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Abstract

We present a new algorithm to reconstruct the volumetric flux in the
aorta. We study a simple 1D blood flow model without viscosity term and
sophisticated material model. Using the continuity law, we could reduce the
original inverse problem related to a system of PDEs to a parameter iden-
tification problem involving a Riccati-type ODE with periodic coefficients.
We implemented a block-based optimization algorithm to recover the model
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parameters. We tested our method on real data obtained using CG-gated CT
angiography imaging of the aorta. Local flow rate was calculated in 10 cm long
aorta segments which are located 1 cm below the heart. The reconstructed
volumetric flux shows a realistic wave-like behavior, where reflections from ar-
teria iliaca can also be observed. Our approach is suitable for estimating the
main characteristics of pulsatile flow in the aorta and thereby contributing
to a more accurate description of several cardiovascular lesions.

Keywords: Haemodynamics, pulse wave propagation, one-dimensional mod-
eling, periodic Ricatti equation

MSC: 92C50, 92C10, 92C35, 76B99

1. Introduction

Pulsatile flow in blood vessels has been studied for more than 300 years. Euler
initiated the theory of pressure wave propagation in the vascular system in 1775
[6]. The first modern mathematical model of pulsatile flow in blood vessels was
developed by Korteweg and Lamb [10, 12]. It is widely accepted that, flow wave-
form carries valuable information about the physical properties of the circulatory
system [1]. Moreover, it allows to calculate patient-specific estimates of haemod-
inamical quantities like blood pressure in the aorta that are difficult to measure
non-invasively. Consequently, haemodynamical simulations have become increas-
ingly popular in the last few decades. Blood flow modeling techniques can be
divided into three main types: 0D or lumped parameter models, 1D and 3D mod-
els. Each of these has its own advantages and limitations. For example, 0D models
are computationally inexpensive, but they are not suitable to study pulse wave
propagation phenomena or complex flows [2]. Similarly, 3D are capable of repre-
senting complex velocity profiles. However, the main drawback of 3D simulations
is their huge computational cost. The accuracy of these modeling frameworks have
been evaluated against in vivo data [2]. It turned out that average relative errors
are smaller than 7% between simulated and in vivo waveforms. The survey paper
[1] gives a good overview with plenty information about numerical, theoretical and
experimental efforts and recent developments made in this field.

The main objective of the present work is to demonstrate that the volumetric
flux rate in the aorta can be reconstructed from the changes of the sectional area.
Dumas demonstrated the possibility of the determination of volumetric flux by
fitting a 1D model with results of 3D computations or with experimental values
[4]. In this work we offer a new method independent from 3D simulations and
thus keeping the computational cost down. State-of-the-art investigations of the
disorders of human arterial sections apply 3D numerical fluid–structure interaction
simulations involving the calculation of the blood flow field inside the lumen, the
necessary boundary conditions of which are the time-dependent pressure profile
at the outlet and volumetric flow rate at the inlet cross-section. The protocol
to determine these functions non-invasively is the measurement of both on the
arm followed by transforming them to the section under scrutiny by a 1D system
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model of the circulatory system. Our method offers a different and easy to use
procedure to formulate the inlet boundary condition without Doppler velocimetry,
thus facilitating 3D simulations.

The paper is organized as follows. Section 2 deals with data acquisition tech-
nologies. Section 3 is divided into three main parts. In the first part, the 1D pul-
satile blood flow model used in this study is introduced. The second part contains
some analytical considerations about the existence and the stability of periodic
solutions with prescribed bounds on the average volumetric flux. Furthermore, we
show that the periodic solutions can be obtained by solving a first order Riccati
type ODE. In the last part of this section, we present a new algorithm to solve
the corresponding inverse problem. Section 4 is devoted to the presentation and
discussions of numerical results.

2. Material and methods

In this Section, we present the techniques used in this study to acquire in vivo data.
First, we give a brief overview of the ECG-gated computed tomography angiog-
raphy. After this, we describe the details of the examinations and measurements.
At least we specify the entire chain of data post-processing including the segmen-
tation of 4D CT data and the strategies implemented to mitigate the impact of
measurement errors.

