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Abstract. In this paper, we consider the following perturbed second-order Hamiltonian
system

−ü(t) + L(t)u = ∇W(t, u(t)) +∇G(t, u(t)), ∀ t ∈ R,

where W(t, u) is subquadratic near origin with respect to u; the perturbation term
G(t, u) is only locally defined near the origin and may not be even in u. By using the
variant Rabinowitz’s perturbation method, we establish a new criterion for guarantee-
ing that this perturbed second-order Hamiltonian system has infinitely many homo-
clinic solutions under broken symmetry situations. Our result improves some related
results in the literature.
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1 Introduction

Consider the following second-order Hamiltonian system

− ü(t) + L(t)u(t) = ∇W
(
t, u(t)

)
+∇G

(
t, u(t)

)
, ∀ t ∈ R, (1.1)

where u = (u1, u2, . . . , uN) ∈ RN and L ∈ C(R, RN×N) is a symmetric matrix-valued function.
As usual, a solution u of problem (1.1) is homoclinic (to 0), if |u(t)| → 0 as |t| → +∞. In
addition, if u 6≡ 0 then u is called a nontrivial homoclinic solution.

When G ≡ 0, (1.1) reduces to the second-order Hamiltonian system

− ü(t) + L(t)u(t) = ∇W
(
t, u(t)

)
, ∀ t ∈ R. (1.2)

In the past twenty years, the existence and multiplicity of homoclinic solutions for problem
(1.2) have been extensively investigated by variational methods. Next we recall some results in
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this aspect. For problem (1.2), under the assumption that L(t) and W(t, x) are T-periodic in t,
Rabinowitz [16] proved the existence of homoclinic orbits as a limit of 2kT-periodic solutions
of problem (1.2). Then this trick has been developed to study the existence and multiplicity of
homoclinic solutions for more general Hamiltonian systems (see, e.g., [8, 21, 28]).

When L(t) and W(t, x) are not periodic in t, the problem of existence of homoclinic solu-
tions for (1.2) is quite different from the one just described, since the Sobolev embedding is
no longer compact. To overcome this difficulty, Rabinowitz and Tanaka [17] introduced the
following coercive condition:

(L0) L ∈ C(R, RN×N) is a positive definite symmetric matrix for all t ∈ R and there is a
continuous function l : R→ R such that l(t) > 0 for all t ∈ R and (L(t)u, u) ≥ l(t)|u|2,
∀ u ∈ RN and l(t)→ +∞ as |t| → +∞.

The condition (L0) implies that the self-adjoint operator of −d2/dt2 + L(t) in L2(R, RN) has a
sequence of eigenvalues λn (counted with multiplicity) and

0 < λ1 < λ2 < · · · < λn < · · · → ∞. (1.3)

Under this assumption on L, they obtained the existence of a nontrivial homoclinic solution
for problem (1.2) by using a variant of the Mountain Pass Theorem without the Palais–Smale
condition. Subsequently, Omana and Willem [13] showed that the Palais–Smale condition is
satisfied under the coercive condition (L0), and they used the usual Mountain Pass Theorem
to prove the same result as in [17]. Since then, the coercive condition (L0) and its variants have
been used in a number of papers, and we refer the readers to [10,23,25–27] and the references
therein.

Assume that W(t, x) is of subquadratic growth as |x| → 0 for all t ∈ R, Ding [6] considered
this case and presented the following condition

(L′0) there is a constant α < 2 such that

l(t)|t|α−2 → +∞ as |t| → +∞,

where l(t) is given in (L0). The main purpose of (L′0) is to guarantee some better properties of
Sobolev embedding in the subquadratic case. If W(t, x) is even in x, Ding proved a sequence
of homoclinic solutions for problem (1.2). After the work of Ding [6], there are many papers
concerning the existence of infinitely many homoclinic solutions in the subquadratic case (see,
e.g., [20,22,34,35]). It is worth pointing out that most of these mentioned papers assumed that
W(t, x) is even with respect to x. Actually, the approaches used in these works depend on
the notion of genus for symmetric sets. Therefore, the condition that W(t, x) is even with
respect to x is crucial in the application of these methods. When W(t, x) is not even in x,
the symmetry of the corresponding functional for problem (1.2) is broken. It is natural to ask
whether an infinite number of homoclinic solutions can be maintained in broken symmetry
case, and such a problem is often called perturbation from symmetry problem.

Since 1980s, many scholars have developed different methods to study the perturbation
from symmetry problem for elliptic equations and Hamiltonian systems (see, e.g., [1, 3, 9,
11, 18, 19, 24, 31–33]. If G(t, x) is not even in x, problem (1.1) loses its symmetry under the
assumption that W(t, x) is even in x, and the authors [30] studied the perturbation from
symmetry problem for (1.1). Specifically speaking, when W(t, x) is locally superquadratic as



Infinitely many homoclinic solutions for perturbed second-order Hamiltonian systems 3

|x| → +∞, we obtained an unbounded sequence of homoclinic solutions by means of Bolle’s
perturbation method introduced in [3].

If W(t, x) is subquadratic near origin with respect to x, i.e., limx→0 W(t, x)/|x|2 = +∞
for all t ∈ R, an interesting question is whether the infinite number of homoclinic solutions
persists under symmetry breaking situations. To the best of our knowledge, there are very
few results on this topic. The main purpose of this paper is to give a positive answer to this
question. To be precise, if the non-even perturbation term G is locally defined and satisfies
some growth conditions near the origin, the existence of infinitely many homoclinic solutions
for (1.1) can be preserved. Our tool is a variant of the perturbation method developed by
Rabinowitz in [14]. The main idea of our proof is to introduce a modified functional by subtle
truncation of the original functional, then the nonsymmetric part of this modified functional
can be estimated. Then we can prove that the modified functional has almost the same small
critical values as the original functional. Next we state the main result of this paper.

Theorem 1.1. Let the condition (L0) hold. Moreover, assume that the following condition hold:

(H1) W(t, x) = W1(t, x)+W2(t, x), W1, W2 ∈ C1(R×RN , R) and there exist a constant 1 < p < 2
such that ∣∣∇W1(t, x)

∣∣ ≤ a(t)|x|p−1, ∀ (t, x) ∈ R×RN , (1.4)

where a : R→ R+ is a continuous function such that a ∈ L
2

2−p (R);

(H2) W1(t, 0) ≡ 0 and there exist constants C1 > 0, 1 < µ < 2 and α1 > 2 such that

− C1|x|α1 ≤ (∇W1(t, x), x)− µW1(t, x) ≤ 0, ∀ (t, x) ∈ R×RN ; (1.5)

(H3) there exist constants C2 > 0, 1 < α2 < 2 and α3 > 2 such that

W1(t, x) ≥ b(t)|x|α2 − C2|x|α3 , ∀ (t, x) ∈ R×RN , (1.6)

where b : R→ R+ is a continuous function such that b ∈ L
2

2−α2 (R);

(H4) W2(t, 0) ≡ 0 and there exist constants C3 > 0 and α4 > 2 such that

|∇W2(t, x)| ≤ C3|x|α4−1, ∀ (t, x) ∈ R×RN ; (1.7)

(H5) Wi(t, x) = Wi(t,−x), i = 1, 2, ∀ (t, x) ∈ R×RN ;

(G1) G ∈ C1(R× Br0(0), R), G(t, 0) ≡ 0 and there exist constants C4 > 0 and σ > 2 such that∣∣∇G(t, x)
∣∣ ≤ C4|x|σ−1, ∀ (t, x) ∈ R× Br0(0), (1.8)

where Br0(0) denotes the open ball in RN centred at 0 with radius r0;

(G2) there exist constants C5 > 0, β > 2(2−p)
p(σ−2) and n0 ∈ N such that λn ≥ C5nβ, n ≥ n0, where the

eigenvalues λn are given in (1.3).

Then problem (1.1) has a sequence of homoclinic solutions {un} such that maxt∈R |un(t)| → 0 as
n→ ∞.

