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Abstract—The explosive spread of the devices connected to the
Internet has increased the need for efficient and portable cryp-
tographic routines. Despite this fact, truly platform-independent
implementations are still hard to find. In this paper, an Identity-
based Cryptography library, called CryptID is introduced. The
main goal of this library is to provide an efficient and open-
source IBC implementation for the desktop, the mobile, and the
IoT platforms. Powered by WebAssembly, which is a specification
aiming to securely speed up code execution in various embedding
environments, CryptID can be utilized on both the client and the
server-side. The second novelty of CrpytID is the use of structured
public keys, opening up a wide range of domain-specific use cases
via arbitrary metadata embedded into the public key. Embedded
metadata can include, for example, a geolocation value when
working with geolocation-based Identity-based Cryptography, or
a timestamp, enabling simple and efficient generation of single-
use keypairs. Thanks to these characteristics, we think, that
CryptID could serve as a real alternative to the current Identity-
based Cryptography implementations.

Index Terms—Pairing-based Cryptography, Identity-based
Cryptography, WebAssembly

I. INTRODUCTION

Identity-based cryptography (IBC) is an important branch
of public-key cryptography. Although its foundations were
established in 1985 by Shamir [1], who managed to build an
identity-based signature (IBS) scheme, identity-based encryp-
tion (IBE) remained an open problem until Boneh and Franklin
[2] created their pairing-based scheme in 2001, which was fast
enough for practical use.

IBC’s uniqueness lies in the fact that its public key is a
string clearly identifying an individual or organization in a
certain domain. Such a string can be an email address or a
username. The core purpose behind the IBC was to simplify
the certificate management and eliminate the need for certifi-
cation authorities. In a standard scenario, when employing the
public key infrastructure (PKI), the key is bound to its user’s
identity with a public key certificate, however with IBC the
user’s identity is the public key itself, thus there is no need for
a certificate. Despite this advantage, IBC still requires trusted
third-party servers as private key generation and distribution
can only be done by a so-called private key generator (PKG).
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One can find several IBC implementations on the Internet
[3], [4], [5], [6]. However, most of these libraries are focused
on a single platform as their target. Unfortunately, applications
developed for one specific platform can not be directly adapted
for different use. In our opinion, this is a disadvantage of these
libraries, because nowadays there is an increasing number
of mobile devices connecting to the Internet making use of
apps or web-based services. Our motivation was to create a
cross-platform, portable IBC solution targeting a large pool
of diverse devices that are capable to maintain an internet
connection.

One popular technology for development with such goals
is JavaScript. One early library of IBC is WebIBC [3], which
was developed in 2008 using JavaScript. The authors of the
paper concluded that the web browsers and the JavaScript
environment were not powerful enough, to implement a stan-
dard IBC library, which is based on pairing, because it is
”too complex and overkill”. Instead, they built a combined
scheme, which requires much less computation-power and yet,
the performance on a desktop was barely satisfying (1.5-2.5
seconds on average for encryption, using a 192-bit integer as
the key).

Of course, since 2008, the performance of JavaScript en-
gines significantly increased. An article written by a developer
of the V8 JavaScript engine [7] points out that the performance
of V8 quadrupled over the last ten years, which may inspire
us to give a chance to implement a standard IBC library with
the listed goals, using JavaScript. However, over the years a
new technology, called WebAssembly came into the picture,
which seems even more promising.

Developed by the W3C WebAssembly Community Group
since 2015, WebAssembly is a virtual instruction set architec-
ture, aiming to provide a basis for fast computations on the
web, while also giving a solution which is embeddable into
any environment [8]. Albeit being a quite young technology,
already 86% of the internet users have a compatible browser
enjoying its benefits [9]. Therefore, we can consider this
technology as a promising choice for the development of a
cross-platform IBC solution.

In this paper, we will introduce our open source solution
for a cross-platform IBC implementation using WebAssembly.
The source code is available at https://github.com/cryptid-org,
while a consumable NPM package can be downloaded from
https://www.npmjs.com/package/@cryptid/cryptid-js. Our so-
lution, called CryptID, is on the one hand small enough to
be stored on devices with limited storage capacity, while, on
the other hand, its performance is acceptable even on devices
with limited computational power. Our experiments proved

(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.
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I. INTRODUCTION

Identity-based cryptography (IBC) is an important branch
of public-key cryptography. Although its foundations were
established in 1985 by Shamir [1], who managed to build an
identity-based signature (IBS) scheme, identity-based encryp-
tion (IBE) remained an open problem until Boneh and Franklin
[2] created their pairing-based scheme in 2001, which was fast
enough for practical use.

IBC’s uniqueness lies in the fact that its public key is a
string clearly identifying an individual or organization in a
certain domain. Such a string can be an email address or a
username. The core purpose behind the IBC was to simplify
the certificate management and eliminate the need for certifi-
cation authorities. In a standard scenario, when employing the
public key infrastructure (PKI), the key is bound to its user’s
identity with a public key certificate, however with IBC the
user’s identity is the public key itself, thus there is no need for
a certificate. Despite this advantage, IBC still requires trusted
third-party servers as private key generation and distribution
can only be done by a so-called private key generator (PKG).
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Research of Á. Vécsi and A. Pethő was partially supported by the 2018-1.2.1-
NKP-2018-00004 Security Enhancing Technologies for the Internet of Things
project.

The authors are with the Department of Computer Science,
University of Debrecen, H-4028 Debrecen, Kassai str. 26. (emails
in order: vecsi.adam@inf.unideb.hu; bagossy.attila@inf.unideb.hu;
Petho.Attila@inf.unideb.hu)

One can find several IBC implementations on the Internet
[3], [4], [5], [6]. However, most of these libraries are focused
on a single platform as their target. Unfortunately, applications
developed for one specific platform can not be directly adapted
for different use. In our opinion, this is a disadvantage of these
libraries, because nowadays there is an increasing number
of mobile devices connecting to the Internet making use of
apps or web-based services. Our motivation was to create a
cross-platform, portable IBC solution targeting a large pool
of diverse devices that are capable to maintain an internet
connection.

One popular technology for development with such goals
is JavaScript. One early library of IBC is WebIBC [3], which
was developed in 2008 using JavaScript. The authors of the
paper concluded that the web browsers and the JavaScript
environment were not powerful enough, to implement a stan-
dard IBC library, which is based on pairing, because it is
”too complex and overkill”. Instead, they built a combined
scheme, which requires much less computation-power and yet,
the performance on a desktop was barely satisfying (1.5-2.5
seconds on average for encryption, using a 192-bit integer as
the key).

Of course, since 2008, the performance of JavaScript en-
gines significantly increased. An article written by a developer
of the V8 JavaScript engine [7] points out that the performance
of V8 quadrupled over the last ten years, which may inspire
us to give a chance to implement a standard IBC library with
the listed goals, using JavaScript. However, over the years a
new technology, called WebAssembly came into the picture,
which seems even more promising.