2.1. Imaging of the aorta
The imaging of a pulsatile organ is a highly demanding application for any cross-
sectional imaging modality. Computed tomography (CT) imaging of the heart
became widely available with the introduction of multi-detector CT (MDCT) scan-
ners with four-slice detector arrays and 500 ms minimum rotation time [3]. Still
images of the moving heart was generated using retrospective ECG-gating: slow
table motion during spiral scanning and simultaneous acquisition of the slices and
the digital ECG trace provided oversampling of scan projections [3]. After the
exposure, slices recorded in the same phase of the ECG trace are matched to gen-
erate a 3D dataset of the volume of interest, representing either systole or diastole.
A drawback of this method is the higher radiation dose compared to the normal
non-oversampled spiral acquisition [5]. An important advantage is the possibility
to reconstruct multiphase datasets of the same volume, resulting in motion images
of the same slices. This allows us the functional analysis of the moving organs
such as the heart or the great vessels. Recent advances in CT technology (256–320
detector rows, 270 ms minimum rotation time) allow for rapid ECG-gated CTA of
the whole aorta during a single breath-hold.

Imaging of the aorta was performed in 5 patients (5 men, mean age 68.2 ± 6.1
years, see Table 1) with a 256-slice MDCT (Philips Brilliance iCT, Koninklijke
Philips N.V., Best, The Netherlands) using a retrospectively ECG-gated protocol
tailored for the imaging of the aorta. Investigations were performed on images read-
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ily available from patients with suspected aortic disease. Low-dose (tube voltage:
100 kV) native scan was followed by a retrospective ECG-gated CT angiography
of the whole aorta (100 kV) with a reduced field of view to maximize spatial reso-
lution. Nonionic contrast agent was injected into an antecubital vein at a flow rate
of 4-5 ml/s using a power injector. Images were reconstructed using a sharp con-
volution kernel and iterative reconstruction algorithm (iDose4, Koninklijke Philips
N.V., Best, The Netherlands) with a slice thickness of 1 mm and an increment
of 1 mm. Multiphase images were reconstructed corresponding every 10% of the
R-R cycle resulting in ten series of images for each patient. Patients gave written
informed consent before the CT examination was performed. Experimental pro-
tocol and informed consent was approved by the Regional Ethical Committee of
Semmelweis University (133/2011).

No. Age BMI HR DLP
1. 69 29.1 60 3504
2. 67 23.9 52 2690
3. 62 28.9 86 2756
4. 65 19.3 59 2161
5. 78 24.7 67 2300

Table 1: Patient data: Age (years), BMI (kg/m2), HR (bpm), DLP
(mGycm)

2.2. Data post-processing
In order to measure the section area at any longitudinal position and time, we
have to locate the arterial lumen on a huge amount of bitmap images. This can be
carried out by some sort of image segmentation algorithm. We wrote a program
that implements a version of the Actice Contour Model (ACM) to perform this
task. For more information about the Active Contours, we refer the reader to [9]
and [14]. As the result of the segmentation process, we get the coordinates of the
internal vessel wall for each slice perpendicular to z axis in the region of interest
and for all phases in time.

To mitigate spatial measurement error, we fitted a bi-cubic smoothing spline to
the point cloud resulting from the active contour method in each time step. This
way the increase of temporal resolution also became possible exploiting the affine
covariance of B–splines and ensuring the periodic movement of the control points
by trigonometric approximation using the first 3 harmonics of the heart rate [13].
Generated meshes corresponding to the first phase are presented in Figure 1. The
cross-sectional area is defined as the area of the section perpendicular to the center
line of the fitted surface.
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Figure 1: 3D mesh models of a non-branching vessel segments in
the thoracic aorta

3. Presentation and resolution of the inverse prob-
lem

In this Section, we introduce the 1D blood flow model used in this study. We define
the class of physically admissible solutions. We show that the volumetric flux can
be calculated by solving a Riccati type ODE. We demonstrate that a physically
admissible solution is not necessarily asymptotically stable. We will see that vessel
wall motions do not provide enough information about the wall elasticity to recover
the volumetric flux. We present a block-based optimization algorithm to resolve
this problem.

3.1. Governing equations
To make our exposition self-contained and understandable for the largest possible
audience, we present some laws of continuum mechanics: the conservation laws for
mass and momentum. In addition, empirical constitutive laws are needed to relate
certain unknown variables such as relations between stress and strain. Although
there are one-dimensional models which also take into account fluid viscosity and
wall viscoelasticity [15], we examine a simpler model using Euler’s equation for the
non-viscose case. However, our approach can be generalized to more sophisticated
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models involving damping effects. We assume that the vessel wall is thin and elastic.
Owing to the pressure gradient the artery wall deforms and the elastic restoring
force of the wall makes it possible for waves to propagate and so it maintains a
pulsating motion of the artery.

