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Abstract—Quantum key distribution (QKD) protocols repre-
sent an important practical application of quantum information
theory. QKD schemes enable legal parties to establish uncon-
ditionally secret communication by exploiting the fundamental
attributes of quantum mechanics. Here we present an overview
of QKD protocols. We review the principles of QKD systems, the
implementation basis, and the application of QKD protocols in
the standard Internet and the quantum Internet.
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I. INTRODUCTION

Security and cryptography are crucial aspects of our ev-
eryday network communications. Since traditional networking
methods are vulnerable to a variety of attacks, classical data
encryption cannot provide unconditional security for legal
parties [1]. QKD protocols [2]–[29] enable legal parties to
share secret keys with unconditional security. In contrast to tra-
ditional cryptographic methods that rely on the computational
complexity of mathematical functions, the security of QKD
is based on physical laws. Whereas traditional cryptography
is vulnerable to computational power [30], QKD systems
are resistant against unlimited computational power. QKD
can protect our security when quantum computers [31]–[36]
become available.

The No-Cloning Theorem [37] is a consequence of the fun-
damentals of quantum mechanics, stating that it is impossible
to make a perfect copy of a quantum system. In a QKD setting,
it enables the parties to detect any eavesdropping activity, since
the presence of an eavesdropper adds noise to the quantum
transmission. The secret key between the sender (Alice) and
receiver (Bob) is established over a quantum channel [29],
which can be realized by an optical fiber [1], [6]–[22] or by
a free-space optical channel [23]–[25], [38], [39].

QKD protocols can be classified into several different
classes depending on the applied modulation, the encoding
and decoding attributes, and the physical implementation of
the quantum channel. Here we review QKD systems and the
main attributes of the recent implementations.

This paper is organized as follows. In Section II, the
fundamental principles of QKD protocols are discussed. In
Section III, the implementation basis is studied. In Section IV,
an outlook on quantum Internet scenarios is presented. Finally,
Section V concludes the paper.

The research reported in this paper has been supported by the National
Research, Development and Innovation Fund (TUDFO/51757/2019-ITM, The-
matic Excellence Program). This work was partially supported by the National
Research Development and Innovation Office of Hungary (Project No. 2017-
1.2.1-NKP-2017-00001), and in part by the BME Artificial Intelligence FIKP
grant of EMMI (BME FIKP-MI/SC).

The authors are with the Department of Networked Systems and Services,
Budapest University of Technology and Economics, 1117 Budapest, Hungary
(e-mail: gyongyosi@hit.bme.hu, bacsardi@hit.bme.hu, imre@hit.bme.hu).

II. QUANTUM KEY DISTRIBUTION

The first QKD protocols that were introduced were based
on discrete variables (DV), such as photon polarization. These
QKD protocols are termed DVQKD systems [1]–[8], [10]–
[21]. The first DVQKD protocol that was introduced was
the so-called BB84 protocol [2], which used single-photon
polarization for the encoding. In the BB84 protocol, the
classical random bits are encoded in single-photon polarization
photons (qubits) with four random polarization states. The
four polarization states belong to two bases: the rectilinear
basis and the diagonal basis. In the encoding and decoding
phases, these bases are randomly selected to prepare and to
measure the photons. After the quantum-level transmission is
closed, the parties use a classical authenticated channel (public
channel) to compare the bases. In a phase called the basis
agreement phase, the parties delete those bits from the key that
have different bases. After this step, additional calculations
and error-correcting operations are performed on the classical
bit string to reduce the possibility that valuable information is
leaked to an eavesdropper. This step is the distillation phase.
The result of this phase is an absolute secure key between
Alice and Bob. A simplified version of the BB84 protocol is
the B92 protocol [40], which uses only two polarization states
instead of four.

In an entanglement-based QKD protocol, entangled photon
pairs are shared between Alice and Bob to generate a secret
key [3]. The effectiveness of this protocol can be improved
by the application of hyper-entangled states [41] (photon
pairs that are entangled simultaneously in multiple degrees
of freedom), which can increase the eavesdropping detection
probability. QKD protocols motivated the development of
other quantum cryptographic protocols in which the primary
aim is not the establishment of a secret key, such as quantum
dense coding [42], quantum teleportation [43]–[46], quantum
secret sharing [47], [48], or quantum-secured blockchain [49].

Since the polarization of single photons cannot be en-
coded and decoded efficiently because of the technological
limitations of current physical devices, continuous-variable
(CV) QKD systems were proposed [22], [50]–[63]. In a
CVQKD system, the information is encoded in continuous
variables (i.e., photon packets) by a Gaussian modulation
utilizing the position or momentum quadratures of coherent
quantum states. In comparison with DVQKD, the modulation
and decoding of continuous variables does not require special-
ized devices and can be implemented efficiently by standard
telecommunication networks and devices that are currently
available and in widespread use. As a convenient consequence,
CVQKD systems can be integrated into the currently es-
tablished telecommunication networks by using the present
optical fiber networks and optical devices. CVQKD protocols
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can be further classified into one-way and two-way systems.
In a one-way CVQKD system, Alice transmits her continuous
variables to Bob over a quantum channel [29], [62], [63]. In
a two-way system, Bob starts the communication, Alice adds
her internal secret to the received message, and this is then
sent back to Bob (e.g., one mode of the coupled beam that is
outputted by a beam splitter is transmitted back to Bob). Two-
way CVQKD systems were introduced for practical reasons
to overcome the limitations of one-way CVQKD systems,
such as low key rates and short communication distances [52].
Two-way CVQKD protocols exploit the benefits of multiple
uses of the quantum channel and can leak only less valuable
information to the eavesdropper.

The two-field (TF) QKD system [17] is a novel QKD
scheme that uses a continuous-wave (CW) laser. In a TF-QKD
system, pairs of phase-randomized optical fields are generated
at two distant locations, which are then combined at a central
measuring station. The fields that convey the same random
phase can be used to establish a secret key.

We note that there are several other types of QKD protocols
that are not detailed in our paper (such as coherent one-way
(COW) QKD [64], differential phase-shift (DPS) QKD [65],
six-state QKD [66], and decoy-state QKD systems [7], [67]).

A. Discrete Variable Quantum Key Distribution

1) Modulation: In a DVQKD system, the quantum signal
source is a single-photon source (e.g., attenuated laser pulses
with telecom wavelengths). In the modulation phase, Alice
draws a uniform random bit string that constitutes her raw
data, and she then encodes the bits of the raw data into
single-polarization photons with four (in BB84 [2]) random
polarization states that represent the qubits. In the BB84,
these polarization states are {→, ↑,↗,↖}, i.e., the horizontal,
vertical, diagonal right, and diagonal left states that encode
the logical bits {0, 1} in the Br = {→, ↑} rectilinear and in
the Bd = {↗,↖} diagonal basis, respectively. The qubits are
therefore modulated via a B random basis selection procedure.

2) Eavesdropping: The activity of an eavesdropper (Eve)
results in detectable noise in the quantum channel, since Eve
has no knowledge about the basis of Alice’s qubit. As a
corollary, for some qubits she will use the same basis as
Alice, while for others a different basis is used, which results
in detectable noise. The resulting noise of Eve’s activity is
analogous to a binary symmetric channel (BSC), which allows
the use of the well-known channel-coding and error-correction
tools in the post-processing phase.

3) Measurement: In a DVQKD system, the single-
polarization photons are measured in the Bd basis or in the
Br basis in a B′ random basis selection procedure at the
receiver. In BB84, Bob randomly uses a rectilinear or diagonal
basis, and the result of the measurement is a logical bit. These
measurement results comprise Bob’s raw data. Since Bob has
no knowledge about the correct basis for the measurement
of a given photon, several bits from his raw data will be
uncorrelated with Alice’s raw data. These bits are deleted from
the raw data in the basis agreement phase, which uses the
classical public channel.