Developed by the W3C WebAssembly Community Group
since 2015, WebAssembly is a virtual instruction set architec-
ture, aiming to provide a basis for fast computations on the
web, while also giving a solution which is embeddable into
any environment [8]. Albeit being a quite young technology,
already 86% of the internet users have a compatible browser
enjoying its benefits [9]. Therefore, we can consider this
technology as a promising choice for the development of a
cross-platform IBC solution.

In this paper, we will introduce our open source solution
for a cross-platform IBC implementation using WebAssembly.
The source code is available at https://github.com/cryptid-org,
while a consumable NPM package can be downloaded from
https://www.npmjs.com/package/@cryptid/cryptid-js. Our so-
lution, called CryptID, is on the one hand small enough to
be stored on devices with limited storage capacity, while, on
the other hand, its performance is acceptable even on devices
with limited computational power. Our experiments proved
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(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.
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ID is the user’s identity and sQID the corresponding secret
key.

There are already multiple types of implementations of
the IBE. The most popular variants are based on factoring,
discrete logarithm or pairing. The first implementation worth
mentioning is the Cocks IBE [13], which is based on integer
factorization and the quadratic residuosity problem. Unfor-
tunately, this solution produces long ciphertexts and suffers
from long runtimes, rendering it inadequate for practical use.
The real break-through came with the Boneh-Franklin IBE
[2], which is based on pairing. This scheme is appropriate for
practical use, but there exist other well-known IBE schemes
with better performance, such as the Boneh-Boyen IBE [14],
Sakai-Kasahara IBE [15] and TinyIBE [4].

The standard IBS scheme is similar to the IBE scheme by
it’s structure. The first schemes were based on factoring or
RSA [1], [16], [17], but these were not practical. Nowadays
the ones based on pairing seem to be the preferred schemes,
for instance [18], [19] to name a few.

To assess the security provided by the schemes, Bellare,
Namprempre and Neven compared most of the existing IBS
schemes with their framework [20].

C. WebAssembly

In this section, we would like to provide a short overview of
WebAssembly, which is the key technology behind our work.

During the past decades, the Web has become a ubiquitous
application platform, allowing developers to target a huge
audience of users in a platform-independent manner. Thus, one
can see more and more use cases for the Web platform, even
in computation-intensive niches such as games, computer-
aided design or audio and video manipulation software. On
the other hand, efficient and at the same time, secure code
execution remained an issue: technologies such as ActiveX
[21], PNaCl [22] or asm.js [23] failed to consistently deliver
these properties.

Therefore, a new Web specification, WebAssembly has
born, aiming to securely speed up code execution on the Web
[24]. The design goals of WebAssembly revolve around two
key points, semantics and representation [8].

1) Design Goals: Regarding semantics, WebAssembly
aims to execute code with near-native performance in a safe,
sandboxed environment, while being hardware-, language- and
platform-independent. As WebAssembly can be seen as a
compilation target, language-independence means the lack of
a privileged programming or object model.

Considering representation, WebAssembly offers a compact,
modular binary format, that can be efficiently decoded, vali-
dated and compiled. The specification also considers streaming
and parallel compilation of modules.

2) Targeting WebAssembly: Several popular programming
languages offer WebAssembly as a compilation target, such
as C/C++, Rust or C#. As our library is written in C, here we
would only cover targeting facilities for that case.

Emscripten is a compiler toolchain built on top of LLVM,
that can create WebAssembly modules from C and C++
source files [25] [26]. It should be noted, however, that

Emscripten is capable of much more than simply emitting
WebAssembly modules. As the browser (which is the main
target of Emscripten) is a vastly different environment than
the one assumed by most C applications, Emscripten offers
the Emscripten Runtime Environment including, for example,
a virtual file system, libc and libcxx implementations and
tailored input and output handling.

3) Embedding WebAssembly: Despite its name,
WebAssembly was designed considering server-side
deployments from the ground up. The specification explicitly
states openness as one of its design goals, which is achieved
by providing a small, well-defined interface between the
host environment and the WebAssembly semantics. Since the
birth of the specification, several server-side runtimes have
appeared, such as Lucet [27] or Wasmer [28].

Regarding Emscripten, we have previously highlighted, that
it provides its own runtime environment in the browser. As
the WebAssembly specification does not cover interfacing
with system resources (such as files), currently each host has
to define its own, incompatible runtime environment. In the
future, this is going to change, since the WebAssembly System
Interface (WASI) specification aims to cover this area [29].

III. CRYPTID

In most of the cases, it is not obvious how to implement a
reliable cryptosystem, even if a mathematically proved secure
cryptography protocol is available to build on. During the
implementation, it is easy to make mistakes that open vul-
nerabilities. These vulnerabilities could come from program-
ming negligence (incorrect input validation), or mathematical
inattention, ignorance (using unsafe elliptic curves).

Most of the mistakes could be prevented, by using the
standards during the implementation. In the case of IBC,
multiple standards assist and guide the implementation [30],
[31], [32], [33], [34], [35].

This section of the paper is about our solution, called
CryptID, which is, in brief, an IBC implementation based on
the RFC 5091. Nevertheless, it is not just a usual implemen-
tation, its novelty can be approached from two directions.

The novelty in the implementation is that CryptID is based
on WebAssembly. Thanks to this property, CryptID is able
to work on both the server-side and the client-side, or even
completely separated from the web, providing a truly cross-
platform and efficient IBC solution.

The novelty in the IBC scheme can be found in the public
key. CryptID uses structured public keys, which may contain
any kind of metadata with the identity string. This opens up
many kinds of domain-specific opportunities. For example, if
the current time is part of the metadata, then the keypair is
devised for one-time use.

A. Cross-platform operation

With CryptID we wanted to create a library which provides
efficient client-side IBC mainly targeting web browsers. Fur-
thermore, we intended to implement a solution that can be used
on the server-side, and even on IoT and alike. The motivation
behind this was that we did not know about any open source
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that public key solutions based on IBC are similarly efficient,
as those which are based on the PKI. However, the former
provides additional possibilities thanks to the properties of the
public key.

The rest of the paper is organized as follows. Section II
contains some discussion about the relevance of IBC and
WebAssembly and also describes Pairing-based cryptography
and the standard IBC scheme. Our IBC implementation and
its novelties are presented in Section III. Afterward, Section
IV outlines the performance of our library on multiple plat-
forms. Section V gives a conclusion and contains some future
development plans.

II. PRELIMINARIES

A. Pairing

For q = pk with a prime p denote Fq the finite field with
q elements. Let E = E(Fq) be an elliptic curve over Fq . For
the subgroup G1 ⊆ E the mapping e : G1 ×G1 �→ Fq� with
� ≥ 1 is called pairing if
bilinear: For all P,Q ∈ G1 and for all a, b ∈ Z∗

q we have
e(aP, bQ) = e(P,Q)ab.

non degenerated: If P is a non-zero element of G1 then
e(P, P ) generate Fq� .