Now, we consider a non-branching cylindric vessel segment of length 𝐿. The
section area 𝑆(𝑡, 𝑧) and averaged flow velocity 𝑢(𝑡, 𝑧) vary in time along the artery
𝑧 ∈ [0, 𝐿]. We define the volumetric flux as 𝑞 = 𝑢𝑆. Assuming that blood is
homogeneous and incompressible, we obtain from the law for conversation of mass
that

𝜕𝑡𝑆 + 𝜕𝑧𝑞 = 0.

Additionally, the law for conservation of momentum has the following form

𝜕𝑡𝑢 + 𝑢𝜕𝑧𝑢 = −𝜕𝑧𝑝

𝜌
, (3.1)

where 𝜌 denotes the blood density and 𝑝(𝑡, 𝑧) is the local blood pressure. We use
the Hook’s law to relate stress and strain rates. Let ℎ be the vessel wall thickness,
assumed to be much smaller than the vessel radius, and Young’s modulus will be
denoted by 𝐸. The change in tube radius must be caused by the blood pressure.
The elastic strain due to the lengthening of the circumference is

𝑟(𝑡, 𝑧) − 𝑟0(𝑧)

𝑟0(𝑧)
,

where 𝑟0(𝑧) stands for the equilibrium radius. The change is elastic force must be
balanced by the changing in pressure force 2𝑟(𝑡, 𝑧)𝑝(𝑡, 𝑧), hence the desired relation
between pressure and radius has the following form.

𝑝(𝑡, 𝑧) =

(︂
1

𝑟0(𝑧)
− 1

𝑟(𝑡, 𝑧)

)︂
ℎ𝐸

For the right-hand side in (3.1), we obtain

𝑅𝛼(𝑡, 𝑧)
def.
= −1

𝜌
𝜕𝑧𝑝 = 𝛼

(︂
𝑆′
0(𝑧)

𝑆0(𝑧)3/2
− 𝜕𝑧𝑆

𝑆(𝑡, 𝑧)3/2

)︂

where 𝛼 = 0.5ℎ𝐸𝜋1/2𝜌−1 is called wall compliance parameter and it is assumed
to be constant during the cardiac cycle. By the conservation law for mass, the
momentum transport equation can be expressed by means of the volumetric flux
as follows:

𝜕𝑡𝑞 + 𝜕𝑧
(︀
𝑞2/𝑆

)︀
= 𝑆(𝑡, 𝑧)𝑅𝛼(𝑡, 𝑧). (3.2)

3.2. Physically admissible solutions
Assuming that 𝑆, 𝑆0 and 𝛼 are known, we are looking for special solutions of (3.2).
We will assume in the sequel that blood flows from 𝑧 = 0 to 𝑧 = 𝐿.
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Definition 3.1. A solution 𝑞 of (3.2) is said to be physiologically admissible if it
is periodic with period 𝑇 and

𝑞min <
1

𝑇

𝑇∫︁

0

𝑞(𝑡, 𝑧) d𝑧 < 𝑞max

holds for 𝑧 ∈ [0, 𝐿], where 𝑞min and 𝑞max are the minimal and maximal average
flow rate which may occur under physiological conditions.

Using the continuity law again, we can express the volumetric flux as

𝑞(𝑡, 𝑧) = 𝑞(𝑡, 0) + Φ(𝑡, 𝑧),

where 𝑄(𝑡) = 𝑞(𝑡, 0) and Φ(𝑡, 𝑧) = −
𝑧∫︀
0

𝜕𝑡𝑆(𝑡, 𝑦) d𝑦. Note that the periodicity of

𝑆 implies that 𝑞 is physiologically admissible if and only if 𝑄 satisfies itself the
conditions of admissibility.