4) Key Distillation: Key-distillation is a post-processing
step that is separated from the transmission of quantum states.
It aims to derive the secret key from the correlated raw data at
the parties. The logical layer-based post-processing consists of
two main phases: error correction and privacy amplification.
The aim of the post-processing is to extract as much valuable
information from the correlated raw data as possible and to
generate an error-free key between Alice and Bob. The privacy
amplification operates on the shared, error-corrected common
secret to extract the final key between the parties, and the aim
of this phase is to reduce to zero the possible knowledge of
an eavesdropper from the elements of the key. The raw data
shared over the quantum channel is noisy, and this must be
corrected to distill the final secret key. Since a large number
of raw data bits must be shared between the parties, the
complexity of the post-processing phase is a critical point in
QKD protocols.

B. Continuous Variable Quantum Key Distribution

1) Modulation: A Gaussian modulation is a robust and
easily applicable solution in a practical CVQKD scenario [62],
[63]. In particular, Alice draws a random Gaussian vector
(Alice’s raw data) and encodes the position and momentum
quadratures based on it. The quantum signal source is a multi-
photon source (e.g., a laser source with telecom wavelengths).
In the standard CVQKD coding scenario, Alice modulates
and separately transmits a CV coherent quantum state in the
phase space. This standard modulation scheme is referred to as
single-carrier modulation throughout the paper, consistent with
its traditional meaning. In a multicarrier CVQKD [38], [68]–
[73], the information is granulated into subcarrier continuous
variables in the encoding phase, which are then decoded by
a continuous unitary transformation. The aim of multicarrier
CVQKD is to improve the secret key rates and the achievable
distances.

2) Eavesdropping: For any CVQKD protocol, the optimal
attack results in Gaussian noise; therefore, the physical link
is modeled as an additive white Gaussian noise (AWGN)
channel (Gaussian channel). More precisely, the Gaussian
noise of the quantum channel models the eavesdropper’s
optimal entangling-cloner attack, and the channel is referred
to as a Gaussian quantum channel. CVQKD schemes use
continuous-variable Gaussian modulation, which has been
proven to provide optimal key rates against collective attacks at
finite-size block lengths, in addition to maximizing the mutual
information between Alice and Bob [22], [74]. The security of
CVQKD has also been proven against collective attacks in the
asymptotic regime with infinite block sizes [62], [63], [75] and
against arbitrary attacks in the finite-size regime [62], [63],
[76]. Compared with a DVQKD system, a CVQKD system
requires several additional physical parameters (transmittance,
variance, shot noise, excess noise, the variance of Eve’s
quantum state, etc.) for the proper description of a Gaussian
quantum channel. The performance of the protocol is strongly
determined by the excess noise of the quantum channel and
the transmittance parameter of the physical link.
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Security and cryptography are crucial aspects of our ev-
eryday network communications. Since traditional networking
methods are vulnerable to a variety of attacks, classical data
encryption cannot provide unconditional security for legal
parties [1]. QKD protocols [2]–[29] enable legal parties to
share secret keys with unconditional security. In contrast to tra-
ditional cryptographic methods that rely on the computational
complexity of mathematical functions, the security of QKD
is based on physical laws. Whereas traditional cryptography
is vulnerable to computational power [30], QKD systems
are resistant against unlimited computational power. QKD
can protect our security when quantum computers [31]–[36]
become available.

The No-Cloning Theorem [37] is a consequence of the fun-
damentals of quantum mechanics, stating that it is impossible
to make a perfect copy of a quantum system. In a QKD setting,
it enables the parties to detect any eavesdropping activity, since
the presence of an eavesdropper adds noise to the quantum
transmission. The secret key between the sender (Alice) and
receiver (Bob) is established over a quantum channel [29],
which can be realized by an optical fiber [1], [6]–[22] or by
a free-space optical channel [23]–[25], [38], [39].

QKD protocols can be classified into several different
classes depending on the applied modulation, the encoding
and decoding attributes, and the physical implementation of
the quantum channel. Here we review QKD systems and the
main attributes of the recent implementations.

This paper is organized as follows. In Section II, the
fundamental principles of QKD protocols are discussed. In
Section III, the implementation basis is studied. In Section IV,
an outlook on quantum Internet scenarios is presented. Finally,
Section V concludes the paper.

The research reported in this paper has been supported by the National
Research, Development and Innovation Fund (TUDFO/51757/2019-ITM, The-
matic Excellence Program). This work was partially supported by the National
Research Development and Innovation Office of Hungary (Project No. 2017-
1.2.1-NKP-2017-00001), and in part by the BME Artificial Intelligence FIKP
grant of EMMI (BME FIKP-MI/SC).

The authors are with the Department of Networked Systems and Services,
Budapest University of Technology and Economics, 1117 Budapest, Hungary
(e-mail: gyongyosi@hit.bme.hu, bacsardi@hit.bme.hu, imre@hit.bme.hu).

II. QUANTUM KEY DISTRIBUTION

The first QKD protocols that were introduced were based
on discrete variables (DV), such as photon polarization. These
QKD protocols are termed DVQKD systems [1]–[8], [10]–
[21]. The first DVQKD protocol that was introduced was
the so-called BB84 protocol [2], which used single-photon
polarization for the encoding. In the BB84 protocol, the
classical random bits are encoded in single-photon polarization
photons (qubits) with four random polarization states. The
four polarization states belong to two bases: the rectilinear
basis and the diagonal basis. In the encoding and decoding
phases, these bases are randomly selected to prepare and to
measure the photons. After the quantum-level transmission is
closed, the parties use a classical authenticated channel (public
channel) to compare the bases. In a phase called the basis
agreement phase, the parties delete those bits from the key that
have different bases. After this step, additional calculations
and error-correcting operations are performed on the classical
bit string to reduce the possibility that valuable information is
leaked to an eavesdropper. This step is the distillation phase.
The result of this phase is an absolute secure key between
Alice and Bob. A simplified version of the BB84 protocol is
the B92 protocol [40], which uses only two polarization states
instead of four.

In an entanglement-based QKD protocol, entangled photon
pairs are shared between Alice and Bob to generate a secret
key [3]. The effectiveness of this protocol can be improved
by the application of hyper-entangled states [41] (photon
pairs that are entangled simultaneously in multiple degrees
of freedom), which can increase the eavesdropping detection
probability. QKD protocols motivated the development of
other quantum cryptographic protocols in which the primary
aim is not the establishment of a secret key, such as quantum
dense coding [42], quantum teleportation [43]–[46], quantum
secret sharing [47], [48], or quantum-secured blockchain [49].

Since the polarization of single photons cannot be en-
coded and decoded efficiently because of the technological
limitations of current physical devices, continuous-variable
(CV) QKD systems were proposed [22], [50]–[63]. In a
CVQKD system, the information is encoded in continuous
variables (i.e., photon packets) by a Gaussian modulation
utilizing the position or momentum quadratures of coherent
quantum states. In comparison with DVQKD, the modulation
and decoding of continuous variables does not require special-
ized devices and can be implemented efficiently by standard
telecommunication networks and devices that are currently
available and in widespread use. As a convenient consequence,
CVQKD systems can be integrated into the currently es-
tablished telecommunication networks by using the present
optical fiber networks and optical devices. CVQKD protocols

2

can be further classified into one-way and two-way systems.
In a one-way CVQKD system, Alice transmits her continuous
variables to Bob over a quantum channel [29], [62], [63]. In
a two-way system, Bob starts the communication, Alice adds
her internal secret to the received message, and this is then
sent back to Bob (e.g., one mode of the coupled beam that is
outputted by a beam splitter is transmitted back to Bob). Two-
way CVQKD systems were introduced for practical reasons
to overcome the limitations of one-way CVQKD systems,
such as low key rates and short communication distances [52].
Two-way CVQKD protocols exploit the benefits of multiple
uses of the quantum channel and can leak only less valuable
information to the eavesdropper.

The two-field (TF) QKD system [17] is a novel QKD
scheme that uses a continuous-wave (CW) laser. In a TF-QKD
system, pairs of phase-randomized optical fields are generated
at two distant locations, which are then combined at a central
measuring station. The fields that convey the same random
phase can be used to establish a secret key.