Notation. Throughout the paper, we denote by Cn various positive constants which may vary
from line to line and are not essential to the proof.
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2 Variational setting and preliminaries

Let

E =

{
u ∈ H1(R, RN) :

∫
R

[
|u̇(t)|2 +

(
L(t)u(t), u(t)

)]
dt < +∞

}
endowed with the inner product

(u, v) =
∫

R

[(
u̇(t), v̇(t)

)
+
(

L(t)u(t), u(t)
)]

dt.

Then E is a Hilbert space with this inner product and we denote by ‖ · ‖ the induced norm.
As usual, for 1 ≤ ν < +∞, let

‖u‖ν =
( ∫

R
|u(t)|νdt

)1/ν
, u ∈ Lν(R, RN).

It is evident that E is continuously embedded into H1(R, RN), so E is continuously embedded
into Lν(R, RN) for any ν ∈ [2, ∞], i.e., there exists τν > 0 such that

‖u‖ν ≤ τν‖u‖, ∀ u ∈ E. (2.1)

Moreover, E is compactly embedded into Lν
loc(R, RN) for all ν ∈ [1, ∞].

Next we introduce a useful result proved in Lemma 2.3 of [21] by Tang and Xiao.

Lemma 2.1. For any u ∈ E, the following inequalities hold:

|u(t)| ≤
{∫ ∞

t

1√
l(s)

[
|u̇(s)|2 +

(
L(s)u(s), u(s)

)]
ds

}1/2

, t ∈ R, (2.2)

and

|u(t)| ≤
{∫ t

−∞

1√
l(s)

[
|u̇(s)|2 +

(
L(s)u(s), u(s)

)]
ds

}1/2

, t ∈ R. (2.3)

In view of condition (G1) in Theorem 1.1, the perturbation term G is only locally defined,
so we can’t apply the variational methods directly. To overcome this difficulty, we use cut-off
method to modify G(t, x) for x outside a neighbourhood of the origin. In detail, we have the
following lemma.

Lemma 2.2. Suppose that (G1) is satisfied. Then there exists a new function G̃ possessing the following
properties:

(i) G̃ ∈ C1(R×RN , R), G̃(t, 0) ≡ 0 and∣∣∇G̃(t, x)
∣∣ ≤ 16C4|x|σ−1, ∀ (t, x) ∈ R×RN ; (2.4)

(ii) there exists a positive constant r1 ≤ min{r0/2, 1/2} such that

G̃(t, x) = G(t, x), ∀ (t, x) ∈ R× Br1(0); (2.5)

where Br1(0) denotes the open ball in RN centred at 0 with radius r1.
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Proof. Since G(t, 0) = 0, by (1.8) and direct computation we have

|G(t, x)| ≤ C4|x|σ, ∀ (t, x) ∈ R× Br0(0). (2.6)

Choose a constant r1 = min{r0/2, 1/2} and define a cut-off function h ∈ C1(R, R) such that
h(t) = 1 for t ≤ 1, h(t) = 0 for t ≥ 2 and −2 ≤ h′(t) < 0 for 1 < t < 2. Set{

G̃(t, x) = h
(
|x|2/r2

1

)
G(t, x), ∀ (t, x) ∈ R× B√2r1

(0),

G̃(t, x) ≡ 0, ∀ (t, x) ∈ R×
(
RN\B√2r1

(0)
)
.

(2.7)

In view of (2.7), for i = 1, 2, . . . , N, we have

∂G̃
∂xi

=
2xi

r2
1

h′
(
|x|2
r2

1

)
G(t, x) + h

(
|x|2
r2

1

)
∂G
∂xi

, ∀ (t, x) ∈ R× B√2r1
(0), (2.8)

and ∂G̃/∂xi = 0, ∀(t, x) ∈ R ×
(
RN\B√2r1

(0)
)
. By (2.7) and (2.8), G̃ ∈ C1(R × RN , R),

G̃(t, 0) ≡ 0 and G̃(t, x) = G(t, x), ∀ (t, x) ∈ R× Br1(0). Moreover, it is easy to verify (2.4) by
(1.8), (2.6) and (2.8).

Next we introduce the following modified Hamiltonian system

− ü(t) + L(t)u(t) = ∇W
(
t, u(t)

)
+∇G̃

(
t, u(t)

)
, ∀ t ∈ R. (2.9)

Let I : E→ R be defined by

I(u) =
1
2
‖u‖2 −

∫
R

W1(t, u)dt−
∫

R
W2(t, u)dt−

∫
R

G̃(t, u)dt. (2.10)

Under assumptions (L0), (H1), (H2), (H4) and (G1), I ∈ C1(E, R) and

〈I′(u), v〉 = (u, v)−
∫

R
∇W1(t, u)vdt−

∫
R
∇W2(t, u)vdt−

∫
R
∇G̃(t, u)vdt (2.11)

for all u, v ∈ E. The critical points of I in E are solutions of (2.9). Moreover, by the coercivity
of l, (2.2) and (2.3), these solutions are homoclinic to 0.

Next we introduce a cut-off function ζµ ∈ C∞(R, R) satisfying
ζµ(t) = 1, t ∈ (−∞, A/2],

0 ≤ ζµ(t) ≤ 1, t ∈ (A/2, A/4),

ζµ(t) = 0, t ∈ [A/4, ∞),

|ζ ′µ(t)| ≤ −8A−1, t ∈ R,

(2.12)

where A := (4µ)−1(µ− 2) < 0. Setting T0 := min{T1, T2, T3, 1/2}, where

T1 =

{
2− µ

8µ
(
C1τα1

α1 + 10C3τα4
α4 + 16(10− 32A−1)C4τσ

σ

)} 1
α−2

, (2.13)

T2 =

 1

12
(
2

α4+4
2 C3τα4

α4 − 2
σ+12

2 C4τσ
σ A−1

)


2
α−2

and T3 =

{
−A

2
σ+18

2 C4τσ
σ

} 2
σ−2

, (2.14)
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α := min{α1, α4, σ} and τα1 , τα4 and τσ are embedding constants given in (2.1). By the defini-
tion of T0, T0 is a fixed positive constant.

With the help of T0 and the cut-off function h introduced in Lemma 2.2, define

kT0(u) = h
(
‖u‖2

T0

)
, ∀ u ∈ E. (2.15)

Lemma 2.3. The functional kT0 defined by (2.15) is of C1(E, R) and

|〈k′T0
(u), u〉| ≤ 8, ∀ u ∈ E.

Proof. By (2.15) and direct calculation we have

〈k′T0
(u), v〉 = 2h′

(
‖u‖2

T0

)
(u, v)

T0
, ∀ u, v ∈ E. (2.16)

Assume that un → u0 in E. In view of (2.16), for any v ∈ E, we obtain∣∣〈k′T0
(un)− k′T0

(u0), v〉
∣∣

= 2
∣∣∣∣h′ (‖un‖2

T0

)
(un, v)

T0
− h′

(
‖u0‖2

T0

)
(u0, v)

T0

∣∣∣∣
≤ 2T0

−1‖v‖
[∣∣∣∣h′ (‖un‖2

T0

)∣∣∣∣ ‖un − u0‖+
∣∣∣∣h′ (‖un‖2

T0

)
− h′

(
‖u0‖2

T0

)∣∣∣∣ ‖u0‖
]

,

which implies that ‖k′T0
(un)− k′T0

(u0)‖E∗ → 0, n→ ∞. So kT0 ∈ C1(E, R). By the definition of
h and (2.16), we get |〈k′T0

(u), u〉| ≤ 8, ∀ u ∈ E.

