - we eliminated dynamic parts from the generateflang on the amount and the type of the detected objects. Our
SfM point cloud, through propagating the semantic labelingsyperiments show that the proposed method performs better
information of the Mask R-CNN through the SfM pipeline. it the scenes contain vertical objects suchraic signs tree
Pixel level projection errors and standard deviations arg,nksandpoles so after the object detection we count such
shown in Table 1, and qualitative results are in Fig. 5. Al-gpiacts based on simple geometric constraints and we only
though results show that the offline target-based caltmati cajcylate the calibration if the given scene seems appropri
method can have higher accuracy, calibrating the camera angl Typically in the case of main roads and larger crossroad

the LIDAR with [2] method is a lengthy process, taking morecontaining several vertical landmark objects the propased
than1 hour. When parameters change during measuremen@rithm works more robustly.

(e.g., sensor displacement) one needs to stop driving and re
peat the offline calibration process.

Another artifact of conventional offline calibration [2]
comes from platform motion: because of the nature of th

4. CONCLUSION

This paper proposed a targetless camera-LIDAR sensor self-
£ th int cloud aets distorted. Si i librati Wfibration approach using 2D-3D data fusion, that can be pe
ot the paint cloud gets distorted. - SIince ofiine calibraliong, ey o the fly, and updated periodically during the data

can only be performed with a s.tatic.vehicle, its accuracy ma%?pturing process, thus eliminating the need of lengthy of-
decrease as the car moves with higher speed. The effect fihe sensor calibrations. The method uses a series of camera

this phenomenon is also demonstrated in Table 1. frames, along with their semantic segmentations, from a con

The proposed method calculates the correspondences e : :
X : . ime-window and th red LIDAR sensor
tween camera and LIDAR online during the operation of thieJ( uous time dow and the captured sensor data to

vehicle and calculations can be repeated online peridgical perform automatic 2D-3D registration and alignment.
thus, the averag® — 6 pixel error can be considered accept-

able considering we process camera images with relatively

large resolution {288 x 964). At this resolution withs — 6
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