Pairing is a rich theory and has numerous applications
in cryptography, see the book of Cohen et al [10]. Its first
celebrated application is due to Menezes, Okamoto and Van-
stone [11], who proved that for supersingular elliptic curves
the discrete elliptic logarithm problem can be reduced in
polynomial time to a discrete logarithm problem. To prove this
result they used the efficiently computable Weil pairing. To
avoid technical difficulties we do not define the Weil pairing,
but refer to the paper of Boneh and Franklin [2]. There you
may find not only the exact definition of the Weil pairing, but
also its application to the identity based cryptography.

B. Identity-based Cryptography

In a public-key cryptography system, one very important
task is key management. Nowadays, it is mostly handled by
the PKI, which seems to work well, however, it has some
shortcomings. In the white paper published by Micro Focus
International plc [12] six important requirements are specified
for enterprise key management.

• Deliver encryption keys.
• Authenticate users and deliver decryption keys.
• Jointly manage keys with partners.
• Deliver keys to trusted infrastructure components.
• Recover keys.
• Scale for growth.

The paper also clearly points out the shortcomings of the PKI.
In many ways, it is difficult to use, implement and manage.
This difficulty mainly comes from the need of maintaining
enormous databases, which can be compromised or damaged,
leading to severe data breaches or data loss. Additionally,
maintaining such databases can get very expensive.

IBC may offer an obvious solution to these problems. IBC
is a type of public-key cryptography in which the public key

is a string clearly identifying an individual or organization in
a certain domain. It is important to mention that not just the
identifier can be arbitrary, but also the domain which specifies
the scope of the identifier. This domain can be a global or
even a local one, with only a few people in it.

The attractiveness of IBC comes from the previously men-
tioned properties of the public key, making it possible to estab-
lish systems without certification authorities and with simpler
key management. Thus, IBC satisfies all six requirements in
a cost-effective and user-accessible way.

From the point of this paper, two applications of IBC
are relevant, encryption (IBE) and digital signature creation
(IBS). Figure 1 shows how a standard IBE scheme works.
The main participants are as follows: those want to exchange
encrypted messages with each other and a third party, which
handles the authentication and the private key generation. For
authentication purposes, any already deployed resource can be
reused, since this aspect is not limited by the scheme itself.
The private key generation is performed by a trusted third
party called the Private Key Generator (PKG).

Fig. 1: How IBE works

The IBE scheme is based on four algorithms.

• Setup. Responsible for the initialization of the system.
It generates the public parameters of the system and the
master secret.

• Extract. This is the algorithm for calculating the private
key from the public parameters, the user’s identity, and
the master secret.

• Encrypt. The algorithm for message encryption. It pro-
duces a ciphertext from the public parameters of the
system, the public key and the plaintext message.

• Decrypt. The algorithm for message decryption. It uses
the public parameters of the system, a private key gener-
ated by the PKG and an encrypted message.

It should be noted, that Encrypt and Decrypt are the inverse
of each other. This means, if the message space is M, then
∀M ∈ M : Decrypt(Encrypt(M , ID), sQID) = M , where
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ID is the user’s identity and sQID the corresponding secret
key.

There are already multiple types of implementations of
the IBE. The most popular variants are based on factoring,
discrete logarithm or pairing. The first implementation worth
mentioning is the Cocks IBE [13], which is based on integer
factorization and the quadratic residuosity problem. Unfor-
tunately, this solution produces long ciphertexts and suffers
from long runtimes, rendering it inadequate for practical use.
The real break-through came with the Boneh-Franklin IBE
[2], which is based on pairing. This scheme is appropriate for
practical use, but there exist other well-known IBE schemes
with better performance, such as the Boneh-Boyen IBE [14],
Sakai-Kasahara IBE [15] and TinyIBE [4].

The standard IBS scheme is similar to the IBE scheme by
it’s structure. The first schemes were based on factoring or
RSA [1], [16], [17], but these were not practical. Nowadays
the ones based on pairing seem to be the preferred schemes,
for instance [18], [19] to name a few.

To assess the security provided by the schemes, Bellare,
Namprempre and Neven compared most of the existing IBS
schemes with their framework [20].

C. WebAssembly

In this section, we would like to provide a short overview of
WebAssembly, which is the key technology behind our work.

During the past decades, the Web has become a ubiquitous
application platform, allowing developers to target a huge
audience of users in a platform-independent manner. Thus, one
can see more and more use cases for the Web platform, even
in computation-intensive niches such as games, computer-
aided design or audio and video manipulation software. On
the other hand, efficient and at the same time, secure code
execution remained an issue: technologies such as ActiveX
[21], PNaCl [22] or asm.js [23] failed to consistently deliver
these properties.

Therefore, a new Web specification, WebAssembly has
born, aiming to securely speed up code execution on the Web
[24]. The design goals of WebAssembly revolve around two
key points, semantics and representation [8].

1) Design Goals: Regarding semantics, WebAssembly
aims to execute code with near-native performance in a safe,
sandboxed environment, while being hardware-, language- and
platform-independent. As WebAssembly can be seen as a
compilation target, language-independence means the lack of
a privileged programming or object model.

Considering representation, WebAssembly offers a compact,
modular binary format, that can be efficiently decoded, vali-
dated and compiled. The specification also considers streaming
and parallel compilation of modules.

2) Targeting WebAssembly: Several popular programming
languages offer WebAssembly as a compilation target, such
as C/C++, Rust or C#. As our library is written in C, here we
would only cover targeting facilities for that case.

Emscripten is a compiler toolchain built on top of LLVM,
that can create WebAssembly modules from C and C++
source files [25] [26]. It should be noted, however, that

Emscripten is capable of much more than simply emitting
WebAssembly modules. As the browser (which is the main
target of Emscripten) is a vastly different environment than
the one assumed by most C applications, Emscripten offers
the Emscripten Runtime Environment including, for example,
a virtual file system, libc and libcxx implementations and
tailored input and output handling.

3) Embedding WebAssembly: Despite its name,
WebAssembly was designed considering server-side
deployments from the ground up. The specification explicitly
states openness as one of its design goals, which is achieved
by providing a small, well-defined interface between the
host environment and the WebAssembly semantics. Since the
birth of the specification, several server-side runtimes have
appeared, such as Lucet [27] or Wasmer [28].

Regarding Emscripten, we have previously highlighted, that
it provides its own runtime environment in the browser. As
the WebAssembly specification does not cover interfacing
with system resources (such as files), currently each host has
to define its own, incompatible runtime environment. In the
future, this is going to change, since the WebAssembly System
Interface (WASI) specification aims to cover this area [29].

III. CRYPTID

In most of the cases, it is not obvious how to implement a
reliable cryptosystem, even if a mathematically proved secure
cryptography protocol is available to build on. During the
implementation, it is easy to make mistakes that open vul-
nerabilities. These vulnerabilities could come from program-
ming negligence (incorrect input validation), or mathematical
inattention, ignorance (using unsafe elliptic curves).