After substituting the expression we have recently got for 𝑞 into (3.2) and
integrating both sides from 0 to 𝐿, we get a Riccati type ODE with periodic
coefficients

𝑄̇ = 𝐴𝑄2 + 𝐵𝑄 + 𝐶, (3.3)

where dot denotes the time derivative and for the coefficients we have

𝐴(𝑡) = − 1

𝐿

[︂
1

𝑆(𝑡, 𝐿)
− 1

𝑆(𝑡, 0)

]︂

𝐵(𝑡) = − 2

𝐿

Φ(𝑡, 𝐿)

𝑆(𝑡, 𝐿)

𝐶(𝑡) = − 1

𝐿

⎡
⎣Φ2(𝑡, 𝐿)

𝑆(𝑡, 𝐿)
+

𝐿∫︁

0

𝑆(𝑡, 𝑧) + 𝑅𝛼(𝑡, 𝑧) d𝑧

⎤
⎦

It is a well known fact that the general solution of a scalar Riccati equation can
be obtained by quadrature whenever at least one particular solution 𝑄0 is known.
After substituting 𝑄 = 𝑄0 − 1/𝑊 into the original equation, we get a linear ODE
for 𝑊 :

𝑊̇ = −(2𝑄0𝐴 + 𝐵)𝑊 + 𝐴

which general solution can be written as

𝑊 (𝑡) = 𝐾𝑊1(𝑡) + 𝑊2(𝑡),

where 𝐾 is an arbitrary constant, 𝑊1(0) = 1 and 𝑊2(0) = 0. Periodicity of
𝑄 requires that 𝑄(0) = 𝑄(𝑇 ) which holds if and only if 𝐾 solves the quadratic
equation:

𝑄0(𝑇 )𝐾2 +

(︂
𝑄0(𝑇 )

𝑊2(𝑇 )

𝑊1(𝑇 )
− 𝑊1(𝑇 ) − 1

𝑊1(𝑇 )

)︂
𝐾 − 𝑊2(𝑇 )

𝑊1(𝑇 )
= 0 (3.4)
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where we assumed that 𝑄0(0) = 0. We can conclude that the original Riccati
equation has 0, 1 or 2 periodic solutions depending on the discriminant of equation
(3.4). However, we need to know 𝑊1(𝑇 ), 𝑊2(𝑇 ) and 𝑄0(𝑇 ) in order to calculate
the discriminant and that can be done just for a given case.

Leon Kotin demonstrated the existence and uniqueness of a positive and of a
negative periodic solution of a periodic Riccati equation in which the coefficients
satisfy certain general condition. Moreover, any solution which is everywhere con-
tinuous lies between these two solutions, and every solution is asymptotic to one of
these as the independent variable increases or decreases [11]. More precisely, the
following is true.

Theorem 3.2. If coefficients in (3.3) are continuous everywhere, 𝐴 is continuously
differentiable and 𝐴𝐶 < 0 holds, then equation (3.3) has a unique positive solution
𝑄+ and a unique negative solution 𝑄− which are periodic with period 𝑇 and any
solution behaves asymptotically like 𝑄+ or 𝑄− as 𝑡 → ∞.

It is clear that if conditions of Kotin’s theorem are satisfied, then 𝑄+ can be
the unique physically admissible solution. However, the average volumetric flux
calculated from 𝑄+ may not fall into the acceptance interval. Moreover, nothing
guarantees that 𝑄+ is asymptotically stable. For example, consider the case when
𝐶 < 0 and 𝑄 is an arbitrary perturbation of 𝑄+. From the uniqueness of the
positive solution, we can conclude that there exists 𝑡0 ∈ R where 𝑄 vanishes and
𝑄 can have only one root, since at 𝑄 = 0 the right-hand side of (3.3) is equal to 𝐶
which is negative. As a consequence, we get that the physically admissible solution
is not necessarily asymptotically stable.

3.3. Calculation of model parameters
For any fixed 𝛼, we can calculate 𝑊1, 𝑊2 and 𝑄0 numerically thus for the periodic
solutions of (3.3)

𝑄1,2(𝑡) = 𝑄0(𝑡) − 1

𝐾1,2𝑊1(𝑡) + 𝑊2(𝑡)

yields, 𝐾1 where and 𝐾2 are solutions of (3.4). However, we do not have a priori
information about the wall compliance parameter hence the problem is undeter-
mined.

In order to reconstruct the volumetric flux from changes of the section area, we
consider two adjacent vessel segment of length 𝐿 that are narrow enough to neglect
the longitudinal changes in the artery wall compliance parameter. Now, we follow
the notations of Figure 2, where 𝑧𝐶 − 𝑧𝐵 = 𝑧𝐵 − 𝑧𝐴 = 𝐿 and changes in between
and are negligible.