With the help of this functional kT0 , we define a new functional ĪT0 on E by

ĪT0(u) =
1
2
‖u‖2 −

∫
R

W1(t, u)dt− kT0(u)
(∫

R
W2(t, u)dt +

∫
R

G̃(t, u)dt
)

, ∀ u ∈ E. (2.17)

By (2.16), ĪT0 ∈ C1(E, R) and one can easily check that

〈 Ī′T0
(u), v〉 = (u, v)−

∫
R
∇W1(t, u)vdt− kT0(u)

(∫
R
∇W2(t, u)vdt +

∫
R
∇G̃(t, u)vdt

)
− 〈k′T0

(u), v〉
(∫

R
W2(t, u)dt +

∫
R

G̃(t, u)dt
)

, ∀ u, v ∈ E. (2.18)

We will give some prior bounds for critical points of ĪT0 based on the corresponding critical
values in the following lemma, which is useful to introduce a modified functional.

Lemma 2.4. Assume that (H2), (H4) and (G1) are satisfied, if u is a critical point of ĪT0 , then

ĪT0(u) ≤
µ− 2

4µ
‖u‖2. (2.19)

Proof. When u is a critical point of ĪT0 and ‖u‖2 > 2T0, by (2.16) and (2.17), kT0(u) = 0 and
k′T0

(u) = 0. In view of (2.18) and (2.19), we conclude that

ĪT0(u) =
1
2
‖u‖2 −

∫
R

W1(t, u)dt, 〈 Ī′T0
(u), u〉 = ‖u‖2 −

∫
R
(∇W1(t, u), u)dt. (2.20)
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By (1.5) and (2.20), we get

ĪT0(u) = ĪT0(u)− µ−1〈 Ī′T0
(u), u〉

=
µ− 2

2µ
‖u‖2 + µ−1

∫
R

(
(∇W1(t, u), u)− µW1(t, u)

)
dt

≤ µ− 2
4µ
‖u‖2. (2.21)

If u is a critical point of ĪT0 with ‖u‖2 ≤ 2T0, by Lemma 2.2, Lemma 2.3, (1.5), (1.7), (2.17) and
(2.18) we have

ĪT0(u) = ĪT0(u)− µ−1〈 Ī′T0
(u), u〉

≤ µ− 2
2µ
‖u‖2 + C1τα1

α1
‖u‖α1 + 10(C3τα4

α4
‖u‖α4 + 16C4τσ

σ ‖u‖σ). (2.22)

By the definition of T0 and (2.13), we get

C1τα1
α1
‖u‖α1 + 10C3τα4

α4
‖u‖α4 + 16(10− 32A−1)C4τσ

σ ‖u‖σ <
2− µ

4µ
‖u‖2. (2.23)

In both cases, it follows from (2.21)–(2.23) that (2.19) holds.

By the cut-off function ζµ and ĪT0 , define a functional as follows

lµ(u) = ζµ

(
‖u‖−2 ĪT0(u)

)
, ∀ u ∈ E\{0}. (2.24)

By direct computation, for any u ∈ E\{0} and any v ∈ E,

〈l′µ(u), v〉 = ζ ′µ(θT0(u))‖u‖−4
(
‖u‖2〈 Ī′T0

(u), v〉 − 2 ĪT0(u)(u, v)
)

, (2.25)

where θT0(u) := ‖u‖−2 ĪT0(u), ∀ u ∈ E\{0}. Under assumptions of Theorem 1.1, it is easy to
check that lµ is continuously differentiable at any u ∈ E\{0}.

By these functionals kT0 and lµ, we can introduce a modified functional JT0 as follows:

JT0(u) =
1
2
‖u‖2 −

∫
R

W1(t, u)dt− kT0(u)
∫

R
W2(t, u)dt− ψ(u), ∀ u ∈ E, (2.26)

where

ψ(u) :=

{
kT0(u) lµ(u) Q(u), u ∈ E \ {0},
0, u = 0,

(2.27)

and Q(u) :=
∫

R
G̃(t, u)dt, ∀ u ∈ E. It follows from (2.1) and (2.4) that∫

R
|G̃(t, u)|dt ≤ 16C4τσ

σ ‖u‖σ, ∀ u ∈ E. (2.28)

Moreover, it is easy to check that Q ∈ C1(E, R) and

〈Q′(u), v〉 =
∫

R
∇G̃(t, u)vdt, ∀ u, v ∈ E. (2.29)

Next we give a bound on |〈ψ′(u), u〉|, ∀ u ∈ E, which is used to obtain the estimate of
|JT0(u)− JT0(−u)|, ∀ u ∈ E. Then we show that JT0 has no critical point with positive critical
value on E.
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Lemma 2.5. Assume that (L0), (H1), (H2), (H4), (H5) and (G1) holds. Then

(i) the functional ψ defined by (2.27) is of class C1(E, R) and

|〈ψ′(u), u〉| ≤ 16(9− 32A−1)C4τσ
σ ‖u‖σ, ∀ u ∈ E; (2.30)

(ii) JT0 ∈ C1(E, R) and there exists a constant C6 > 0 independent of u such that

|JT0(u)− JT0(−u)| ≤ C6|JT0(u)|
σ
2 , ∀ u ∈ E; (2.31)

(iii) JT0 has no critical point with positive critical value on E and K0 = {0}, where K0 :=
{

u ∈ E :
JT0(u) = 0, J′T0

(u) = 0
}

.

Proof. For u = 0 and any v ∈ E, by (2.4), (2.15), (2.24) and (2.27) we have

∣∣〈ψ′(0), v〉
∣∣ = ∣∣∣∣limλ→0

ψ(λv)− ψ(0)
λ

∣∣∣∣ ≤ 16C4 lim
λ→0
|λ|σ−1

∫
R
|v(t)|σdt = 0,

so ψ′(0) = 0. Combining (2.16), (2.25), (2.27) and (2.29), for u ∈ E \ {0} and v ∈ E, we obtain

〈ψ′(u), v〉 = 〈k′T0
(u), v〉lµ(u)Q(u) + kT0(u)〈l′µ(u), v〉Q(u) + kT0(u)lµ(u)〈Q′(u), v〉. (2.32)

Next we prove ψ′ ∈ C1(E, R). Suppose that un → u0 in E. We consider two possible cases.

Case 1. u0 6= 0. In view of Lemma 2.3, (2.25), (2.29) and (2.32), ψ′(un)→ ψ′(u0), n→ ∞.

Case 2. u0 = 0. Without loss of generality, we can assume ‖un‖2 < T0. It follows from (2.15)
and (2.16) that k′T0

(un) = 0 and kT0(un) = 1. Then (2.32) reduces to

〈ψ′(un), v〉 = 〈l′µ(un), v〉Q(un) + lµ(un)〈Q′(un), v〉, ∀ v ∈ E. (2.33)

By (2.25), we can divide 〈l′µ(un), v〉 Q(un) into two parts as follows

〈l′µ(un), v〉 Q(un) = Q1(un, v)−Q2(un, v), (2.34)

where
Q1(un, v) = ζ ′µ(θT0(un))‖un‖−2〈 Ī′T0

(un), v〉Q(un) ∀ v ∈ E, (2.35)

and

Q2(un, v) = 2ζ ′µ(θT0(un))‖un‖−4 ĪT0(un)(un, v)Q(un)

= 2ζ ′µ(θT0(un))θT0(un)‖un‖−2(un, v)Q(un) ∀ v ∈ E. (2.36)

In view of (2.12), (2.28), (2.35) and (2.36), we deduce that

|Q1(un, v)| ≤ C7‖ Ī′T0
(un)‖E∗‖un‖σ−2‖v‖, (2.37)

and
|Q2(un, v)| ≤ C8‖un‖σ−1‖v‖. (2.38)

Since k′T0
(un) = 0, kT0(un) = 1 and un → 0, by (1.4), (1.7), (2.4), (2.18) and (2.29),

‖ Ī′T0
(un)‖E∗ → 0 and ‖Q′(un)‖E∗ → 0, n→ ∞. (2.39)
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In combination with (2.24)-(2.25), (2.33), (2.34), (2.37)-(2.39), we have

‖ψ′(un)− ψ′(0)‖E∗ = sup
‖v‖≤1

∣∣〈l′µ(un), v〉Q(un) + lµ(un)〈Q′(un), v〉
∣∣→ 0, n→ ∞,

which implies the continuity of ψ′ at 0. So we have ψ ∈ C1(E, R).