Most of the mistakes could be prevented, by using the
standards during the implementation. In the case of IBC,
multiple standards assist and guide the implementation [30],
[31], [32], [33], [34], [35].

This section of the paper is about our solution, called
CryptID, which is, in brief, an IBC implementation based on
the RFC 5091. Nevertheless, it is not just a usual implemen-
tation, its novelty can be approached from two directions.

The novelty in the implementation is that CryptID is based
on WebAssembly. Thanks to this property, CryptID is able
to work on both the server-side and the client-side, or even
completely separated from the web, providing a truly cross-
platform and efficient IBC solution.

The novelty in the IBC scheme can be found in the public
key. CryptID uses structured public keys, which may contain
any kind of metadata with the identity string. This opens up
many kinds of domain-specific opportunities. For example, if
the current time is part of the metadata, then the keypair is
devised for one-time use.

A. Cross-platform operation

With CryptID we wanted to create a library which provides
efficient client-side IBC mainly targeting web browsers. Fur-
thermore, we intended to implement a solution that can be used
on the server-side, and even on IoT and alike. The motivation
behind this was that we did not know about any open source
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that public key solutions based on IBC are similarly efficient,
as those which are based on the PKI. However, the former
provides additional possibilities thanks to the properties of the
public key.

The rest of the paper is organized as follows. Section II
contains some discussion about the relevance of IBC and
WebAssembly and also describes Pairing-based cryptography
and the standard IBC scheme. Our IBC implementation and
its novelties are presented in Section III. Afterward, Section
IV outlines the performance of our library on multiple plat-
forms. Section V gives a conclusion and contains some future
development plans.

II. PRELIMINARIES

A. Pairing

For q = pk with a prime p denote Fq the finite field with
q elements. Let E = E(Fq) be an elliptic curve over Fq . For
the subgroup G1 ⊆ E the mapping e : G1 ×G1 �→ Fq� with
� ≥ 1 is called pairing if
bilinear: For all P,Q ∈ G1 and for all a, b ∈ Z∗

q we have
e(aP, bQ) = e(P,Q)ab.

non degenerated: If P is a non-zero element of G1 then
e(P, P ) generate Fq� .

Pairing is a rich theory and has numerous applications
in cryptography, see the book of Cohen et al [10]. Its first
celebrated application is due to Menezes, Okamoto and Van-
stone [11], who proved that for supersingular elliptic curves
the discrete elliptic logarithm problem can be reduced in
polynomial time to a discrete logarithm problem. To prove this
result they used the efficiently computable Weil pairing. To
avoid technical difficulties we do not define the Weil pairing,
but refer to the paper of Boneh and Franklin [2]. There you
may find not only the exact definition of the Weil pairing, but
also its application to the identity based cryptography.

B. Identity-based Cryptography

In a public-key cryptography system, one very important
task is key management. Nowadays, it is mostly handled by
the PKI, which seems to work well, however, it has some
shortcomings. In the white paper published by Micro Focus
International plc [12] six important requirements are specified
for enterprise key management.

• Deliver encryption keys.
• Authenticate users and deliver decryption keys.
• Jointly manage keys with partners.
• Deliver keys to trusted infrastructure components.
• Recover keys.
• Scale for growth.

The paper also clearly points out the shortcomings of the PKI.
In many ways, it is difficult to use, implement and manage.
This difficulty mainly comes from the need of maintaining
enormous databases, which can be compromised or damaged,
leading to severe data breaches or data loss. Additionally,
maintaining such databases can get very expensive.

IBC may offer an obvious solution to these problems. IBC
is a type of public-key cryptography in which the public key

is a string clearly identifying an individual or organization in
a certain domain. It is important to mention that not just the
identifier can be arbitrary, but also the domain which specifies
the scope of the identifier. This domain can be a global or
even a local one, with only a few people in it.

The attractiveness of IBC comes from the previously men-
tioned properties of the public key, making it possible to estab-
lish systems without certification authorities and with simpler
key management. Thus, IBC satisfies all six requirements in
a cost-effective and user-accessible way.

From the point of this paper, two applications of IBC
are relevant, encryption (IBE) and digital signature creation
(IBS). Figure 1 shows how a standard IBE scheme works.
The main participants are as follows: those want to exchange
encrypted messages with each other and a third party, which
handles the authentication and the private key generation. For
authentication purposes, any already deployed resource can be
reused, since this aspect is not limited by the scheme itself.
The private key generation is performed by a trusted third
party called the Private Key Generator (PKG).

Fig. 1: How IBE works

The IBE scheme is based on four algorithms.

• Setup. Responsible for the initialization of the system.
It generates the public parameters of the system and the
master secret.

• Extract. This is the algorithm for calculating the private
key from the public parameters, the user’s identity, and
the master secret.

• Encrypt. The algorithm for message encryption. It pro-
duces a ciphertext from the public parameters of the
system, the public key and the plaintext message.

• Decrypt. The algorithm for message decryption. It uses
the public parameters of the system, a private key gener-
ated by the PKG and an encrypted message.

It should be noted, that Encrypt and Decrypt are the inverse
of each other. This means, if the message space is M, then
∀M ∈ M : Decrypt(Encrypt(M , ID), sQID) = M , where
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an element of Fp2 . The implementation is based on Lynn’s
dissertation [42] and Martin’s book [43].

Identity-based cryptography: The IBC routines are em-
bedded into this layer. It includes the implementation of
the Boneh-Franklin IBE [2] and the Hess IBS [18]. It also
contains some miscellaneous helper functions, like an SHA
implementation based on the RFC 6234 standard [44], and
other hash functions based on SHA.

Wasm/JavaScript interoperability: The previous three lay-
ers together form an IBC implementation, which can even
be consumed by native applications, without the need for
WebAssembly compilation. However, when targeting the Web,
these layers are hidden behind a JavaScript interface, as a
WebAssembly module.

This abstraction is not absolutely necessary, because the
WebAssembly embedding environment allows to call the func-
tions of the module directly. However, CryptID is designed for
those embedding environments, which grant the WebAssembly
module calls via JavaScript. Such environments include web
browsers or Node.js. This way CryptID can be called like
any other JavaScript library rendering WebAssembly a simple
implementation detail for clients.

To support this approach, it is crucial to implement an
interoperability layer, which is responsible for the following
tasks.

• Wrapping the C functions. To make the C functions
callable from JavaScript, they need to be wrapped with
the cwrap function of Emscripten’s Module object.

• Conversion between datatypes. In our case two conver-
sions were necessary, in both cases back and forth. The
first one is the converson of GMP’s mpz t big number
type to JavaScript strings. The other one is the conversion
betwen raw C byte arrays and JavaScript ArrayBuffers.

• Bidirectional dataflow. It is not possible to use complex
types like structs as parameters or return values, so the
only way to exchange values is to copy between the
isolated memory spaces accessible to JavaScript and to
WebAssembly.