We note that there are several other types of QKD protocols
that are not detailed in our paper (such as coherent one-way
(COW) QKD [64], differential phase-shift (DPS) QKD [65],
six-state QKD [66], and decoy-state QKD systems [7], [67]).

A. Discrete Variable Quantum Key Distribution

1) Modulation: In a DVQKD system, the quantum signal
source is a single-photon source (e.g., attenuated laser pulses
with telecom wavelengths). In the modulation phase, Alice
draws a uniform random bit string that constitutes her raw
data, and she then encodes the bits of the raw data into
single-polarization photons with four (in BB84 [2]) random
polarization states that represent the qubits. In the BB84,
these polarization states are {→, ↑,↗,↖}, i.e., the horizontal,
vertical, diagonal right, and diagonal left states that encode
the logical bits {0, 1} in the Br = {→, ↑} rectilinear and in
the Bd = {↗,↖} diagonal basis, respectively. The qubits are
therefore modulated via a B random basis selection procedure.

2) Eavesdropping: The activity of an eavesdropper (Eve)
results in detectable noise in the quantum channel, since Eve
has no knowledge about the basis of Alice’s qubit. As a
corollary, for some qubits she will use the same basis as
Alice, while for others a different basis is used, which results
in detectable noise. The resulting noise of Eve’s activity is
analogous to a binary symmetric channel (BSC), which allows
the use of the well-known channel-coding and error-correction
tools in the post-processing phase.

3) Measurement: In a DVQKD system, the single-
polarization photons are measured in the Bd basis or in the
Br basis in a B′ random basis selection procedure at the
receiver. In BB84, Bob randomly uses a rectilinear or diagonal
basis, and the result of the measurement is a logical bit. These
measurement results comprise Bob’s raw data. Since Bob has
no knowledge about the correct basis for the measurement
of a given photon, several bits from his raw data will be
uncorrelated with Alice’s raw data. These bits are deleted from
the raw data in the basis agreement phase, which uses the
classical public channel.

4) Key Distillation: Key-distillation is a post-processing
step that is separated from the transmission of quantum states.
It aims to derive the secret key from the correlated raw data at
the parties. The logical layer-based post-processing consists of
two main phases: error correction and privacy amplification.
The aim of the post-processing is to extract as much valuable
information from the correlated raw data as possible and to
generate an error-free key between Alice and Bob. The privacy
amplification operates on the shared, error-corrected common
secret to extract the final key between the parties, and the aim
of this phase is to reduce to zero the possible knowledge of
an eavesdropper from the elements of the key. The raw data
shared over the quantum channel is noisy, and this must be
corrected to distill the final secret key. Since a large number
of raw data bits must be shared between the parties, the
complexity of the post-processing phase is a critical point in
QKD protocols.

B. Continuous Variable Quantum Key Distribution

1) Modulation: A Gaussian modulation is a robust and
easily applicable solution in a practical CVQKD scenario [62],
[63]. In particular, Alice draws a random Gaussian vector
(Alice’s raw data) and encodes the position and momentum
quadratures based on it. The quantum signal source is a multi-
photon source (e.g., a laser source with telecom wavelengths).
In the standard CVQKD coding scenario, Alice modulates
and separately transmits a CV coherent quantum state in the
phase space. This standard modulation scheme is referred to as
single-carrier modulation throughout the paper, consistent with
its traditional meaning. In a multicarrier CVQKD [38], [68]–
[73], the information is granulated into subcarrier continuous
variables in the encoding phase, which are then decoded by
a continuous unitary transformation. The aim of multicarrier
CVQKD is to improve the secret key rates and the achievable
distances.

2) Eavesdropping: For any CVQKD protocol, the optimal
attack results in Gaussian noise; therefore, the physical link
is modeled as an additive white Gaussian noise (AWGN)
channel (Gaussian channel). More precisely, the Gaussian
noise of the quantum channel models the eavesdropper’s
optimal entangling-cloner attack, and the channel is referred
to as a Gaussian quantum channel. CVQKD schemes use
continuous-variable Gaussian modulation, which has been
proven to provide optimal key rates against collective attacks at
finite-size block lengths, in addition to maximizing the mutual
information between Alice and Bob [22], [74]. The security of
CVQKD has also been proven against collective attacks in the
asymptotic regime with infinite block sizes [62], [63], [75] and
against arbitrary attacks in the finite-size regime [62], [63],
[76]. Compared with a DVQKD system, a CVQKD system
requires several additional physical parameters (transmittance,
variance, shot noise, excess noise, the variance of Eve’s
quantum state, etc.) for the proper description of a Gaussian
quantum channel. The performance of the protocol is strongly
determined by the excess noise of the quantum channel and
the transmittance parameter of the physical link.
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3) Measurement: The measurement phase is a crucial part
of CVQKD protocols. Depending on the measured quadrature
types, it can be classified as homodyne or heterodyne measure-
ment [62], [63]. In a homodyne measurement Mhom, only one
quadrature, the position or the momentum quadrature xj of a
j-th coherent state, is measured. In a heterodyne measurement
Mhet, both the position and momentum quadratures are mea-
sured. Each quadrature measurement results in a unit in the
raw data. Bob’s resulting raw data are in the form of a noisy
Gaussian vector with additive Gaussian noise. The raw data
themselves do not comprise a secret key; they consist only
of the results of the random quadrature measurements. The
secret key is a uniformly distributed long binary string, which
will be combined with the raw data elements in the stage of
logical layer manipulations. The post-processing phase uses
a classical-authenticated communication channel and classical
error-correction algorithms.

4) Reconciliation: The reconciliation process of correlated
Gaussian variables is a complex problem that requires either
tomography in the physical layer, which is intractable in
a practical scenario, or high-cost calculations in the multi-
dimensional spherical space with strict dimensional limita-
tions. In the reconciliation phase, only uniform distributions
can be transmitted over the classical channel; otherwise,
the information-theoretic security of the protocol cannot be
proven [62], [63]. The raw data follow a Gaussian random
distribution because the data arise from a Gaussian random
source; however, by applying some trivial operations on the
raw data units, the desired uniform distribution can be reached,
and the reconciliation can be performed with unconditional
security [77]. In the reconciliation phase, a physical-logical
channel conversion is made, and the aim is to get a logical
channel (reconciliation channel) that is close to a binary
Gaussian channel. At low signal-to-noise ratios (SNRs), the
capacities of the Gaussian quantum channel and the binary
Gaussian channel are close, and the reconciliation channel is
analogous to a binary Gaussian channel. The efficiency of
the channel conversion procedure can be described by the
relevant parameters of the resulting logical binary channel
(such as its variance and capacity). This conversion efficiency
determines the efficiency of the reconciliation process, i.e., the
performance of the protocol.

In Fig. 1, the DVQKD and CVQKD settings are compared.
The modulation phase in the DVQKD setting assumes four
polarization states of the BB84.

III. QKD IMPLEMENTATIONS

A. QKD over Optical Fiber
The optical fiber infrastructure provides a base ground for

the experimental realization of both DVQKD and CVQKD
protocols. The currently established optical fiber infrastructure
with wavelength division multiplexing (WDM) technique rep-
resents an adequate solution for the practical implementation
of QKD [8]. A general architecture of a QKD-integrated
optical network consists of four layers: a physical layer with
the optical fiber architecture (e.g., an optical layer), a QKD
layer, a control layer (which can be implemented by software-
defined networking, or SDN, to efficiently manage the entire

network [6]), and an application layer. In the layer model,
the users’ service requests are generated in the application
layer. Then, the control layer determines a path in the physical
network and performs a handshake with the relevant quantum
devices and optical nodes through the path. In an abstract
manner, the optical layer integrates optical nodes connected by
optical fibers, while the QKD layer consists of quantum nodes
with quantum channels and public channels between them. The
optical layer and the QKD layer share the fiber bandwidth
resources with WDM technique [6], [8]. On the problem
of wavelength allocation and channel isolation for QKD-
integrated optical networks, we refer to [13]. For the model
of SDN-controlled optical networks with time-shared QKD,
see [15]. On the problem of efficient secret-key allocation in
QKD implementations, we suggest [16]. In [20], a method
for the implementation of quantum and classical signals over
the same optical fiber in QKD networks has been proposed. In
[21], the concept of a virtual optical network (VON) is defined
for the purpose of efficient energy utilization and security
enhancements in practical optical fiber settings.