If ‖u‖2 > 2T0 or u = 0, by (2.15), (2.16) and (2.26), it is easy to see that 〈ψ′(u), u〉 = 0.
Otherwise, ‖u‖2 ≤ 2T0 and u 6= 0. Arguing similarly as in (2.22), we obtain

| ĪT0(u)− µ−1〈 Ī′T0
(u), u〉| ≤ 2|A|‖u‖2 + C1τα1

α1
‖u‖α1 + 10(C3τα4

α4
‖u‖α4 + 16C4τσ

σ ‖u‖σ). (2.40)

Since ‖u‖2 ≤ 2T0, by (2.13), (2.23) and (2.40) we get

|〈 Ī′T0
(u), u〉| ≤ µ

(
3|A|‖u‖2 + | ĪT0(u)|

)
. (2.41)

In combination with (2.12) and (2.25), if θT0(u) /∈ [A/2, A/4], we have l′µ(u) = 0. Otherwise,
A/2 ≤ θT0(u) ≤ A/4, then the definition of θT0 imply that

| ĪT0(u)| ≤ |A|‖u‖2. (2.42)

When ‖u‖2 ≤ 2T0 and u 6= 0, it follows from (2.25), (2.28), (2.41)–(2.42) that∣∣kT0(u)〈l′µ(u), u〉Q(u)
∣∣ ≤ −16A−1‖u‖−2(| ĪT0(u)|+ |〈 Ī′T0

(u), u〉|
)
|Q(u)|

≤ −512A−1C4τσ
σ ‖u‖σ. (2.43)

In view of Lemma 2.3, (2.4), (2.12), (2.15), (2.24), (2.28) and (2.29), we have∣∣〈k′T0
(u), u〉lµ(u)Q(u) + kT0(u)lµ(u)〈Q′(u), u〉

∣∣ ≤ 144C4τσ
σ ‖u‖σ, ∀ u ∈ E \ {0}. (2.44)

It follows from (2.32), (2.43) and (2.44) that (2.30) holds.

Next we prove (ii). By (1.4), (1.7), Lemma 2.3 and (i) in Lemma 2.5, we deduce that
JT0 ∈ C1(E, R) and

〈J′T0
(u), v〉 = (u, v)−

∫
R
∇W1(t, u)vdt− kT0(u)

∫
R
∇W2(t, u)vdt

− 〈k′T0
(u), v〉

∫
R

W2(t, u)dt− 〈ψ′(u), v〉, ∀ u, v ∈ E. (2.45)

When ‖u‖2 > 2T0 or θT0(u) > A/4, by (2.15) or (2.24) and (2.27) we have ψT0(u) = 0. Then
(2.31) holds by (H5) and (2.26). If θT0(u) ≤ A/4, then the definition of θT0 imply that

| ĪT0(u)| ≥
|A|
4
‖u‖2. (2.46)

When ‖u‖2 ≤ 2T0 and θT0(u) ≤ A/4, by (2.13), (2.17), (2.26), (2.28) and (2.46) we get

|JT0(u)| ≥ | ĪT0(u)| − 2|Q(u)| ≥ |A|
4
‖u‖2 − 32C4τσ

σ ‖u‖σ ≥ |A|
20
‖u‖2. (2.47)

In view of (H5), (2.15), (2.24), (2.26)–(2.28), we obtain that

|JT0(u)− JT0(−u)| ≤ 32C4τσ
σ ‖u‖σ, ∀ u ∈ E. (2.48)

So (2.31) holds by (2.47) and (2.48).
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Next we prove (iii) by contradiction. If u0 is a critical point of JT0 with JT0(u0) > 0, by (H2),
(H4), (2.26) and (2.27) we have u0 6= 0. Without loss of generality, we assume ‖u0‖2 ≤ 2T0.
Otherwise, (2.15)–(2.16) and (2.32) imply that kT0(u0) = 0, k′T0

(u0) = 0 and ψ′(u0) = 0. By
(2.26), (2.27) and (2.45), we get

JT0(u0) =
1
2
‖u0‖2 −

∫
R

W1(t, u0)dt, (2.49)

and
〈J′T0

(u0), u0〉 = ‖u0‖2 −
∫

R
(∇W1(t, u0), u0)dt. (2.50)

In combination with (1.5), (2.49) and (2.50), it is easy to verify that

0 < JT0(u0) = JT0(u0)− µ−1〈J′T0
(u0), u0〉

= 2A‖u0‖2 + µ−1
∫

R

(
(∇W1(t, u0), u0)− µW1(t, u0)

)
dt

≤ 2A‖u0‖2 < 0,

which is a contradiction, so ‖u0‖2 ≤ 2T0.
It follows from Lemma 2.3, (2.26)–(2.28), (2.30) and (2.45) that

JT0(u0) ≤
1
2
‖u0‖2 −

∫
R

W1(t, u0)dt + C3τα4
α4
‖u0‖α4 + 16C4τσ

σ ‖u0‖σ,

and

〈J′T0
(u0), u0〉 ≥ ‖u0‖2 −

∫
R
(∇W1(t, u0), u0)dt− 9C3τα4

α4
‖u0‖α4 − 16(9− 32A−1)C4τσ

σ ‖u0‖σ.

Since ‖u0‖2 ≤ 2T0, by (1.5), (2.13) and two inequalities above, we have

0 < JT0(u0) = JT0(u0)− µ−1〈J′T0
(u0), u0〉

≤ 2A‖u0‖2 + C1τα1
α1
‖u0‖α1 + 10C3τα4

α4
‖u0‖α4 + 16(10− 32A−1)C4τσ

σ ‖u0‖σ

< A‖u0‖2 < 0,

which is also a contradiction. Moreover, by a similar proof, we have K0 = {0}.

3 Proofs of main results

Lemma 3.1. Suppose that (L0), (H1), (H4) and (G1) are satisfied. Then the functional JT0 satisfies the
Palais–Smale condition.

Proof. First we prove that JT0 is bounded from below. From Hölder’s inequality, (1.4), (2.15),
(2.26) and (2.27), if ‖u‖2 > 2T0,

JT0(u) ≥
1
2
‖u‖2 − C9‖u‖p. (3.1)

Since 1 < p < 2, (3.1) implies that JT0(u)→ +∞ as ‖u‖ → +∞.

Next we show that JT0 satisfies the Palais–Smale condition. Let {un}n∈N ⊂ E be a Palais–
Smale sequence, i.e., {JT0(un)}n∈N is bounded and J′T0

(un) → 0 as n → +∞. Since JT0 is
coercive, {un} is bounded in E. Then there is a positive constant A such that ‖un‖ ≤ A,
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n ∈ N, passing to subsequence, also denoted by {un}, it can be assumed that un ⇀ u0,
n→ ∞ for some u0 ∈ E.