JavaScript interface: The JavaScript interface is a group of
functions and datatypes which are public for outside clients.
While previous layers can all be seen as implementation
details, this layer is the actual interface that clients may
consume.

Besides being a facade to lower layers, this layer has further
responsibilities.

• Input validation. Being the public interface of the library,
this is the only point where invalid input may enter into
the system. Such values include null values or objects and
strings with incorrect structure. Thanks to the validation
performed by this layer, malformed values cannot form
the basis of any computation.

• Key conversion. One of CryptID’s novelties was the
structured public key, which is able to contain any kind of
metadata. Currently, structured public keys are handled in
the interoperability layer, as JSON values. As there can be
multiple JSON representations of the semantically same
information, it is an important task to always convert
JSON strings with the same content to the same bitstream.

Our solution is to first create a new JavaScript object
from the JSON string, with keys added in alphabet-
ical order. Afterwards, JSON.stringify is called
on this object to produce a new JSON string. Since
JSON.stringify is guaranteed to preserve the origi-
nal key addition order when producing JSON documents,
we will always get the same bitstream from documents
with the same keys. Thanks to this solution the lower
layers do not need to know anything about the structure
of the public key.

IV. PERFORMANCE

In the next section, the performance of the CryptID library
is covered. We ran several benchmarks in multiple different
environments while exercising the most performance-critical
parts of the codebase. Where appropriate, we also compared
the performance of our solution with the native version of
other, well-established libraries. The IBS scheme is based on
the same algorithms as the IBE protocol, so it’s performance
evaluation is not included in the paper, but the main results
are identical.

First, we briefly outline the benchmark environments, which
is followed by a detailed description of the performed exper-
iments and their results.

A. Environments

Proving the platform-independent nature of our library,
we aimed to benchmark it on a variety of platforms and
WebAssembly embedders. On the desktop, we performed
experiments in three different embedders (Mozilla Firefox,
Google Chrome, Node.js), and we also included the perfor-
mance of the native version of the library as a baseline result.
The exact hardware and software specifications can be seen in
Table I. Regarding the mobile, we executed measurements in
a single embedder (Google Chrome). Detailed specifications
are available in Table II.

On all platforms, we used the Google Benchmark library
[45] for our experiments. An experiment comprises twenty
performance tests, where each test contains multiple execu-
tions of the same code on the same input. The result of the
experiment is calculated as the average of the execution times.
Inputs were chosen randomly for the four RFC defined security
levels shown in Table III. Here, p is the order of the base finite
field, the elliptic curve is defined over, while k stands for the
RSA keylength providing comparable security [46].

Parameter Value
Model Dell Inspiron 5567 (2017)
CPU i7-7500U, 2,7 GHz
OS Ubuntu 16.04.4 LTS
emscripten 1.38.8
gcc 5.4.0 20160609
Node.js v8.9.1
Firefox Quantum 62.0.3

TABLE I: Desktop hardware and software configuration.
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IBC implementation which is out-of-the-box compatible with
these platforms.

Earlier, the only technology which was able to serve
these needs, was JavaScript. Unfortunately, JavaScript is far
from ideal regarding the performance of computation-intensive
tasks, which is just made worse by the fact that every browser
has different optimizations, meaning, if something runs fast
in one browser, it may be slow in the other. One solution
for this problem is asm.js [23], which is a carefully chosen,
easy-to-optimize subset of JavaScript. However, asm.js is not
a well-established standard.

WebAssembly, on the other hand, is a great choice for
projects like CryptID, because it is designed from the ground
up as a performance and secure target platform. Moreover,
WebAssembly made it possible for us to use GMP [36] as
our arbitrary-precision arithmetic library, providing a stable,
thoroughly tested foundation to our library.

B. Structured public key

As was written earlier, the essence of IBC is that the
public key clearly identifies an individual in a certain domain.
Furthermore, Boneh and Franklin in their work [2] mentioned
that the public keys are expandable with any kind of metadata.
It can be, for example, a year, which assigns a limited period
of validity to the public and private keys. In that paper they
simply concatenate the metadata to the identifier:

”bob@company.com ‖ current-year”

In our opinion, this is a brilliant idea, with one serious flaw.
By using concatenation, flexibility suffers greatly: everything
needs to be in a fixed order. Of course, this cannot be changed,
as the public key needs to be the same on the bit-level both
at encryption and extraction time. This could be a possible
point of failure, especially if there are plenty of metadata
concatenated.

One solution to this is to add an extra step to the protocol
before we use the public key. If we convert the public key to
JSON, we can accept arbitrary-ordered JSON documents from
the clients. The idea is simple: as the order of keys in a JSON
object does not carry any meaning, we are free to reorder them.
When given a public key, we always use the same key-sorting
algorithm, making it possible to feed bit-accurate public keys
to the rest of the protocol. Thus, the clients of CryptID do not
need to worry about the way they structure the public key.

Of course, this solution is only applicable to standard IBC
protocols. There are schemes, that are using more flexible
public keys and do not require complete bit-accuracy. The
first work related to this idea was presented by Sahai and
Waters [37]. This idea opened an entire branch of protocols,
which are focusing on the idea, that decryption should be
possible for users who own a public key, that is not bit-
accurate to the key used for encryption, but satisfies some
kind of rules. This way, it is possible to target a group of users
with single encryption. The branch is called Attribute-based
Encryption, which has two papers containing the fundamentals
and both approaches the problem from different ways. One
is Key Policy Attribute-based Encryption [38] and the other

is Ciphertext Policy Attribute-based Encryption [39]. Besides,
there are some IBC protocols too, with the same essentials
[40], [41].

Unfortunately, most of the protocols that are targeting
multiple users with a single encryption suffer from the same
problem. The more flexibility the encryption provides, the
more computation is required by the clients, which results in
slower encryption and/or decryption.

C. Library structure

CryptID can be divided into two main components:
CryptID.wasm, which is a WebAssembly module, containing
the IBC routines. The source code is written in C and is
compiled to WebAssembly via Emscripten. The second part
of the library is CryptID.js, which is a wrapper on top of the
WebAssembly module, written in JavaScript. It provides an
easy to use interface for the developers.

The library formed by these parts can, in turn, be divided
into five smaller layers, shown in Figure 2.

Fig. 2: The structure of CryptID.

Elliptic-curve arithmetics: Most of the popular IBC
schemes are based on elliptic-curve cryptography, so the core
part of our library is the elliptic-curve arithmetics. The reason
behind writing our own implementation is that we could not
find a third-party solution that is well-tested and compilable
to WebAssembly. As our routines were designed and tested
with WebAssembly in mind, we could be sure that they would
operate correctly in this environment.

This layer is optimized to Type-1 curves, as recommended
in the RFC 5091. The class of curves of Type-1 is defined as
the class of all elliptic curves of equation E(Fp) : y

2 = x3+1
for all primes p ≡ 11(mod 12). This class forms a subclass
of the class of supersingular curves.