B. Free-Space Optical QKD

The fundamental characteristics of optical fiber-based QKD
(i.e., channel loss of fibers, propagation losses) limit the
achievable point-to-point distances to a few hundred kilome-
ters. The achievable distances in terrestrial free-space-based
QKD are also limited because of the exponentially decreasing
photon rate with increasing distance. Satellite-based QKD rep-
resents a way to overcome these drawbacks and to establish a
global-scale QKD network [23]–[25], [38]. The satellite-based
solutions exploit the negligible photon loss and decoherence
in the empty outer space. In [39], a satellite-to-ground QKD
system with an achievable distance of over 1,200 kilometers
has been demonstrated. The proposed model integrated a low-
Earth-orbit satellite with decoy-state QKD. The reported key
rate of the protocol was above 1 kbps. The results also enable
us to realize high-efficiency long-distance QKD in a global-
scale setting.

Relevant attributes of some recent QKD implementations
are summarized in Table I.

C. QKD in the Traditional Internet

The secret key generated by a QKD system is a random
key that can also serve as a one-time pad (OTP) [78], which
theoretically provides unconditional security [79]. However, in
theory, in an OTP system, the secret-key size must be at least
as long as the data size to be encrypted, and novel random keys
are required for novel data. It is trivially not implementable
in practical scenarios because of the long execution times and
large storage requirements. These issues are resolved by the
integration of QKD into efficient traditional data encryption
algorithms (AES, IPSec, TLS, etc.) [12], [80]. In these inte-
grated, hybrid QKD-traditional encryption systems, the QKD
structure provides a practical and significantly shorter key
(in comparison with an OTP key) to an efficient encryption
method that periodically requires a novel key from the QKD
backbone structure [6].
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Fig. 1. Comparison of the sender (Alice) and receiver (Bob) model in a DVQKD and a CVQKD setting. (a) DVQKD setting. Alice draws uniform random
raw data, which encode her random bits. She modulates all the bits of her raw data into single-polarization photons (qubits). The rectilinear and diagonal
polarization states are selected randomly in the B basis selection procedure for the encoding. The qubits are sent through the quantum channel (depicted by
the yellow line), where the presence of Eve adds noise to the transmission. Bob measures each qubit in a random basis via the B′ basis selection procedure.
The results of the measurements are classical bits, which form the noisy raw data. The final key is extracted from the correlated raw data of the parties using
the classical public channel (depicted by the green line). (b) CVQKD setting. Alice draws Gaussian random raw data with Gaussian variables. Using her raw
data, she modulates the CV quantum states via a Gaussian modulation. The CV quantum states are sent through a quantum channel, where the presence of the
eavesdropper adds white Gaussian noise to the transmission. Bob measures the CV states via the M measurement procedure using homodyne or heterodyne
measurement. The measurements yield noisy Gaussian raw data. In the post-processing phase, a U secret key (a classical uniform random vector) is drawn at
Alice, which will be combined with her raw data. The combined result is transmitted to Bob over the classical channel. Bob applies some local calculations
and reconciliation steps to extract the noise-free U secret key on his side.

TABLE I
ATTRIBUTES OF RECENT QKD IMPLEMENTATIONS.

QKD protocol Distance Max. secret-key
rate Quantum channel

BB84 (DV) [8] 66 km 5.1 kbps optical fiber, 1310 nm
BB84 (DV) [10] 150 km 1 kbps optical fiber, 1548 nm
BB84 (DV) [11] 80 km 1 kbps optical fiber, 1310 nm
BB84 (DV) [18] 50 km 1.26 Mbps optical fiber, 1550 nm
BB84 (DV) [19] 404 km 1.16 bit/hour optical fiber, 1550 nm

Twin-field QKD [17] 550 km 0.1 kbps optical fiber, 1550 nm
CV [9] 20 km 90 kbps optical fiber, 1550 nm

CV [22] 80 km 0.1 kbps optical fiber, 1550 nm
Satellite-to-ground BB84 (DV)

[39] 1,200 km 1 kbps free space optical, 850 nm

The hybrid structure is realizable through the currently es-
tablished Internet architecture, as depicted in Fig. 2. The QKD
devices establish the unconditionally secure key through the
quantum channels (auxiliary public channels are not depicted).
The keys are then passed via secure local connections to
the server (e.g., an HTTP/TLS server) and the web clients.
Then, the client-server communication is realized by the TLS
protocol with periodically updated quantum-made keys.

IV. QKD IN THE QUANTUM INTERNET

The quantum Internet [80], [82]–[85] is a global-scale
quantum communication network composed of quantum sub-
networks and quantum networking components. The quantum

Internet utilizes the fundamental concepts of quantum mechan-
ics for networking. The main attributes of the quantum Internet
are unconditional security (quantum cryptographic protocols),
advanced quantum phenomena and protocols (such as quantum
superposition, quantum entanglement, quantum teleportation
and quantum coding and an entangled network structure. In
contrast to traditional repeaters, quantum repeaters cannot
apply the “receive-copy-retransmit” mechanism, because of
the No-Cloning Theorem [37]. This fundamental difference
between the nature of classical and quantum information not
just leads to fundamentally different networking mechanisms,
but also requires the definition of novel networking services
in a quantum Internet scenario [86]–[90].

4

Alice

Bob

quantum channel B

Raw data
(uniform)

, , ,

B
Basis selection

single-polarization
photons

Random bases

classical channel

Basis
agreement

Key distillation

Basis
agreement

Key distillation

Measurement

(a)

DVQKD setting

Noisy raw
data (uniform)

Alice

Bob

Gaussian quantum 
channel

M

classical channel

Noisy raw 
data 

(Gaussian)

Gaussian 
modulation

U
Secret key

CV states

Measurement

Homodyne/hetero-
dyne

Measurement
agreement

Key distillation

Reconciliation

(b)

CVQKD setting

Raw data
(Gaussian)

Calculations

Fig. 1. Comparison of the sender (Alice) and receiver (Bob) model in a DVQKD and a CVQKD setting. (a) DVQKD setting. Alice draws uniform random
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polarization states are selected randomly in the B basis selection procedure for the encoding. The qubits are sent through the quantum channel (depicted by
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The results of the measurements are classical bits, which form the noisy raw data. The final key is extracted from the correlated raw data of the parties using
the classical public channel (depicted by the green line). (b) CVQKD setting. Alice draws Gaussian random raw data with Gaussian variables. Using her raw
data, she modulates the CV quantum states via a Gaussian modulation. The CV quantum states are sent through a quantum channel, where the presence of the
eavesdropper adds white Gaussian noise to the transmission. Bob measures the CV states via the M measurement procedure using homodyne or heterodyne
measurement. The measurements yield noisy Gaussian raw data. In the post-processing phase, a U secret key (a classical uniform random vector) is drawn at
Alice, which will be combined with her raw data. The combined result is transmitted to Bob over the classical channel. Bob applies some local calculations
and reconciliation steps to extract the noise-free U secret key on his side.
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The hybrid structure is realizable through the currently es-
tablished Internet architecture, as depicted in Fig. 2. The QKD
devices establish the unconditionally secure key through the
quantum channels (auxiliary public channels are not depicted).
The keys are then passed via secure local connections to
the server (e.g., an HTTP/TLS server) and the web clients.
Then, the client-server communication is realized by the TLS
protocol with periodically updated quantum-made keys.