Since a ∈ L
2

2−p (R), for any given number ε > 0, we can choose Tε > 0 such that(∫
|t|>Tε

|a(t)|2/(2−p)dt
)(2−p)/2

< ε. (3.2)

By (1.4) and the Hölder inequality, we have

∫ Tε

−Tε

|∇W1(t, un(t))||un(t)− u0(t)|dt ≤ (τ2A)p−1‖a‖2/(2−p)

(∫ Tε

−Tε

|un − u0|2dt
)1/2

. (3.3)

By Sobolev embedding theorem, we also get

un → u0 in L2
loc(R, RN), n→ ∞. (3.4)

Consequently, in view of (3.3) and (3.4),

∫ Tε

−Tε

|∇W1(t, un(t))||un(t)− u0(t)|dt→ 0, n→ ∞. (3.5)

On the other hand, it follows from (1.4), (3.2) and the Hölder inequality that∫
|t|>Tε

|∇W1(t, un(t))||un(t)− u0(t)|dt

≤
∫
|t|>Tε

|a(t)||un(t)|p−1(|un(t)|+ |u0(t)|
)
dt

≤ 2
∫
|t|>Tε

|a(t)|
(
|un(t)|p + |u0(t)|p

)
dt

≤ 2τ
p
2

( ∫
|t|>Tε

|a(t)|2/(2−p)dt
)(2−p)/2

(‖un‖p + ‖u0‖p)

≤ 2τ
p
2 (Ap + ‖u0‖p)ε, n ∈N. (3.6)

Note that ε is arbitrary, combining (3.5) with (3.6),∫
R
|∇W1(t, un(t))||un(t)− u0(t)|dt→ 0, n→ ∞. (3.7)

Since l is coercive, for any given number ε > 0, there exists T′ε > 0 such that

εl(t) > 1, |t| > T′ε . (3.8)

It follows from (1.7), (3.4) and the Hölder inequality that

∫ T′ε

−T′ε
|∇W2(t, un(t))||un(t)− u0(t)|dt→ 0, n→ ∞. (3.9)

Since E is continuously embedded into L∞(R, RN) and ‖un‖ ≤ A, we get

‖un‖∞ ≤ τ∞ A, n ∈N. (3.10)
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By (L0), (1.7), (3.8) and (3.10), we have∫
|t|>T′ε

|∇W2(t, un(t))||un(t)− u0(t)|dt

≤ C3(τ∞ A)α4−2
∫
|t|>T′ε

|un(t)|
(
|un(t)|+ |u0(t)|

)
dt

≤ 2C3(τ∞ A)α4−2ε
∫
|t|>T′ε

l(t)
(
|un(t)|2 + |u0(t)|2

)
dt

≤ 2C3(τ∞ A)α4−2ε
∫
|t|>T′ε

[(
L(t)un(t), un(t)

)
+
(

L(t)u0(t), u0(t)
)]

dt

≤ 2C3(τ∞ A)α4−2(A2 + ‖u0‖2)ε, n ∈N. (3.11)

Since ε is arbitrary, it follows from (3.9) and (3.11) that∫
R
|∇W2(t, un(t))||un(t)− u0(t)|dt→ 0, n→ ∞. (3.12)

By a similar proof as (3.9) and (3.11), we also have∫
R
|∇G̃(t, un(t))||un(t)− u0(t)|dt→ 0, n→ ∞. (3.13)

Next we consider the following two possible cases.

Case 1. ‖un‖2 > 2T0 or un = 0. From (2.15), (2.16) and (2.32), kT0(un) = 0, k′T0
(un) = 0 and

ψ′(un) = 0. Therefore, by (2.45), we have

|〈J′T0
(un), un − u0〉| ≥ ‖un − u0‖2 + (u0, un − u0)−

∫
R
|∇W1(t, un)||un − u0|dt. (3.14)

Case 2. ‖un‖2 ≤ 2T0 and un 6= 0. In combination with (2.16) and (2.28), we get∣∣〈k′T0
(un), un − u0〉Q(un)

∣∣ ≤ 32C4τσ
σ h′
(
‖un‖2

T0

)
(un, un − u0)

T0
‖un‖σ

≤ 2
σ+12

2 C4τσ
σ T

σ−2
2

0

(
‖un − u0‖2 + (u0, un − u0)

)
. (3.15)

In view of (2.12) and (2.24), |l(un)| ≤ 1. Arguing as in (3.15), we also have∣∣∣〈k′T0
(un), un − u0〉l(un)Q(un)

∣∣∣ ≤ 2
σ+12

2 C4τσ
σ T

σ−2
2

0

(
‖un − u0‖2 + (u0, un − u0)

)
. (3.16)

It follows from (1.7) and (2.10) that∣∣∣∣〈k′T0
(un), un − u0〉

∫
R

W2(t, un)dt
∣∣∣∣ ≤ 2C3τα4

α4
h′
(
‖un‖2

T0

)
(un, un − u0)

T0
‖un‖α4

≤ 2
α4+4

2 C3τα4
α4

T
α4−2

2
0

(
‖un − u0‖2 + (u0, un − u0)

)
. (3.17)

By (2.16) and (2.34), we have∣∣k′T0
(un)〈l′(un), un − u0〉Q(un)

∣∣ ≤ ∣∣Q1(un, un − u0)
∣∣+ ∣∣Q2(un, un − u0)

∣∣. (3.18)

In view of (2.12), (2.28) and (2.35), we obtain∣∣Q1(un, un − u0)
∣∣ = |ζ ′µ(θT0(un))|‖un‖−2|〈 Ī′T0

(un), un − u0〉||Q(un)|

≤ −2
σ+12

2 A−1C4τσ
σ T

σ−2
2

0

∣∣〈 Ī′T0
(un), un − u0〉

∣∣. (3.19)
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It follows from (2.18), (3.7), (3.12), (3.13), (3.15) and (3.17) that∣∣〈 Ī′T0
(un), un − u0〉

∣∣ ≤ ‖un − u0‖2 +

∣∣∣∣〈k′T0
(un), un − u0〉

∫
R

W2(t, un)dt
∣∣∣∣

+
∣∣∣〈k′T0

(un), un − u0〉Q(un)
∣∣∣+ on(1)

≤ (C10 + 1)‖un − u0‖2 + on(1). (3.20)

where C10 = 2
α4+4

2 C3τα4
α4 T

α4−2
2

0 − 2
σ+12

2 A−1C4τσ
σ T

σ−2
2

0 .

By (3.19) and (3.20), we obtain∣∣Q1(un, un − u0)
∣∣ ≤ C11‖un − u0‖2 + on(1), (3.21)

where C11 = −2
σ+12

2 A−1C4τσ
σ T

σ−2
2

0 (C10 + 1). In view of (2.12), (2.28) and (2.36),∣∣Q2(un, un − u0)
∣∣ ≤ 2|ζ ′µ(θT0(un))||θT0(un)|‖un‖−2Q(un)(un, un − u0)

≤ 2
σ+12

2 C4τσ
σ T

σ−2
2

0

(
‖un − u0‖2 + (u0, un − u0)

)
. (3.22)

In combination with (3.18), (3.21) and (3.22), we have∣∣kT0(un)〈l′(un), un − u0〉Q(un)
∣∣ ≤ (C11 + C10

)
‖un − u0‖2 + on(1). (3.23)

By (2.15), (2.24) and (2.29), we conclude that∣∣kT0(un)l(un)〈Q′(un), un − u0〉
∣∣ ≤ ∫

R
|∇G̃(t, un(t))||un(t)− u0(t)|dt. (3.24)

It follows from (2.32), (3.7), (3.16), (3.23) and (3.24) that∣∣〈ψ′(un), un − u0〉
∣∣ ≤ (C11 + 2C10

)
‖un − u0‖2 + on(1). (3.25)

In view of (2.45), (3.7), (3.12), (3.13), (3.17) and (3.25), we get

|〈J′T0
(un), un − u0〉| ≥ ‖un − u0‖2 −

∣∣∣∣〈k′T0
(un), un − u0〉

∫
R

W2(t, un)dt
∣∣∣∣

−
∣∣〈ψ′(un), un − u0〉

∣∣+ on(1)

≥ (1− C11 − 3C10)‖un − u0‖2 + on(1). (3.26)

By (2.14) and (3.26), we have

|〈J′T0
(un), un − u0〉| ≥ 2−1‖un − u0‖2 + on(1). (3.27)

In both cases, from (3.14) and (3.27), we get un → u0, n → ∞. Thus JT0 satisfies Palais–Smale
condition.

In view of (L0), the self-adjoint operator of −d2/dt2 + L(t) in L2(R, RN) has a sequence
of eigenvalues λn → ∞. Moreover, the corresponding system of normalized eigenfunctions
{en : n ∈ N} forms an orthogonal basis in E. Hereafter, set En = span{e1, . . . , en} and E⊥n be
the orthogonal complement of En in E. With the help of the normalized orthogonal sequence
{en}∞

n=1, define some subspaces as follows:

Bn =
{

u ∈ En; ‖u‖ ≤ 1
}

, Sn =
{

u ∈ En; ‖u‖ = 1
}
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and
Sn+1
+ =

{
u = w + sen+1; ‖u‖ = 1, w ∈ Bn, 0 ≤ s ≤ 1

}
.