To represent big numbers, we are using the GMP [36]
arithmetic library. The elliptic-curve points are represented
on the affine plane. The layer contains only the necessary
methods, namely point doubling, point addition and point
scalar multiplication.

Pairing-based cryptography: The majority of IBC protocols
are using the pairing operation. As the RFC 5091 recommends,
this layer provides a custom implementation of the Tate
pairing. The implementation maps two points of E(Fp) to
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an element of Fp2 . The implementation is based on Lynn’s
dissertation [42] and Martin’s book [43].

Identity-based cryptography: The IBC routines are em-
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the Boneh-Franklin IBE [2] and the Hess IBS [18]. It also
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implementation based on the RFC 6234 standard [44], and
other hash functions based on SHA.
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ers together form an IBC implementation, which can even
be consumed by native applications, without the need for
WebAssembly compilation. However, when targeting the Web,
these layers are hidden behind a JavaScript interface, as a
WebAssembly module.

This abstraction is not absolutely necessary, because the
WebAssembly embedding environment allows to call the func-
tions of the module directly. However, CryptID is designed for
those embedding environments, which grant the WebAssembly
module calls via JavaScript. Such environments include web
browsers or Node.js. This way CryptID can be called like
any other JavaScript library rendering WebAssembly a simple
implementation detail for clients.

To support this approach, it is crucial to implement an
interoperability layer, which is responsible for the following
tasks.

• Wrapping the C functions. To make the C functions
callable from JavaScript, they need to be wrapped with
the cwrap function of Emscripten’s Module object.

• Conversion between datatypes. In our case two conver-
sions were necessary, in both cases back and forth. The
first one is the converson of GMP’s mpz t big number
type to JavaScript strings. The other one is the conversion
betwen raw C byte arrays and JavaScript ArrayBuffers.

• Bidirectional dataflow. It is not possible to use complex
types like structs as parameters or return values, so the
only way to exchange values is to copy between the
isolated memory spaces accessible to JavaScript and to
WebAssembly.

JavaScript interface: The JavaScript interface is a group of
functions and datatypes which are public for outside clients.
While previous layers can all be seen as implementation
details, this layer is the actual interface that clients may
consume.

Besides being a facade to lower layers, this layer has further
responsibilities.

• Input validation. Being the public interface of the library,
this is the only point where invalid input may enter into
the system. Such values include null values or objects and
strings with incorrect structure. Thanks to the validation
performed by this layer, malformed values cannot form
the basis of any computation.

• Key conversion. One of CryptID’s novelties was the
structured public key, which is able to contain any kind of
metadata. Currently, structured public keys are handled in
the interoperability layer, as JSON values. As there can be
multiple JSON representations of the semantically same
information, it is an important task to always convert
JSON strings with the same content to the same bitstream.

Our solution is to first create a new JavaScript object
from the JSON string, with keys added in alphabet-
ical order. Afterwards, JSON.stringify is called
on this object to produce a new JSON string. Since
JSON.stringify is guaranteed to preserve the origi-
nal key addition order when producing JSON documents,
we will always get the same bitstream from documents
with the same keys. Thanks to this solution the lower
layers do not need to know anything about the structure
of the public key.

IV. PERFORMANCE

In the next section, the performance of the CryptID library
is covered. We ran several benchmarks in multiple different
environments while exercising the most performance-critical
parts of the codebase. Where appropriate, we also compared
the performance of our solution with the native version of
other, well-established libraries. The IBS scheme is based on
the same algorithms as the IBE protocol, so it’s performance
evaluation is not included in the paper, but the main results
are identical.

First, we briefly outline the benchmark environments, which
is followed by a detailed description of the performed exper-
iments and their results.

A. Environments

Proving the platform-independent nature of our library,
we aimed to benchmark it on a variety of platforms and
WebAssembly embedders. On the desktop, we performed
experiments in three different embedders (Mozilla Firefox,
Google Chrome, Node.js), and we also included the perfor-
mance of the native version of the library as a baseline result.
The exact hardware and software specifications can be seen in
Table I. Regarding the mobile, we executed measurements in
a single embedder (Google Chrome). Detailed specifications
are available in Table II.

On all platforms, we used the Google Benchmark library
[45] for our experiments. An experiment comprises twenty
performance tests, where each test contains multiple execu-
tions of the same code on the same input. The result of the
experiment is calculated as the average of the execution times.
Inputs were chosen randomly for the four RFC defined security
levels shown in Table III. Here, p is the order of the base finite
field, the elliptic curve is defined over, while k stands for the
RSA keylength providing comparable security [46].

Parameter Value
Model Dell Inspiron 5567 (2017)
CPU i7-7500U, 2,7 GHz
OS Ubuntu 16.04.4 LTS
emscripten 1.38.8
gcc 5.4.0 20160609
Node.js v8.9.1
Firefox Quantum 62.0.3

TABLE I: Desktop hardware and software configuration.
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IBC implementation which is out-of-the-box compatible with
these platforms.

Earlier, the only technology which was able to serve
these needs, was JavaScript. Unfortunately, JavaScript is far
from ideal regarding the performance of computation-intensive
tasks, which is just made worse by the fact that every browser
has different optimizations, meaning, if something runs fast
in one browser, it may be slow in the other. One solution
for this problem is asm.js [23], which is a carefully chosen,
easy-to-optimize subset of JavaScript. However, asm.js is not
a well-established standard.

WebAssembly, on the other hand, is a great choice for
projects like CryptID, because it is designed from the ground
up as a performance and secure target platform. Moreover,
WebAssembly made it possible for us to use GMP [36] as
our arbitrary-precision arithmetic library, providing a stable,
thoroughly tested foundation to our library.

B. Structured public key

As was written earlier, the essence of IBC is that the
public key clearly identifies an individual in a certain domain.
Furthermore, Boneh and Franklin in their work [2] mentioned
that the public keys are expandable with any kind of metadata.
It can be, for example, a year, which assigns a limited period
of validity to the public and private keys. In that paper they
simply concatenate the metadata to the identifier:

”bob@company.com ‖ current-year”

In our opinion, this is a brilliant idea, with one serious flaw.
By using concatenation, flexibility suffers greatly: everything
needs to be in a fixed order. Of course, this cannot be changed,
as the public key needs to be the same on the bit-level both
at encryption and extraction time. This could be a possible
point of failure, especially if there are plenty of metadata
concatenated.

One solution to this is to add an extra step to the protocol
before we use the public key. If we convert the public key to
JSON, we can accept arbitrary-ordered JSON documents from
the clients. The idea is simple: as the order of keys in a JSON
object does not carry any meaning, we are free to reorder them.
When given a public key, we always use the same key-sorting
algorithm, making it possible to feed bit-accurate public keys
to the rest of the protocol. Thus, the clients of CryptID do not
need to worry about the way they structure the public key.