IV. QKD IN THE QUANTUM INTERNET

The quantum Internet [80], [82]–[85] is a global-scale
quantum communication network composed of quantum sub-
networks and quantum networking components. The quantum

Internet utilizes the fundamental concepts of quantum mechan-
ics for networking. The main attributes of the quantum Internet
are unconditional security (quantum cryptographic protocols),
advanced quantum phenomena and protocols (such as quantum
superposition, quantum entanglement, quantum teleportation
and quantum coding and an entangled network structure. In
contrast to traditional repeaters, quantum repeaters cannot
apply the “receive-copy-retransmit” mechanism, because of
the No-Cloning Theorem [37]. This fundamental difference
between the nature of classical and quantum information not
just leads to fundamentally different networking mechanisms,
but also requires the definition of novel networking services
in a quantum Internet scenario [86]–[90].
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The results of the measurements are classical bits, which form the noisy raw data. The final key is extracted from the correlated raw data of the parties using
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data, she modulates the CV quantum states via a Gaussian modulation. The CV quantum states are sent through a quantum channel, where the presence of the
eavesdropper adds white Gaussian noise to the transmission. Bob measures the CV states via the M measurement procedure using homodyne or heterodyne
measurement. The measurements yield noisy Gaussian raw data. In the post-processing phase, a U secret key (a classical uniform random vector) is drawn at
Alice, which will be combined with her raw data. The combined result is transmitted to Bob over the classical channel. Bob applies some local calculations
and reconciliation steps to extract the noise-free U secret key on his side.
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The hybrid structure is realizable through the currently es-
tablished Internet architecture, as depicted in Fig. 2. The QKD
devices establish the unconditionally secure key through the
quantum channels (auxiliary public channels are not depicted).
The keys are then passed via secure local connections to
the server (e.g., an HTTP/TLS server) and the web clients.
Then, the client-server communication is realized by the TLS
protocol with periodically updated quantum-made keys.
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quantum communication network composed of quantum sub-
networks and quantum networking components. The quantum

Internet utilizes the fundamental concepts of quantum mechan-
ics for networking. The main attributes of the quantum Internet
are unconditional security (quantum cryptographic protocols),
advanced quantum phenomena and protocols (such as quantum
superposition, quantum entanglement, quantum teleportation
and quantum coding and an entangled network structure. In
contrast to traditional repeaters, quantum repeaters cannot
apply the “receive-copy-retransmit” mechanism, because of
the No-Cloning Theorem [37]. This fundamental difference
between the nature of classical and quantum information not
just leads to fundamentally different networking mechanisms,
but also requires the definition of novel networking services
in a quantum Internet scenario [86]–[90].
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raw data, which encode her random bits. She modulates all the bits of her raw data into single-polarization photons (qubits). The rectilinear and diagonal
polarization states are selected randomly in the B basis selection procedure for the encoding. The qubits are sent through the quantum channel (depicted by
the yellow line), where the presence of Eve adds noise to the transmission. Bob measures each qubit in a random basis via the B′ basis selection procedure.
The results of the measurements are classical bits, which form the noisy raw data. The final key is extracted from the correlated raw data of the parties using
the classical public channel (depicted by the green line). (b) CVQKD setting. Alice draws Gaussian random raw data with Gaussian variables. Using her raw
data, she modulates the CV quantum states via a Gaussian modulation. The CV quantum states are sent through a quantum channel, where the presence of the
eavesdropper adds white Gaussian noise to the transmission. Bob measures the CV states via the M measurement procedure using homodyne or heterodyne
measurement. The measurements yield noisy Gaussian raw data. In the post-processing phase, a U secret key (a classical uniform random vector) is drawn at
Alice, which will be combined with her raw data. The combined result is transmitted to Bob over the classical channel. Bob applies some local calculations
and reconciliation steps to extract the noise-free U secret key on his side.

TABLE I
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QKD protocol Distance Max. secret-key
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The hybrid structure is realizable through the currently es-
tablished Internet architecture, as depicted in Fig. 2. The QKD
devices establish the unconditionally secure key through the
quantum channels (auxiliary public channels are not depicted).
The keys are then passed via secure local connections to
the server (e.g., an HTTP/TLS server) and the web clients.
Then, the client-server communication is realized by the TLS
protocol with periodically updated quantum-made keys.

IV. QKD IN THE QUANTUM INTERNET

The quantum Internet [80], [82]–[85] is a global-scale
quantum communication network composed of quantum sub-
networks and quantum networking components. The quantum

Internet utilizes the fundamental concepts of quantum mechan-
ics for networking. The main attributes of the quantum Internet
are unconditional security (quantum cryptographic protocols),
advanced quantum phenomena and protocols (such as quantum
superposition, quantum entanglement, quantum teleportation
and quantum coding and an entangled network structure. In
contrast to traditional repeaters, quantum repeaters cannot
apply the “receive-copy-retransmit” mechanism, because of
the No-Cloning Theorem [37]. This fundamental difference
between the nature of classical and quantum information not
just leads to fundamentally different networking mechanisms,
but also requires the definition of novel networking services
in a quantum Internet scenario [86]–[90].
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3) Measurement: The measurement phase is a crucial part
of CVQKD protocols. Depending on the measured quadrature
types, it can be classified as homodyne or heterodyne measure-
ment [62], [63]. In a homodyne measurement Mhom, only one
quadrature, the position or the momentum quadrature xj of a
j-th coherent state, is measured. In a heterodyne measurement
Mhet, both the position and momentum quadratures are mea-
sured. Each quadrature measurement results in a unit in the
raw data. Bob’s resulting raw data are in the form of a noisy
Gaussian vector with additive Gaussian noise. The raw data
themselves do not comprise a secret key; they consist only
of the results of the random quadrature measurements. The
secret key is a uniformly distributed long binary string, which
will be combined with the raw data elements in the stage of
logical layer manipulations. The post-processing phase uses
a classical-authenticated communication channel and classical
error-correction algorithms.

4) Reconciliation: The reconciliation process of correlated
Gaussian variables is a complex problem that requires either
tomography in the physical layer, which is intractable in
a practical scenario, or high-cost calculations in the multi-
dimensional spherical space with strict dimensional limita-
tions. In the reconciliation phase, only uniform distributions
can be transmitted over the classical channel; otherwise,
the information-theoretic security of the protocol cannot be
proven [62], [63]. The raw data follow a Gaussian random
distribution because the data arise from a Gaussian random
source; however, by applying some trivial operations on the
raw data units, the desired uniform distribution can be reached,
and the reconciliation can be performed with unconditional
security [77]. In the reconciliation phase, a physical-logical
channel conversion is made, and the aim is to get a logical
channel (reconciliation channel) that is close to a binary
Gaussian channel. At low signal-to-noise ratios (SNRs), the
capacities of the Gaussian quantum channel and the binary
Gaussian channel are close, and the reconciliation channel is
analogous to a binary Gaussian channel. The efficiency of
the channel conversion procedure can be described by the
relevant parameters of the resulting logical binary channel
(such as its variance and capacity). This conversion efficiency
determines the efficiency of the reconciliation process, i.e., the
performance of the protocol.

In Fig. 1, the DVQKD and CVQKD settings are compared.
The modulation phase in the DVQKD setting assumes four
polarization states of the BB84.

III. QKD IMPLEMENTATIONS

A. QKD over Optical Fiber
The optical fiber infrastructure provides a base ground for

the experimental realization of both DVQKD and CVQKD
protocols. The currently established optical fiber infrastructure
with wavelength division multiplexing (WDM) technique rep-
resents an adequate solution for the practical implementation
of QKD [8]. A general architecture of a QKD-integrated
optical network consists of four layers: a physical layer with
the optical fiber architecture (e.g., an optical layer), a QKD
layer, a control layer (which can be implemented by software-
defined networking, or SDN, to efficiently manage the entire

network [6]), and an application layer. In the layer model,
the users’ service requests are generated in the application
layer. Then, the control layer determines a path in the physical
network and performs a handshake with the relevant quantum
devices and optical nodes through the path. In an abstract
manner, the optical layer integrates optical nodes connected by
optical fibers, while the QKD layer consists of quantum nodes
with quantum channels and public channels between them. The
optical layer and the QKD layer share the fiber bandwidth
resources with WDM technique [6], [8]. On the problem
of wavelength allocation and channel isolation for QKD-
integrated optical networks, we refer to [13]. For the model
of SDN-controlled optical networks with time-shared QKD,
see [15]. On the problem of efficient secret-key allocation in
QKD implementations, we suggest [16]. In [20], a method
for the implementation of quantum and classical signals over
the same optical fiber in QKD networks has been proposed. In
[21], the concept of a virtual optical network (VON) is defined
for the purpose of efficient energy utilization and security
enhancements in practical optical fiber settings.