If 𝛼 is fixed, then 𝑞𝛼,1 denotes the volumetric flow rate calculated from changes
of the section area between 𝑧𝐴 and 𝑧𝐵 while 𝑞𝛼,2 stands for the volumetric flux
obtained from the second vessel segment. For the true 𝛼, 𝑞𝛼,1(𝑡, 𝑧𝐵) and 𝑞𝛼,2(𝑡, 𝑧𝐵)
should be equal to each other for 𝑡 ∈ [0, 𝑇 ]. To measure the goodness of 𝛼, we
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Figure 2: Blood flow in an arterial segment

introduce the so-called internal consistency functional

𝐼𝛼 =

𝑇∫︁

0

(𝑞𝛼,1(𝑡, 𝑧𝐵) − 𝑞𝛼,2(𝑡, 𝑧𝐵))
2

d𝑡

that penalizes the difference between volumetric flow rates at 𝑧𝐵 obtained for the
first and second vessel segment. We also introduce the notation

𝑉𝛼 =
1

2𝑇

𝑇∫︁

0

𝑞𝛼,1(𝑡, 𝑧𝐵) + 𝑞𝛼,2(𝑡, 𝑧𝐵) d𝑡

for the average volumetric flux at 𝑧𝐵 . Therefore, we can formulate the original
problem as a constrained minimization of 𝐼𝛼.

min
𝛼

𝐼𝛼

subject to 𝑞min < 𝑉𝛼 < 𝑞max,

where the prescribed constraint ensures the physical admissibility of the solution.
The domain of 𝐼𝛼 consists of positive 𝛼 values for which Riccati equations

related to the first and second vessel segment admits periodic solutions i.e. the
discriminant of the corresponding quadratic equation is positive. Obviously, 𝑉𝛼

depends smoothly on 𝛼 hence the feasibility set of the optimization problem is an
open set in (0,∞) which is a collection of open intervals. At this point, we do
not have any further information about the structure of this set. We just assume
during the simulations that it is connected i.e. it is an open interval. We will see
in the next section that this assumption is justified by simulation results. So, we
first solve non-linear scalar equations

𝑉𝛼 = 𝑞min, 𝑞max

for 𝛼 and get 𝛼min and 𝛼max. After this, we calculate 𝛼opt = arg min
𝛼∈(𝛼min,𝛼max)

𝐼𝛼. At

least, the volumetric flux for the whole arterial segment can be obtained as

𝑞(𝑡, 𝑧) =
1

2

(︀
𝑞𝛼opt,1(𝑡, 𝑧) + 𝑞𝛼opt,2(𝑡, 𝑧)

)︀
.
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In our MATLAB implementation, we used the ode45 function to solve ini-
tial value problems, fzero function to solve non-linear equations for values cor-
responding to the minimal and maximal flow rate. At least, we applied the
fminbnd function to find the global minimum of on. More information about
these MATLAB solvers is available in the online MATLAB documentation: https:
//www.mathworks.com/help/matlab/.

4. Results

Numerical simulations were performed on a 10 cm long non-branching segment in
the descending aorta, where the 𝑧 = 0 level is located 1 cm below the heart. In order
to minimize the disturbing effect of moving organs, we chose the last 2×1 cm region
which means that we set 𝑧𝐴 = 8 cm, 𝑧𝐵 = 9 cm and 𝑧𝐶 = 10 cm. According to the
medical literature, cardiac output lies between 4 dm3/min and 6 dm3/min hence
we set the maximal and minimal average flow rate to 66.7 cm3/s and 100 cm3/s,
respectively. We defined the equilibrium cross-sectional area as

𝑆0(𝑧) = min
𝑡∈[0,𝑇 ]

𝑆(𝑡, 𝑧).

We summarize the simulation results in Table 2, where mean squared error is
defined as MSE =

(︀
𝐼𝛼opt/𝑇

)︀1/2 and it characterizes the goodness of the optimum.