Of course, this solution is only applicable to standard IBC
protocols. There are schemes, that are using more flexible
public keys and do not require complete bit-accuracy. The
first work related to this idea was presented by Sahai and
Waters [37]. This idea opened an entire branch of protocols,
which are focusing on the idea, that decryption should be
possible for users who own a public key, that is not bit-
accurate to the key used for encryption, but satisfies some
kind of rules. This way, it is possible to target a group of users
with single encryption. The branch is called Attribute-based
Encryption, which has two papers containing the fundamentals
and both approaches the problem from different ways. One
is Key Policy Attribute-based Encryption [38] and the other

is Ciphertext Policy Attribute-based Encryption [39]. Besides,
there are some IBC protocols too, with the same essentials
[40], [41].

Unfortunately, most of the protocols that are targeting
multiple users with a single encryption suffer from the same
problem. The more flexibility the encryption provides, the
more computation is required by the clients, which results in
slower encryption and/or decryption.

C. Library structure

CryptID can be divided into two main components:
CryptID.wasm, which is a WebAssembly module, containing
the IBC routines. The source code is written in C and is
compiled to WebAssembly via Emscripten. The second part
of the library is CryptID.js, which is a wrapper on top of the
WebAssembly module, written in JavaScript. It provides an
easy to use interface for the developers.

The library formed by these parts can, in turn, be divided
into five smaller layers, shown in Figure 2.

Fig. 2: The structure of CryptID.

Elliptic-curve arithmetics: Most of the popular IBC
schemes are based on elliptic-curve cryptography, so the core
part of our library is the elliptic-curve arithmetics. The reason
behind writing our own implementation is that we could not
find a third-party solution that is well-tested and compilable
to WebAssembly. As our routines were designed and tested
with WebAssembly in mind, we could be sure that they would
operate correctly in this environment.

This layer is optimized to Type-1 curves, as recommended
in the RFC 5091. The class of curves of Type-1 is defined as
the class of all elliptic curves of equation E(Fp) : y

2 = x3+1
for all primes p ≡ 11(mod 12). This class forms a subclass
of the class of supersingular curves.

To represent big numbers, we are using the GMP [36]
arithmetic library. The elliptic-curve points are represented
on the affine plane. The layer contains only the necessary
methods, namely point doubling, point addition and point
scalar multiplication.

Pairing-based cryptography: The majority of IBC protocols
are using the pairing operation. As the RFC 5091 recommends,
this layer provides a custom implementation of the Tate
pairing. The implementation maps two points of E(Fp) to
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Parameter Value
Model Nokia 6.1 TA-1043
CPU Qualcomm Snapdragon 630, 2.2 GHz
OS Android 8.1.0 - Kernel 4.4.78-perf+
Chrome for Mobile 68.0.3440.91

TABLE II: Mobile hardware and software configuration.

Security Level p bitlength k

LOWEST 512 1024
LOW 1024 2048
MEDIUM 1536 3072
HIGH 3840 7680

TABLE III: Security levels and values for appropriate
parameters as stated in RFC 5091.

B. Benchmark Results

1) Elliptic Curve Scalar Multiplication: Considering the
elliptic curve arithmetics, the scalar multiplication of elliptic
curve points is a key operation to IBE. This operation can be
found in a vast number of libraries, from which we chose
MIRACL [5] and PARI [47] for our benchmarks because
these are well-known and thoroughly tested solutions. In our
experiments, we compared the performance of four different
configurations: native MIRACL, native PARI, native CryptID
and CryptID WebAssembly (Node.js).

In Figure 3, we graphed the benchmark results on a loga-
rithmic scale, where the vertical axis represents the runtime in
nanoseconds. It is clear that MIRACL is several magnitudes
faster than any other solution. On the other hand, we would
like to highlight, that the native version of CryptID is just
a little behind PARI, which is promising. Being this close
results from the same choice of algorithm (double-and-add)
and arithmetic library (GMP). In the case of the WebAssembly
version, a somewhat consistent performance penalty can be no-
ticed, compared to the native version. As the specification and
the implementations mature, we expect this gap to decrease
gradually.

Fig. 3: Performance comparison of elliptic curve scalar
multiplication solutions.

2) Encrypt: CryptID was primarily designed for client-side
use cases, where encryption and decryption take place on the
user’s device. Optimizing the performance of these operations
is crucial, as we expect them to executed be frequently in a
wide variety of browsers and devices. Thus, we first measured

the runtime of the encrypt method in four different config-
urations: desktop Node.js, desktop Firefox browser, desktop
Chrome browser, and again, desktop native as a baseline.

The logarithmically graphed results can be seen in Figure
4, where the vertical axis represents the runtime in millisec-
onds. On the desktop, the same sized performance gap is
present between the native and WebAssembly versions, as
in the case of elliptic curve scalar multiplication. Executing
the WebAssembly code is consistently three to four times
slower than the native program. However, we were quite
surprised to discover, that our experiments took approximately
the same time to finish in Node.js and Firefox, considering
the difference between the WebAssembly runtimes of these
environments.

Fig. 4: Performance comparison of the encrypt function in
across various environments.

Unfortunately, encryption on the mobile is around four to
five times slower than on the desktop. The difference results
from the gap between desktop and mobile computational
power. In spite of that, execution time of the low and medium
security level can still be considered acceptable in practice.

3) Components of Encrypt: After outlining and comparing
the performance of the encrypt operation in different envi-
ronments, we would also like to further break this operation
down into smaller components. The pie charts of Figure 5
show the results of profiling an experiment on a high input
in the desktop Firefox environment.

Fig. 5: Profiling results of a single encrypt execution on
HIGH input in the desktop Firefox environment.

The run time of encrypt is impacted by the performance
of the Tate pairing and the HashToPoint function. As it
can be seen on the bottom right chart, the execution time
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security level can still be considered acceptable in practice.

3) Components of Encrypt: After outlining and comparing
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ronments, we would also like to further break this operation
down into smaller components. The pie charts of Figure 5
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of the latter is approximately equivalent to that of a single
elliptic curve scalar multiplication. Regarding the Tate pairing,
modular exponentiation and multiplicative inverse have the
largest influence on the performance.

4) Decrypt: We also performed experiments on the de-
crypt function in the same configurations as in the case of
encryption. Based on the previous tests, we already had an
approximate expectation regarding the performance of this
function.

The actual results are shown in Figure 6, graphed on a
logarithmic scale. Just as expected, the native desktop version
has the best performance, while desktop Firefox is on par
with Node.js. The performance gaps are of the same size as
observed in the case of encryption.

Fig. 6: Performance comparison of the decrypt function in
across various environments.

Comparing the performance of decryption and encryption,
one can notice, that decrypt runs for two-thirds of the run time
as of encrypt. This is caused by the fact, that decrypt is equal
to a single execution of the Tate pairing.

V. CONCLUSION AND FUTURE WORK

We created a novel IBC library, which serves as a real
alternative to the current implementations. One of the li-
brary’s unique characteristics lies in its portability. Thanks to
WebAssembly’s platform-independent nature, CryptID offers
an IBC solution on desktop, mobile, and IoT. The portability
is combined with simple integrability, which makes for an
appealing application development experience. CryptID also
extends the already appealing identity-based public keys with
optional metadata, in a structured, easy-to-manage way, giving
an opportunity for many domain-specific use cases.