B. Free-Space Optical QKD

The fundamental characteristics of optical fiber-based QKD
(i.e., channel loss of fibers, propagation losses) limit the
achievable point-to-point distances to a few hundred kilome-
ters. The achievable distances in terrestrial free-space-based
QKD are also limited because of the exponentially decreasing
photon rate with increasing distance. Satellite-based QKD rep-
resents a way to overcome these drawbacks and to establish a
global-scale QKD network [23]–[25], [38]. The satellite-based
solutions exploit the negligible photon loss and decoherence
in the empty outer space. In [39], a satellite-to-ground QKD
system with an achievable distance of over 1,200 kilometers
has been demonstrated. The proposed model integrated a low-
Earth-orbit satellite with decoy-state QKD. The reported key
rate of the protocol was above 1 kbps. The results also enable
us to realize high-efficiency long-distance QKD in a global-
scale setting.

Relevant attributes of some recent QKD implementations
are summarized in Table I.

C. QKD in the Traditional Internet

The secret key generated by a QKD system is a random
key that can also serve as a one-time pad (OTP) [78], which
theoretically provides unconditional security [79]. However, in
theory, in an OTP system, the secret-key size must be at least
as long as the data size to be encrypted, and novel random keys
are required for novel data. It is trivially not implementable
in practical scenarios because of the long execution times and
large storage requirements. These issues are resolved by the
integration of QKD into efficient traditional data encryption
algorithms (AES, IPSec, TLS, etc.) [12], [80]. In these inte-
grated, hybrid QKD-traditional encryption systems, the QKD
structure provides a practical and significantly shorter key
(in comparison with an OTP key) to an efficient encryption
method that periodically requires a novel key from the QKD
backbone structure [6].
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Fig. 1. Comparison of the sender (Alice) and receiver (Bob) model in a DVQKD and a CVQKD setting. (a) DVQKD setting. Alice draws uniform random
raw data, which encode her random bits. She modulates all the bits of her raw data into single-polarization photons (qubits). The rectilinear and diagonal
polarization states are selected randomly in the B basis selection procedure for the encoding. The qubits are sent through the quantum channel (depicted by
the yellow line), where the presence of Eve adds noise to the transmission. Bob measures each qubit in a random basis via the B′ basis selection procedure.
The results of the measurements are classical bits, which form the noisy raw data. The final key is extracted from the correlated raw data of the parties using
the classical public channel (depicted by the green line). (b) CVQKD setting. Alice draws Gaussian random raw data with Gaussian variables. Using her raw
data, she modulates the CV quantum states via a Gaussian modulation. The CV quantum states are sent through a quantum channel, where the presence of the
eavesdropper adds white Gaussian noise to the transmission. Bob measures the CV states via the M measurement procedure using homodyne or heterodyne
measurement. The measurements yield noisy Gaussian raw data. In the post-processing phase, a U secret key (a classical uniform random vector) is drawn at
Alice, which will be combined with her raw data. The combined result is transmitted to Bob over the classical channel. Bob applies some local calculations
and reconciliation steps to extract the noise-free U secret key on his side.

TABLE I
ATTRIBUTES OF RECENT QKD IMPLEMENTATIONS.

QKD protocol Distance Max. secret-key
rate Quantum channel

BB84 (DV) [8] 66 km 5.1 kbps optical fiber, 1310 nm
BB84 (DV) [10] 150 km 1 kbps optical fiber, 1548 nm
BB84 (DV) [11] 80 km 1 kbps optical fiber, 1310 nm
BB84 (DV) [18] 50 km 1.26 Mbps optical fiber, 1550 nm
BB84 (DV) [19] 404 km 1.16 bit/hour optical fiber, 1550 nm

Twin-field QKD [17] 550 km 0.1 kbps optical fiber, 1550 nm
CV [9] 20 km 90 kbps optical fiber, 1550 nm

CV [22] 80 km 0.1 kbps optical fiber, 1550 nm
Satellite-to-ground BB84 (DV)

[39] 1,200 km 1 kbps free space optical, 850 nm

The hybrid structure is realizable through the currently es-
tablished Internet architecture, as depicted in Fig. 2. The QKD
devices establish the unconditionally secure key through the
quantum channels (auxiliary public channels are not depicted).
The keys are then passed via secure local connections to
the server (e.g., an HTTP/TLS server) and the web clients.
Then, the client-server communication is realized by the TLS
protocol with periodically updated quantum-made keys.

IV. QKD IN THE QUANTUM INTERNET

The quantum Internet [80], [82]–[85] is a global-scale
quantum communication network composed of quantum sub-
networks and quantum networking components. The quantum

Internet utilizes the fundamental concepts of quantum mechan-
ics for networking. The main attributes of the quantum Internet
are unconditional security (quantum cryptographic protocols),
advanced quantum phenomena and protocols (such as quantum
superposition, quantum entanglement, quantum teleportation
and quantum coding and an entangled network structure. In
contrast to traditional repeaters, quantum repeaters cannot
apply the “receive-copy-retransmit” mechanism, because of
the No-Cloning Theorem [37]. This fundamental difference
between the nature of classical and quantum information not
just leads to fundamentally different networking mechanisms,
but also requires the definition of novel networking services
in a quantum Internet scenario [86]–[90].
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Fig. 1. Comparison of the sender (Alice) and receiver (Bob) model in a DVQKD and a CVQKD setting. (a) DVQKD setting. Alice draws uniform random
raw data, which encode her random bits. She modulates all the bits of her raw data into single-polarization photons (qubits). The rectilinear and diagonal
polarization states are selected randomly in the B basis selection procedure for the encoding. The qubits are sent through the quantum channel (depicted by
the yellow line), where the presence of Eve adds noise to the transmission. Bob measures each qubit in a random basis via the B′ basis selection procedure.
The results of the measurements are classical bits, which form the noisy raw data. The final key is extracted from the correlated raw data of the parties using
the classical public channel (depicted by the green line). (b) CVQKD setting. Alice draws Gaussian random raw data with Gaussian variables. Using her raw
data, she modulates the CV quantum states via a Gaussian modulation. The CV quantum states are sent through a quantum channel, where the presence of the
eavesdropper adds white Gaussian noise to the transmission. Bob measures the CV states via the M measurement procedure using homodyne or heterodyne
measurement. The measurements yield noisy Gaussian raw data. In the post-processing phase, a U secret key (a classical uniform random vector) is drawn at
Alice, which will be combined with her raw data. The combined result is transmitted to Bob over the classical channel. Bob applies some local calculations
and reconciliation steps to extract the noise-free U secret key on his side.

TABLE I
ATTRIBUTES OF RECENT QKD IMPLEMENTATIONS.
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BB84 (DV) [8] 66 km 5.1 kbps optical fiber, 1310 nm
BB84 (DV) [10] 150 km 1 kbps optical fiber, 1548 nm
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Twin-field QKD [17] 550 km 0.1 kbps optical fiber, 1550 nm
CV [9] 20 km 90 kbps optical fiber, 1550 nm

CV [22] 80 km 0.1 kbps optical fiber, 1550 nm
Satellite-to-ground BB84 (DV)

[39] 1,200 km 1 kbps free space optical, 850 nm

The hybrid structure is realizable through the currently es-
tablished Internet architecture, as depicted in Fig. 2. The QKD
devices establish the unconditionally secure key through the
quantum channels (auxiliary public channels are not depicted).
The keys are then passed via secure local connections to
the server (e.g., an HTTP/TLS server) and the web clients.
Then, the client-server communication is realized by the TLS
protocol with periodically updated quantum-made keys.