No. 𝛼min 𝛼max 𝛼opt MSE Kotin
1. 2.72 7.56 2.75 2.25 +
2. 2.47 6.87 2.47 3.42 +
3. 2.67 7.42 2.68 3.82 +
4. 2.81 7.99 2.88 3.06 +
5. 5.81 15.8 6.82 2.12 -

Table 2: Wall compliance parameter values (103cm3/s2) , mean
squared error (cm3/s) and conditions of Kotin’s theorem – satisfied

(+) or not (-)

We can see that conditions of Kotin’s theorem are satisfied in all cases except
for the oldest participant. We present phase portraits of the Riccati equation
corresponding to the youngest and oldest participants (Figure 3A and 3B). Phase
portrait presented in Figure 3a exhibits the typical behavior. We got similar results
for patient No. 1, 2 and 4. In this case, we can realize that the only positive and
physiologically admissible solution is unstable which is contrary to intuition. It is
not clear at this point if exists any relationship between the qualitative behavior
of solutions and arterial wall rigidity. Such connection would be helpful in order to
gain information about the condition of the circulatory system and detect vascular
diseases.

We calculated the volumetric flux at three different longitudinal position along-
side the artery segment: 𝑧1 = 1 cm, 𝑧2 = 5 cm and 𝑧3 = 9 cm. Simulation results

126 A. Lovas, R. Nagy, P. Sótonyi, B. Szilágyi



0 0.1 0.2 0.3 0.4 0.5 0.6
−100

−80

−60

−40

−20

0

20

40

60

80

100

t[s]

q
[c
m

3
/
s]

(a) Patient No. 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−100

−80

−60

−40

−20

0

20

40

60

80

100

t[s]

q
[c
m

3
/
s]

(b) Patient No. 5

Figure 3: Phase portrait of the typical and non-typical behavior

for patient No. 3 are presented in Figure 4. As we are getting further from the
beating heart and approaching the aortic bifurcation, initial peak in the volumet-
ric flux slowly disappears and reflections from the arteria iliaca became even more
dominant.
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Figure 4: Volumetric flux
(︀
cm3/s

)︀
vs. time (% of the cardiac cycle):

blue–𝑧1 = 1 cm, green–𝑧2 = 5 cm, red–𝑧3 = 9 cm

The remaining part of this section is devoted to the analysis of the velocity
profile inside the aorta by means of Reynolds and Womersley numbers. For the
sake of completeness, we give here the definitions of these dimensionless numbers.
The Reynolds number is a dimensionless number in fluid mechanics that is defined
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as the ratio of inertia forces to viscous forces, expressed in tubular flows as

Re =
2𝑣𝑟𝜌

𝜂
,

where 𝑣 is the flow velocity, 𝑟 is the vessel radius, 𝜌 is the blood density and 𝜂 is
the dynamical viscosity of blood. The Womersley number in biofluid mechanics
relates the transient inertial forces to viscous effects. It is defined by

Wh = 2𝑟

√︂
𝜔𝜌

𝜂
,

where 𝜔 is the angular frequency of the oscillations. In accordance with the litera-
ture [7, 8], in our calculations blood density was set to 1.06 g/cm3 and the kinematic
viscosity of blood to 3.5 × 10−3 Pas. Estimations for Reynolds and Womersley
numbers along the artery segment are illustrated in common coordinate system in
Figure 5.
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Figure 5: Time average of Reynolds and Womerseley numbers

The Womersley number is a dynamic similarity measure of oscillatory flows
relating inertia and viscous forces. In rigid pipes for laminar incompressible flows
small values (approx. Wh < 1) allow the development of the parabolic velocity
profile of the steady state solution and the flow is almost in phase with the pressure
gradient, while large values (approx. Wh > 10) indicate a flat velocity profile
with a good approximation and the flow follows the pressure gradient by about
90 degrees in phase. In the presented examples – as seen in Figure 5 – the values
lie in between, yielding a complex time-dependent velocity profile. The Reynolds
number is another dynamic similarity measure relating inertia and viscous forces.
In rigid pipes small values (approx. Re < 2100) indicate laminar flow, while large
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values (approx. Re > 4000) correspond to turbulent flow. In the transition zone,
where also our example is situated, the behavior strongly depends on the existing
disturbances in the flow.

5. Conclusions

The inverse problem for volumetric flow rate reconstruction in large arteries has
been successfully solved. We demonstrated that in the majority of cases periodic so-
lutions are unstable even though the changes of the cross-sectional area is supposed
to be periodic in time. Our approach makes possible to calculate the aortic flow
on a routine ECG-gated CT angiography dataset. This is of huge clinical poten-
tial, as the knowledge of haemodynamic parameters could significantly improve the
diagnostic performance of CT imaging in several cardiovascular pathologies, such
as aortic coarctation or dissection. However, further verifications and comparative
studies are needed to validate our method in a clinical cohort.
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