By these subspaces, we can introduce some continuous maps and minimax sequences of J as
follows

Λn =
{

γ ∈ C(Sn, E); γ is odd
}

, Γn =
{

γ ∈ C(Sn+1
+ , E); γ|Sn ∈ Λn

}
, (3.28)

and
bn = inf

γ∈Λn
max
u∈Sn

JT0(γ(u)), cn = inf
γ∈Γn

max
u∈Sn+1

+

JT0(γ(u)). (3.29)

For any δ > 0, set

Γn(δ) =
{

γ ∈ Γn; JT0(γ(u)) ≤ bn + δ, u ∈ Sn
}

, (3.30)

cn(δ) = inf
γ∈Γn(δ)

max
u∈Sn+1

+

JT0(γ(u)). (3.31)

By (3.28)–(3.31), it is obvious that bn ≤ cn ≤ cn(δ), n ∈N. Next we give some useful estimates
for minimax values bn and cn(δ).

Lemma 3.2. Let (L0), (H1), (H3), (H4) and (G1) be satisfied. Then for any n ∈N, bn < 0.

Proof. By (1.6), for any u ∈ En we have∫
R

W1(t, u)dt ≥
∫

R
b(t)|u|α2 dt− C2

∫
R
|u|α3 dt. (3.32)

By standard arguments as in [20], for any u ∈ En \ {0}, there exists ε1 > 0 depending on En

such that
meas

{
t ∈ R : b(t)|u|α2 ≥ ε1‖u‖α2

}
≥ ε1. (3.33)

By (1.7), (2.1), (2.15), (2.24), (2.28), (3.32)–(3.33), for any u ∈ En \ {0}, we get

JT0(u) =
1
2
‖u‖2 −

∫
R

W1(t, u)dt− kT0(u)
∫

R
W2(t, u)dt− ψ(u)

≤ ‖u‖2 + C12‖u‖α3 + C13‖u‖α4 + C14‖u‖σ − ε2
1‖u‖α2 . (3.34)

In view of (3.34), there exist ε(n) > 0 and κ(n) > 0 such that JT0(κu) < −ε, u ∈ Sn. Then we
set γ(u) = κu, u ∈ Sn. By (3.29), we obtain bn < 0.

Lemma 3.3. Assume that (L0), (H1), (H2), (H3), (H4) and (G1) hold. Then for any n ∈ N and any
δ > 0, cn(δ) < 0.

Proof. From (3.30) and (3.31), for fixed n ∈ N, if 0 < δ < δ′, we have Γn(δ) ⊂ Γn(δ′) and
cn(δ) ≥ cn(δ′). So we only need to prove cn(δ) < 0 for any δ ∈ (0, |bn|). For any δ ∈ (0, |bn|),
by (3.29), there exists γ0 ∈ Λn such that maxu∈Sn JT0

(
γ0(u)

)
≤ bn +

δ
2 . By the fact that γ0(Sn)

is a compact set in E, there exists a positive integer m0 such that

max
u∈Sn

JT0

(
(Pm0 ◦ γ0)u

)
≤ bn + δ, (3.35)

where Pm0 denotes the orthogonal projective operator from E to Em0 .
For any c ∈ R, let Jc

T0
= {u ∈ E : JT0(u) ≤ c}. Choose ε̄ = −(bn + δ)/2 > 0. By

a similar proof as in Lemma 3.2, there exists ρm0+1 > 0 such that if u ∈ B̄(0, ρ0) ∩ Em0+1,
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JT0(u) ≤ 0, where B(x0, ρ) denotes the open ball of radius ρ centred at x0 in E, and B̄(x0, ρ)

denotes the closure of B(x0, ρ) in E. Since JT0 ∈ C1(E, R) and JT0(0) = 0, dist (0, J−ε̄
T0
) > 0. Set

ρ′0 = min
{

ρ0, dist (0, J−ε̄
T0
)
}

, then ρ′0 > 0. By Deformation Theorem (see Theorem A.4 in [15]),
there exists ε ∈ (0, ε̄) and a continuous map η ∈ C

(
[0, 1]× E, E

)
such that

η(1, u) = u, if JT0(u) 6∈ [−ε̄, ε̄], (3.36)

and
η
(
1, Jε

T0
\B(0, ρ′0)

)
⊂ J−ε

T0
, (3.37)

where B(0, ρ′0) is a neighbourhood of K0 defined by (iii) in Lemma 2.5.

By (3.28), Pm0 ◦ γ0 ∈ C(Sn, Em0). Since En+1 is a metric space with the norm ‖ · ‖ and Sn

is a closed subset in En+1, there exists an extension P̃m0 ◦ γ0 : En+1 → Em0 of (Pm0 ◦ γ0) by
Dugundji extension theorem (see Theorem 4.1 in [7]); furthermore,(

(P̃m0 ◦ γ0)En+1
)
⊂ co

(
(Pm0 ◦ γ0)Sn), (3.38)

where the symbol co denotes the convex hull. Since (Pm0 ◦ γ0)Sn is a compact set in Em0 , by
the definition of convex hull, co

(
(Pm0 ◦ γ0)Sn) is a bounded set in Em0 . Then there exists a

constant ν such that JT0(u) ≤ ν, u ∈ co
(
(Pm0 ◦ γ0)Sn). It follows from (3.38) that

JT0

(
(P̃m0 ◦ γ0)u

)
≤ ν, ∀ u ∈ En+1. (3.39)

Next we distinguish two cases.

Case 1. ν ≤ ε. Since P̃m0 ◦ γ0 ∈ C(En+1, Em0), by (3.39) we have

(P̃m0 ◦ γ0)u ∈ Jε
T0,m0

, ∀ u ∈ En+1, (3.40)

where Jε
T0,m0

:= {u ∈ Em0 : JT0(u) ≤ ε}. Define a map χ as follows:

χ(u) =

{
u, u 6∈ B̄(0, ρ′0) ∩ Em0

u + (ρ′20 − ‖u‖2)1/2em0+1, u ∈ B̄(0, ρ′0) ∩ Em0 .
(3.41)

It is clear that χ ∈ C(Em0 , Em0+1) and(
χ ◦ (P̃m0 ◦ γ0)

)
u 6∈ B(0, ρ′0), ∀ u ∈ En+1. (3.42)

If u ∈ En+1 and ‖(P̃m0 ◦ γ0)u‖ > ρ′0, in view of (3.40) and (3.41), we get(
χ ◦ (P̃m0 ◦ γ0)

)
u = (P̃m0 ◦ γ0)u ∈ Jε

m0
. (3.43)

Otherwise, when u ∈ En+1 and ‖(P̃m0 ◦ γ0)u‖ ≤ ρ′0, by (3.41) ‖
(
χ ◦ (P̃m0 ◦ γ0)

)
u‖ = ρ′0. By the

definition of ρ′0 and (3.43), we deduce that(
χ ◦ (P̃m0 ◦ γ0)

)
u ∈ Jε

T0
, ∀ u ∈ En+1. (3.44)

Define a map H0 : En+1 → E as follows:

H0(·) = η
(

1,
(
χ ◦ (P̃m0 ◦ γ0)

)
(·)
)

. (3.45)
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Next we need to prove H0 ∈ Γn(δ) and maxu∈Sn+1
+

JT0(H0(u)) < 0. First, it is obvious that

H0 ∈ C(Sn+1
+ , E). Next we prove H0|Sn ∈ Λn. By Dugundji extension theorem, we obtain

(P̃m0 ◦ γ0)u = (Pm0 ◦ γ0)u, ∀ u ∈ Sn. (3.46)