IV. QKD IN THE QUANTUM INTERNET

The quantum Internet [80], [82]–[85] is a global-scale
quantum communication network composed of quantum sub-
networks and quantum networking components. The quantum

Internet utilizes the fundamental concepts of quantum mechan-
ics for networking. The main attributes of the quantum Internet
are unconditional security (quantum cryptographic protocols),
advanced quantum phenomena and protocols (such as quantum
superposition, quantum entanglement, quantum teleportation
and quantum coding and an entangled network structure. In
contrast to traditional repeaters, quantum repeaters cannot
apply the “receive-copy-retransmit” mechanism, because of
the No-Cloning Theorem [37]. This fundamental difference
between the nature of classical and quantum information not
just leads to fundamentally different networking mechanisms,
but also requires the definition of novel networking services
in a quantum Internet scenario [86]–[90].
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Fig. 1. Comparison of the sender (Alice) and receiver (Bob) model in a DVQKD and a CVQKD setting. (a) DVQKD setting. Alice draws uniform random
raw data, which encode her random bits. She modulates all the bits of her raw data into single-polarization photons (qubits). The rectilinear and diagonal
polarization states are selected randomly in the B basis selection procedure for the encoding. The qubits are sent through the quantum channel (depicted by
the yellow line), where the presence of Eve adds noise to the transmission. Bob measures each qubit in a random basis via the B′ basis selection procedure.
The results of the measurements are classical bits, which form the noisy raw data. The final key is extracted from the correlated raw data of the parties using
the classical public channel (depicted by the green line). (b) CVQKD setting. Alice draws Gaussian random raw data with Gaussian variables. Using her raw
data, she modulates the CV quantum states via a Gaussian modulation. The CV quantum states are sent through a quantum channel, where the presence of the
eavesdropper adds white Gaussian noise to the transmission. Bob measures the CV states via the M measurement procedure using homodyne or heterodyne
measurement. The measurements yield noisy Gaussian raw data. In the post-processing phase, a U secret key (a classical uniform random vector) is drawn at
Alice, which will be combined with her raw data. The combined result is transmitted to Bob over the classical channel. Bob applies some local calculations
and reconciliation steps to extract the noise-free U secret key on his side.

TABLE I
ATTRIBUTES OF RECENT QKD IMPLEMENTATIONS.

QKD protocol Distance Max. secret-key
rate Quantum channel

BB84 (DV) [8] 66 km 5.1 kbps optical fiber, 1310 nm
BB84 (DV) [10] 150 km 1 kbps optical fiber, 1548 nm
BB84 (DV) [11] 80 km 1 kbps optical fiber, 1310 nm
BB84 (DV) [18] 50 km 1.26 Mbps optical fiber, 1550 nm
BB84 (DV) [19] 404 km 1.16 bit/hour optical fiber, 1550 nm

Twin-field QKD [17] 550 km 0.1 kbps optical fiber, 1550 nm
CV [9] 20 km 90 kbps optical fiber, 1550 nm

CV [22] 80 km 0.1 kbps optical fiber, 1550 nm
Satellite-to-ground BB84 (DV)

[39] 1,200 km 1 kbps free space optical, 850 nm
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tablished Internet architecture, as depicted in Fig. 2. The QKD
devices establish the unconditionally secure key through the
quantum channels (auxiliary public channels are not depicted).
The keys are then passed via secure local connections to
the server (e.g., an HTTP/TLS server) and the web clients.
Then, the client-server communication is realized by the TLS
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IV. QKD IN THE QUANTUM INTERNET
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quantum communication network composed of quantum sub-
networks and quantum networking components. The quantum

Internet utilizes the fundamental concepts of quantum mechan-
ics for networking. The main attributes of the quantum Internet
are unconditional security (quantum cryptographic protocols),
advanced quantum phenomena and protocols (such as quantum
superposition, quantum entanglement, quantum teleportation
and quantum coding and an entangled network structure. In
contrast to traditional repeaters, quantum repeaters cannot
apply the “receive-copy-retransmit” mechanism, because of
the No-Cloning Theorem [37]. This fundamental difference
between the nature of classical and quantum information not
just leads to fundamentally different networking mechanisms,
but also requires the definition of novel networking services
in a quantum Internet scenario [86]–[90].
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The core network of the quantum Internet is modeled as
an entangled network structure [80], [91], [92], in which
the quantum nodes are connected by entangled connections.
An entangled connection refers to a shared entangled system
(i.e., a Bell state for qubit systems to connect two quantum
nodes) between the quantum nodes. In an unentangled network
structure, the quantum nodes are not necessarily connected by
entanglement [93], [94], and the communication between the
nodes is realized in a point-to-point setting. This setting does
not allow quantum communication over arbitrary distances,
and an unentangled network structure can mostly be used for
establishing a point-to-point QKD between the quantum nodes.
These short distances can be extended to longer distances
by the utilization of free-space quantum channels [23], [24],
[80], [95]. However, this solution is auxiliary, since it can be
used only at some specific points of the unentangled network
structure. Therefore, it does not represent an adequate and
fundamental answer to the problem of long-distance quantum
communication. Consequently, in an unentangled network
structure, the multi-hop settings are weak for experimen-
tal, long-distance and global-scale quantum communication.
On the other hand, the entangled network structure allows
the parties to establish multi-hop entanglement, multi-hop
QKD, high-precision sensor networks, advanced distributed
computations and cryptographic functions, advanced quantum
protocols, and, more importantly, the distribution of quantum
entanglement over arbitrary (unlimited, in theory) distances
[80]. Entanglement between a distant source and a target node
is established through several intermediate repeater nodes [80],
[91], [92], [96], [97]. The level of entanglement (i.e., the level
of an entangled connection) is defined as the number of nodes
(i.e., the hop-distance between entangled nodes) spanned by

the shared entanglement, whose range is extended by the basic
operation of entanglement swapping (entanglement extension).

The entangled network structure of the quantum Internet
formulates a high-complexity network space with several
advantages and challenges. Quantum Internet is an adequate
answer for the computational power that became available as
quantum computers became publicly available. The structure
of the quantum Internet keeps the data of users safe for future
networking. However, the commercial quantum computers are
currently under development and represent tomorrow’s prob-
lems, the engineering of high-performance and well-designed
services and protocols for the quantum Internet is today’s
tasks. As quantum computers are built and become available,
the structure of the quantum Internet also has to be ready to
provide a seamless transition from the traditional Internet to
the quantum Internet.

A. Recent Implementations

An optical switcher-based QKD implementation has been
proposed in [14]. The system model integrates several hop-by-
hop QKD settings to realize a long-distance QKD. The optical
switchers were implemented for the purpose of time division
multiplexing (TDM) on the quantum channels between the
QKD devices.

A technical roadmap on the experimental development of
the quantum Internet has been provided in [98]. The roadmap
is connected to the Quantum Internet Research Group (QIRG)
[99], which group is formulated and supported by an interna-
tional researcher background and collaboration. The authors
of [98] address some important capability milestones for the
realization of a global-scale quantum Internet. The technical
roadmap also addresses important future engineering problems
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brought up by the quantum Internet, such as the development
of a standardized architectural framework for the quantum
Internet, standardization and protocols of the quantum Internet,
layer interoperability, advanced services for the quantum In-
ternet, interoperability of the traditional Internet and quantum
Internet, connection establishment between the heterogeneous
quantum nodes of the quantum Internet, definition of node
roles, network coding, multiparty state transfer, entanglement
distribution mechanisms and entanglement routing, application
programming interface (API) for the quantum Internet, and the
definition of the application level of the quantum Internet.

In [100], the authors defined a method for deterministic
delivery of quantum entanglement on a quantum network. The
results allow us to realize entanglement distribution across
multiple remote quantum nodes in a quantum Internet setting.