Several applications can be built on the above-mentioned
novelties of the library. The client-side execution of the crypto-
graphic functions provides a secure use of IBC, for example as
a secure e-mail service. Besides the domain-specific options,
structured public keys can also be used for the creation of
single-use public keys, which is another important potential
application of the library.

Considering future work, there are multiple possibilities to
improve the performance of the library. With the implementa-
tion of better-performing arithmetic functions, we can optimize
CryptID. Our main goal is to improve the elliptic-curve arith-
metic layer, with the implementation of the Heuberger-Mazzoli

scalar multiplication [48], and with some useful tricks, like
precalculations.

Furthermore, another direction is the binary size reduction.
Even though our bare library itself is lightweight, our de-
pendency on GMP increases the linked binary size to a few
hundred kilobytes. Unfortunately, dropping this dependency
would cost us a lot of work, thus we are thinking of dif-
ferent approaches. Such an approach, for example, is called
tree-shaking, which means the disposal of the unused code,
potentially reducing the size of the linked binary even further.
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Parameter Value
Model Nokia 6.1 TA-1043
CPU Qualcomm Snapdragon 630, 2.2 GHz
OS Android 8.1.0 - Kernel 4.4.78-perf+
Chrome for Mobile 68.0.3440.91

TABLE II: Mobile hardware and software configuration.

Security Level p bitlength k

LOWEST 512 1024
LOW 1024 2048
MEDIUM 1536 3072
HIGH 3840 7680

TABLE III: Security levels and values for appropriate
parameters as stated in RFC 5091.

B. Benchmark Results

1) Elliptic Curve Scalar Multiplication: Considering the
elliptic curve arithmetics, the scalar multiplication of elliptic
curve points is a key operation to IBE. This operation can be
found in a vast number of libraries, from which we chose
MIRACL [5] and PARI [47] for our benchmarks because
these are well-known and thoroughly tested solutions. In our
experiments, we compared the performance of four different
configurations: native MIRACL, native PARI, native CryptID
and CryptID WebAssembly (Node.js).

In Figure 3, we graphed the benchmark results on a loga-
rithmic scale, where the vertical axis represents the runtime in
nanoseconds. It is clear that MIRACL is several magnitudes
faster than any other solution. On the other hand, we would
like to highlight, that the native version of CryptID is just
a little behind PARI, which is promising. Being this close
results from the same choice of algorithm (double-and-add)
and arithmetic library (GMP). In the case of the WebAssembly
version, a somewhat consistent performance penalty can be no-
ticed, compared to the native version. As the specification and
the implementations mature, we expect this gap to decrease
gradually.

Fig. 3: Performance comparison of elliptic curve scalar
multiplication solutions.

2) Encrypt: CryptID was primarily designed for client-side
use cases, where encryption and decryption take place on the
user’s device. Optimizing the performance of these operations
is crucial, as we expect them to executed be frequently in a
wide variety of browsers and devices. Thus, we first measured

the runtime of the encrypt method in four different config-
urations: desktop Node.js, desktop Firefox browser, desktop
Chrome browser, and again, desktop native as a baseline.

The logarithmically graphed results can be seen in Figure
4, where the vertical axis represents the runtime in millisec-
onds. On the desktop, the same sized performance gap is
present between the native and WebAssembly versions, as
in the case of elliptic curve scalar multiplication. Executing
the WebAssembly code is consistently three to four times
slower than the native program. However, we were quite
surprised to discover, that our experiments took approximately
the same time to finish in Node.js and Firefox, considering
the difference between the WebAssembly runtimes of these
environments.

Fig. 4: Performance comparison of the encrypt function in
across various environments.

Unfortunately, encryption on the mobile is around four to
five times slower than on the desktop. The difference results
from the gap between desktop and mobile computational
power. In spite of that, execution time of the low and medium
security level can still be considered acceptable in practice.

3) Components of Encrypt: After outlining and comparing
the performance of the encrypt operation in different envi-
ronments, we would also like to further break this operation
down into smaller components. The pie charts of Figure 5
show the results of profiling an experiment on a high input
in the desktop Firefox environment.

Fig. 5: Profiling results of a single encrypt execution on
HIGH input in the desktop Firefox environment.

The run time of encrypt is impacted by the performance
of the Tate pairing and the HashToPoint function. As it
can be seen on the bottom right chart, the execution time
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of the latter is approximately equivalent to that of a single
elliptic curve scalar multiplication. Regarding the Tate pairing,
modular exponentiation and multiplicative inverse have the
largest influence on the performance.

4) Decrypt: We also performed experiments on the de-
crypt function in the same configurations as in the case of
encryption. Based on the previous tests, we already had an
approximate expectation regarding the performance of this
function.

The actual results are shown in Figure 6, graphed on a
logarithmic scale. Just as expected, the native desktop version
has the best performance, while desktop Firefox is on par
with Node.js. The performance gaps are of the same size as
observed in the case of encryption.

Fig. 6: Performance comparison of the decrypt function in
across various environments.

Comparing the performance of decryption and encryption,
one can notice, that decrypt runs for two-thirds of the run time
as of encrypt. This is caused by the fact, that decrypt is equal
to a single execution of the Tate pairing.

V. CONCLUSION AND FUTURE WORK

We created a novel IBC library, which serves as a real
alternative to the current implementations. One of the li-
brary’s unique characteristics lies in its portability. Thanks to
WebAssembly’s platform-independent nature, CryptID offers
an IBC solution on desktop, mobile, and IoT. The portability
is combined with simple integrability, which makes for an
appealing application development experience. CryptID also
extends the already appealing identity-based public keys with
optional metadata, in a structured, easy-to-manage way, giving
an opportunity for many domain-specific use cases.

Several applications can be built on the above-mentioned
novelties of the library. The client-side execution of the crypto-
graphic functions provides a secure use of IBC, for example as
a secure e-mail service. Besides the domain-specific options,
structured public keys can also be used for the creation of
single-use public keys, which is another important potential
application of the library.

Considering future work, there are multiple possibilities to
improve the performance of the library. With the implementa-
tion of better-performing arithmetic functions, we can optimize
CryptID. Our main goal is to improve the elliptic-curve arith-
metic layer, with the implementation of the Heuberger-Mazzoli

scalar multiplication [48], and with some useful tricks, like
precalculations.

Furthermore, another direction is the binary size reduction.
Even though our bare library itself is lightweight, our de-
pendency on GMP increases the linked binary size to a few
hundred kilobytes. Unfortunately, dropping this dependency
would cost us a lot of work, thus we are thinking of dif-
ferent approaches. Such an approach, for example, is called
tree-shaking, which means the disposal of the unused code,
potentially reducing the size of the linked binary even further.
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