From (3.35), (Pm0 ◦ γ0) u ∈ J−2ε̄
T0

, u ∈ Sn. The definition of ρ′0 and J−2ε̄
T0
⊂ J−ε̄

T0
imply that

‖(Pm0 ◦ γ0) u‖ ≥ ρ′0, ∀ u ∈ Sn. (3.47)

It follows from (3.41), (3.46) and (3.47) that(
χ ◦ (P̃m0 ◦ γ0)

)
u = χ ◦

(
(Pm0 ◦ γ0) u

)
= (Pm0 ◦ γ0) u, ∀ u ∈ Sn. (3.48)

Since (Pm0 ◦ γ0) u ∈ J−2ε̄
T0

, ∀ u ∈ Sn, in view of (3.35)–(3.36), (3.45) and (3.48)

H0(u) = η
(

1,
(
χ ◦ (P̃m0 ◦ γ0)

)
u
)
= (Pm0 ◦ γ0) u, ∀ u ∈ Sn. (3.49)

which implies that H0|Sn ∈ Λn. Moreover, from (3.30), (3.35) and (3.49), we have H0 ∈
Γn(δ). Since Sn+1 ⊂ En+1, by (3.42) and (3.44), we have

(
χ ◦ (P̃m0 ◦ γ0)

)
u 6∈ B(0, ρ′0), ∀ u ∈

Sn+1
+ and

(
χ ◦ (P̃m0 ◦ γ0)

)
u ∈ Jε

T0
, ∀ u ∈ Sn+1

+ . From (3.37) and (3.45), we deduce that
maxu∈Sn+1

+
JT0(H0(u)) ≤ −ε < 0, which implies that cn(δ) < 0 by (3.31).

Case 2. ν > ε. Let JT0 |Em0
denote the restriction of JT0 on Em0 . By a similar proof as in

Lemma 2.5 and Lemma 3.1, we can prove that JT0 |Em0
∈ C1(Em0 , R) and satisfies Palais–Smale

condition. Moreover, JT0 |Em0
has no critical point with positive critical values on Em0 . By

Noncritical interval theorem (see Theorem 5.1.6 in [5]), Jε
T0,m0

is a strong deformation retraction
of Jν

T0,m0
. So there exists a map ς such that ς ∈ C(Jν

T0,m0
, Jε

T0,m0
) and ς(u) = u, if u ∈ Jε

T0,m0
.

Define a map from En+1 → E as follows:

H̄0(·) = η
(

1,
(

χ ◦
(
ς ◦ (P̃m0 ◦ γ0)

))
(·)
)

.

By a similar proof as in Case 1, we also obtain H̄0 ∈ Γn(δ) and maxu∈Sn+1
+

JT0(H̄0(u)) ≤ −ε < 0,
which leads to cn(δ) < 0 by (3.31).

Lemma 3.4. Suppose that (L0), (H1), (H4) and (G1) are satisfied. Then there exists a positive constant
C15 independent of n such that for all n large enough

bn ≥ −C15n
−βp
2−p . (3.50)

Proof. For any γ ∈ Λn (n ≥ 2), when 0 6∈ γ(Sn), the genus Π(γ(Sn)) is well defined and
Π(γ(Sn)) ≥ Π(Sn) = n. From Proposition 7.8 in [15], we have γ(Sn) ∩ E⊥n−1 6= ∅. Otherwise,
if 0 ∈ γ(Sn), then 0 ∈ γ(Sn) ∩ E⊥n−1. So for any γ ∈ Λn (n ≥ 2), γ(Sn) ∩ E⊥n−1 6= ∅. Therefore,
for any γ ∈ Λn (n ≥ 2), we get

max
u∈Sn

JT0(γ(u)) ≥ inf
u∈E⊥n−1

JT0(u). (3.51)

It follows from Hölder inequality, (1.4), (1.7), (2.13), (2.15) and (2.26) that

JT0(u) ≥
1
4
‖u‖2 − C16‖u‖

p
2 , ∀ u ∈ E. (3.52)
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If u ∈ E⊥n−1, λn‖u‖2
2 ≤ ‖u‖2. When u ∈ E⊥n−1, by (3.52) we obtain

JT0(u) ≥
1
4
‖u‖2 − C16λ

− p
2

n ‖u‖p. (3.53)

By (3.29), (3.51) and (3.53), for n ≥ 2, we conclude that

bn ≥ inf
t≥0

{1
4

t2 − C16λ
− p

2
n tp

}
= − C17λ

−p
2−p
n , (3.54)

where C17 is a positive constant independent of n and λn. From (G2) in Theorem 1.1 and
(3.54), it is easy to verify that (3.50) holds.

Lemma 3.5. Suppose that cn = bn for n ≥ n0, where n0 ∈ N. Then there exists a positive integer n1

such that
|bn| ≥ C18n

2
2−σ , n ≥ n1, (3.55)

where C18 is a positive constant independent of n.

Proof. For any n ≥ n0 and any ε ∈ (0, |bn|), by (3.29) there exists a map γ1 ∈ Γn such that

max
u∈Sn+1

+

JT0(γ1(u)) < cn + ε = bn + ε < 0. (3.56)

In view of Sn+1 = Sn+1
+ ∪ (−Sn+1

+ ), γ1 can be continuously extended to Sn+1 as an odd function,
also denoted by γ1, then γ1 ∈ Λn+1. From (3.29), we have

bn+1 ≤ max
u∈Sn+1

JT0(γ1(u)) = JT0(γ1(u0)) (3.57)

for some u0 ∈ Sn+1. When u0 ∈ Sn+1
+ , in combination with (3.56) and (3.57), bn+1 ≤

JT0(γ1(u0)) < bn + ε. We have

bn+1 < bn + ε + C6|bn+1|
σ
2 , (3.58)

where C6 is given in (2.31). Otherwise, u0 ∈ −Sn+1
+ . It follows from (2.31) and (3.56) that

JT0(γ1(u0)) ≤ JT0(γ1(−u0)) + C6|JT0(γ1(u0))|
σ
2

≤ bn + ε + C6|JT0(γ1(u0))|
σ
2 . (3.59)

Next we consider two possible cases.

Case 1. JT0(γ1(u0)) ≤ |bn+1|. By (3.57) and (3.59), we get

bn+1 ≤ bn + ε + C6|bn+1|
σ
2 . (3.60)

Case 2. JT0(γ1(u0)) > |bn+1|. From (3.56), there exists u1 ∈ Sn+1
+ such that

JT0(γ1(u1)) < bn + ε < 0. (3.61)

In view of JT0(γ1(u0)) > |bn+1| and JT0(γ1(u1)) < 0. Since (JT0 ◦ γ1) ∈ C(Sn+1, R) and Sn+1 is
a connected space with the norm ‖ · ‖, by the Intermediate Value Theorem (see Theorem 24.3
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in [12]), there exists u2 ∈ Sn+1 such that JT0(γ1(u2)) = |bn+1|/2. By (3.56), u2 ∈ −Sn+1
+ . From

(2.31) and (3.56), we obtain

JT0(γ1(u2)) ≤ JT0(γ1(−u2)) + C6|JT0(γ1(u2))|
σ
2

< bn + ε + C6|JT0(γ1(u2))|
σ
2 ,

which implies that
bn+1 ≤ bn + ε + C6|bn+1|

σ
2 . (3.62)

By Lemma 3.2, bn < 0 for any n ∈N. It follows from (3.58), (3.60) and (3.62) that

|bn| ≤ |bn+1|+ C6|bn+1|
σ
2 , n ≥ n0. (3.63)

Next we show that (3.63) implies (3.55). The proof will be done by induction. First, we
introduce a useful inequality as follows:

(
1 + x

)α0 ≥ 1 +
α0x
2

, x ∈ [0, δ], (3.64)

where α0, δ are positive constants and δ depends on α0. Set α0 = 2(σ− 2)−1. In view of (3.64),
there exists n̄0 ∈N such that

(
1 +

1
n

) 2
σ−2 ≥ 1 +

1
(σ− 2)n

, n ≥ n̄0. (3.65)

Set

C18 = min
{

n1
2

σ−2 |bn1 |,
( 1

C6(σ− 2)

) 2
σ−2
}

, (3.66)

where n1 := max{n0, n̄0}. We claim (3.55) holds. By (3.66), it is obvious that |bn1 | ≥ C18n1
2

2−σ .
Assume that (3.55) holds for j ≥ n1. Then we only need to prove (3.55) also holds for j + 1. If
not, we have

|bj+1| < C18(j + 1)
2

2−σ . (3.67)

Since (3.55) holds for j, by (2.31), (3.63) and (3.67), we have

C18 j
2

2−σ ≤ |bj| ≤ |bj+1|+ C6|bj+1|
σ
2 < C18(j + 1)

2
2−σ + C6C

σ
2
18(j + 1)

σ
2−σ , (3.68)

When we divide (3.68) by C18(j + 1)
2

2−σ on both sides, in view of (3.66) we get

(
1 +

1
j

) 2
σ−2

< 1 + C6C
σ−2

2
18

1
j + 1

< 1 + C6C
σ−2

2
18

1
j
≤ 1 +

1
(σ− 2)j

,

which contradicts (3.65). So (3.55) holds.