In [45], the authors demonstrated the quantum teleportation
of independent single-photon qubits over 1,400 kilometres.
Since an experimental realization of a global-scale quantum
Internet requires the application of quantum teleportation over
long-distances, the proposed results represent a fundamental
of any experimental quantum Internet. In [46], the authors
demonstrated quantum teleportation with high fidelity values
between remote single-atom quantum memories.

Some other recent results connected to the development of
an experimental global-scale quantum Internet are as follows.
In [101], the authors demonstrated the Bell inequality violation
using electron spins separated by 1.3 kilometres. In [102],
the authors demonstrated modular entanglement of atomic
qubits using photons and phonons. The quantum repeaters
are fundamental networking elements of any experimental
quantum Internet. The quantum repeaters are used in the
entanglement distribution process to generate quantum entan-
glement between distant senders and receivers. The quantum
repeaters also realize the entanglement purification (entangle-
ment improvement) and the entanglement swapping (entangle-
ment extension) procedures. For an experimental realization
of quantum repeaters based on atomic ensembles and linear
optics, see [103].

Since quantum channels also have a fundamental role in
the quantum Internet, we suggest the review paper of [29],
and also the work of [104], for some specialized applications
of quantum channels. For a review on some recent results
of quantum computing technology, we suggest [105]. Some
recent services developed for the quantum Internet can be
found in [112]–[116]. The works [91]–[93], [96] are related
to the utilization of entanglement for long-distance quantum
communications and for a global-scale quantum Internet, and
also to the various aspects of quantum networks in a quantum
Internet setting.

For some fundamental works on quantum Shannon theory,
see [27]–[29], [104], [106]–[109]. For some important works
on the experimental implementations of quantum repeaters,
entanglement purification and entanglement distribution, see
[110]–[112], [117]–[119].

V. CONCLUSION

Here we provided a brief overview of the recent results
of QKD. The review focused on the principles of DVQKD

and CVQKD protocols, the main attributes of the recent
implementations, and the integration of QKD into traditional
and quantum communication networks.
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Fig. 2. QKD in a traditional client-server Internet setting. The established paths (green lines) between the clients and the server in the traditional Internet
use quantum-made keys. The quantum keys are established via the QKD devices over quantum channels (depicted by yellow lines). The quantum keys are
shared with the classical server and the classical clients through secure local connections (red lines).

The core network of the quantum Internet is modeled as
an entangled network structure [80], [91], [92], in which
the quantum nodes are connected by entangled connections.
An entangled connection refers to a shared entangled system
(i.e., a Bell state for qubit systems to connect two quantum
nodes) between the quantum nodes. In an unentangled network
structure, the quantum nodes are not necessarily connected by
entanglement [93], [94], and the communication between the
nodes is realized in a point-to-point setting. This setting does
not allow quantum communication over arbitrary distances,
and an unentangled network structure can mostly be used for
establishing a point-to-point QKD between the quantum nodes.
These short distances can be extended to longer distances
by the utilization of free-space quantum channels [23], [24],
[80], [95]. However, this solution is auxiliary, since it can be
used only at some specific points of the unentangled network
structure. Therefore, it does not represent an adequate and
fundamental answer to the problem of long-distance quantum
communication. Consequently, in an unentangled network
structure, the multi-hop settings are weak for experimen-
tal, long-distance and global-scale quantum communication.
On the other hand, the entangled network structure allows
the parties to establish multi-hop entanglement, multi-hop
QKD, high-precision sensor networks, advanced distributed
computations and cryptographic functions, advanced quantum
protocols, and, more importantly, the distribution of quantum
entanglement over arbitrary (unlimited, in theory) distances
[80]. Entanglement between a distant source and a target node
is established through several intermediate repeater nodes [80],
[91], [92], [96], [97]. The level of entanglement (i.e., the level
of an entangled connection) is defined as the number of nodes
(i.e., the hop-distance between entangled nodes) spanned by

the shared entanglement, whose range is extended by the basic
operation of entanglement swapping (entanglement extension).

The entangled network structure of the quantum Internet
formulates a high-complexity network space with several
advantages and challenges. Quantum Internet is an adequate
answer for the computational power that became available as
quantum computers became publicly available. The structure
of the quantum Internet keeps the data of users safe for future
networking. However, the commercial quantum computers are
currently under development and represent tomorrow’s prob-
lems, the engineering of high-performance and well-designed
services and protocols for the quantum Internet is today’s
tasks. As quantum computers are built and become available,
the structure of the quantum Internet also has to be ready to
provide a seamless transition from the traditional Internet to
the quantum Internet.

A. Recent Implementations

An optical switcher-based QKD implementation has been
proposed in [14]. The system model integrates several hop-by-
hop QKD settings to realize a long-distance QKD. The optical
switchers were implemented for the purpose of time division
multiplexing (TDM) on the quantum channels between the
QKD devices.

A technical roadmap on the experimental development of
the quantum Internet has been provided in [98]. The roadmap
is connected to the Quantum Internet Research Group (QIRG)
[99], which group is formulated and supported by an interna-
tional researcher background and collaboration. The authors
of [98] address some important capability milestones for the
realization of a global-scale quantum Internet. The technical
roadmap also addresses important future engineering problems

6

brought up by the quantum Internet, such as the development
of a standardized architectural framework for the quantum
Internet, standardization and protocols of the quantum Internet,
layer interoperability, advanced services for the quantum In-
ternet, interoperability of the traditional Internet and quantum
Internet, connection establishment between the heterogeneous
quantum nodes of the quantum Internet, definition of node
roles, network coding, multiparty state transfer, entanglement
distribution mechanisms and entanglement routing, application
programming interface (API) for the quantum Internet, and the
definition of the application level of the quantum Internet.

In [100], the authors defined a method for deterministic
delivery of quantum entanglement on a quantum network. The
results allow us to realize entanglement distribution across
multiple remote quantum nodes in a quantum Internet setting.

In [45], the authors demonstrated the quantum teleportation
of independent single-photon qubits over 1,400 kilometres.
Since an experimental realization of a global-scale quantum
Internet requires the application of quantum teleportation over
long-distances, the proposed results represent a fundamental
of any experimental quantum Internet. In [46], the authors
demonstrated quantum teleportation with high fidelity values
between remote single-atom quantum memories.

Some other recent results connected to the development of
an experimental global-scale quantum Internet are as follows.
In [101], the authors demonstrated the Bell inequality violation
using electron spins separated by 1.3 kilometres. In [102],
the authors demonstrated modular entanglement of atomic
qubits using photons and phonons. The quantum repeaters
are fundamental networking elements of any experimental
quantum Internet. The quantum repeaters are used in the
entanglement distribution process to generate quantum entan-
glement between distant senders and receivers. The quantum
repeaters also realize the entanglement purification (entangle-
ment improvement) and the entanglement swapping (entangle-
ment extension) procedures. For an experimental realization
of quantum repeaters based on atomic ensembles and linear
optics, see [103].

Since quantum channels also have a fundamental role in
the quantum Internet, we suggest the review paper of [29],
and also the work of [104], for some specialized applications
of quantum channels. For a review on some recent results
of quantum computing technology, we suggest [105]. Some
recent services developed for the quantum Internet can be
found in [112]–[116]. The works [91]–[93], [96] are related
to the utilization of entanglement for long-distance quantum
communications and for a global-scale quantum Internet, and
also to the various aspects of quantum networks in a quantum
Internet setting.

For some fundamental works on quantum Shannon theory,
see [27]–[29], [104], [106]–[109]. For some important works
on the experimental implementations of quantum repeaters,
entanglement purification and entanglement distribution, see
[110]–[112], [117]–[119].

V. CONCLUSION

Here we provided a brief overview of the recent results
of QKD. The review focused on the principles of DVQKD

and CVQKD protocols, the main attributes of the recent
implementations, and the integration of QKD into traditional
and quantum communication networks.
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