By the fact that bn < 0, (G2), (3.50) and (3.55), it is impossible that cn = bn for all large n.
Next we can construct critical values of JT0 as follows.

Lemma 3.6. Suppose that cn > bn. Then for any δ ∈ (0, cn − bn), cn(δ) given by (3.31) is a critical
value of JT0 .
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Proof. We prove this lemma by contradiction. For any δ ∈ (0, cn − bn), if cn(δ) is not a crit-
ical value of JT0 , define ε̄ = (cn − bn − δ)/2, by Deformation Theorem, there exist a positive
constant ε ∈ (0, ε̄) and η ∈ C([0, 1]× E, E) such that

η(1, u) = u, if JT0(u) 6∈ [cn(δ)− ε̄, cn(δ) + ε̄], (3.69)

and
η
(
1, Jcn(δ)+ε

T0

)
⊂ Jcn(δ)−ε

T0
. (3.70)

By (3.31), there exists γ2 ∈ Γn(δ) such that

max
u∈Sn+1

+

JT0(γ2(u)) < cn(δ) + ε. (3.71)

Define
γ̄2(u) = η(1, γ2(u)), u ∈ Sn+1

+ . (3.72)

It is evident that γ̄2 ∈ C(Sn+1
+ , E). Since γ2 ∈ Γn(δ), by (3.30) we have

JT0(γ2(u)) ≤ bn + δ = cn − 2ε̄ ≤ cn(δ)− 2ε̄, u ∈ Sn. (3.73)

By (3.69), (3.72) and (3.73), we have γ̄2(u) = γ2(u), u ∈ Sn, which yields

γ̄2|Sn ∈ Λn and JT0(γ̄2(u)) = JT0(γ2(u)) ≤ bn + δ, u ∈ Sn. (3.74)

In view of (3.74), we obtain γ̄2 ∈ Γn(δ). It follows from (3.70), (3.71) and (3.72) that

max
u∈Sn+1

+

JT0(γ̄2(u)) = max
u∈Sn+1

+

JT0

(
η(1, γ2(u))

)
≤ cn(δ)− ε,

which contradicts (3.31). So cn(δ) given by (3.31) is a critical value of JT0 .

Proof of Theorem 1.1. Since it is impossible that cn = bn for all large n, we can choose a sub-
sequence {nj} ⊂ N such that cnj > bnj . In combination with Lemma 3.3, Lemma 3.4 and
Lemma 3.6, there exists a sequence of critical points {unj}∞

j=1 of J such that

− C15nj
− βp

(2−p) ≤ bnj < cnj ≤ cnj(δj) = JT0(unj) < 0, (3.75)

where δj ∈ (0, cnj − bnj). In view of (H2), (H4), (2.5), (2.26) and (2.27), unj 6= 0, j ∈ N. Next we
consider the following two possible cases.

Case 1. ‖unj‖2 > 2T0. Combining (2.15), (2.16) and (2.32), we have kT0(unj) = 0, k′T0
(unj) = 0

and ψ′(unj) = 0. It follows from (2.17) and (2.45) that

ĪT0(unj) =
1
2
‖unj‖2 −

∫
R

W1(t, unj)dt, 〈J′T0
(unj), unj〉 = ‖unj‖2 −

∫
R
(∇W1(t, unj), unj)dt.

By (1.5) and two equalities above, we get

ĪT0(unj) = ĪT0(unj)− µ−1〈J′T0
(unj), unj〉

= 2A‖unj‖2 + µ−1
∫

R

(
(∇W1(t, unj), unj)− µW1(t, unj)

)
dt

< A‖unj‖2. (3.76)



20 L. Zhang and G. Chen

Case 2. ‖unj‖2 ≤ 2T0. It follows from Lemma 2.3, (2.17), (2.26)–(2.28) and (2.45) that

ĪT0(unj) ≤
1
2
‖u0‖2 −

∫
R

W1(t, unj)dt + C3τα4
α4
‖unj‖α4 + 16C4τσ

σ ‖unj‖σ,

and

〈J′T0
(unj), unj〉 ≥ ‖unj‖2 −

∫
R
(∇W1(t, unj), unj)dt− 9C3τα4

α4
‖unj‖α4 − 16(9− 32A−1)C4τσ

σ ‖unj‖σ.

By (1.5), (2.13), and two equalities above, we obtain

ĪT0(unj) = ĪT0(unj)− µ−1〈J′T0
(unj), unj〉

≤ 2A‖unj‖2 + C1τα1
α1
‖unj‖α1 + 10C3τα4

α4
‖unj‖α4 + 16(10− 32A−1)C4τσ

σ ‖unj‖σ

≤ A‖unj‖2. (3.77)

In both cases, by (2.12), (2.24), (3.76) or (3.77), we get lµ(unj) = 1 and l′µ(unj) = 0. Moreover,
it follows from (2.26) and (2.27) that JT0(unj) = ĪT0(unj) ≤ A‖unj‖2 < 0, which implies that
‖unj‖ → 0, j → ∞ by (3.75). So there exists j0 ∈ N such that ‖unj‖2 < T0, j ≥ j0. By (2.15)-
(2.16), we have kT0(unj) = 1 and k′T0

(unj) = 0 for all j ≥ j0, which leads to {unj} are also critical
points of I for all j ≥ j0 by (2.5) and (2.11).

Since E is continuously embedded into L∞(R, RN) and ‖unj‖ → 0 as j → ∞, then
maxt∈R |unj(t)| → 0 as j → ∞. Thus, there exists j1 ∈ N such that maxt∈R |unj(t)| < r1

for all j ≥ j1. Set j2 = max{j0, j1}. By (2.5) and (2.11), unj are also homoclinic solutions of
problem (1.1) for each j ≥ j2. This completes the proof.

4 Examples

In this section, we give an example to illustrate our result.
Example 4.1. In problem (1.1), let L(t) = t2 + 1 and W(t, x) = a(t) ln(1 + |x|3/2), (t, x) ∈
R×R, where a : R → R+ is a continuous function such that a(t) ∈ L4(R). Moreover, the
perturbation term G is given by

G(t, x) = b(t)|x|σ−1x, (t, x) ∈ R× (−r2, r2),

where b is a bounded continuous function on R and σ > 8/3. Let W1(t, x) = a(t)|x|3/2 and
W2(t, x) = a(t)

(
ln(1 + |x|3/2)− |x|3/2). Then we choose p = µ = 3/2 and

α1 = α3 = α4 = 3, α2 = 3/2, N = 1.

Since −d2/dt2 + L(t) has eigenvalues λn = 2n + 2 with multiplicity 1 (see [2]), we can choose
β = 1. By Theorem 1.1, problem (1.1) has infinitely many homoclinic solutions. Since the
perturbation term G breaks the symmetry of the energy functional, the results in [20,22,34,35]
cannot be applied to this example.
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