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Abstract. The main aim of this paper is to introduce and investigate (p,q)-extensions of two
bivariate kinds of Bernoulli polynomials and numbers. We firstly examine several (p,q)-analogues

of the Taylor expansions of products of some trigonometric functions and determine their coef-
ficients which are also analyzed in detail. Then, we introduce two bivariate kinds of (p,q)-
Bernoulli polynomials and acquired multifarious formulas and relations including connection
formulas, recurrence formulas, correlations with aforementioned coefficients, partial (p, g)-differential
equations and (p, q)-integral representations.
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1. INTRODUCTION

The Appell polynomials A, (x) defined by
F(t)e¥ = Z Ay (x) (1.1)

where f is a formal power series in 7, have found remarkable applications in different
branches of mathematics, theoretical physics and chemistry, see [1, 3—13] and refer-
ences cited therein. One of the most famous polynomials of the of Appell families is

t
Bernoulli polynomials By (x), generated by f(¢) = a1 in (1.1). Also, Bernoulli
ef

numbers, denoted by B, := B, (0) are of considerable importance in number theory,
combinatorics and numerical analysis (c¢f. [1, 3,5, 6, 8—10]). Further, they have the
following exponential generating function:

Z —! (7] < 27),
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and can be generated by the following recurrence relation

n
|
Z("Z )Bk=0 forn>1 and By = 1.
k=0

Bernoulli numbers are directly related to several combinatorial numbers such as Stirl-
ing, Cauchy and harmonic numbers. For example, except B; we have

n

By=(-1)"Y_ %Sz(n,m), (1.2)

m=0

where

Ssnm = 3 1) (?)(m—j)",

" i=0

denote the second kind of Stirling numbers [9] with S»(rn,m) = 0 for n < m. Very
recently in [7], Jamei et al. introduced a new kind of bivariate Bernoulli polynomials
and studied their main properties. As a valuable application of these extended poly-
nomials, they introduced an extension of the well-known Euler-Maclaurin quadrature
formula. Rahmani [8] defined a new family of p-Bernoulli numbers, which are de-
rived from the Gaussian hypergeometric function, and established some basic prop-
erties. Based on a three-term recurrence relation, he gave an algorithm for computing
Bernoulli numbers and presented a similar algorithm for Bernoulli polynomials.

The Bernoulli polynomials and numbers have found diverse extensions such as
poly-Bernoulli numbers, which are somehow connected to multiple zeta values. The
g-extension of Bernoulli numbers and polynomials has now found many applications
in combinatorics, statistics and various branches of applied mathematics. Mahmudov
[5, 6] introduced a class of generalized Bernoulli polynomials, Euler polynomials
and Genocchi polynomials based on the g-integers and obtained the g-analogues of
well-known formulas including g-analogue of the Srivastava-Pinter addition theorem
and correlations with the g-Bernstein polynomials. Duran ef al. [3] considered the
new generating functions of the Bernoulli, the Euler and the Genocchi polynomials
under post quantum calculus, denoted by (p,q)-calculus. From those generating
functions, they analyzed their various behaviours and derived a relation between the
new and old polynomials by making use of the fermionic p-adic integral over the
p-adic number fields. Njionou [ 1] introduced the (p,q)-Appell polynomials which
covers generalizations of some famous family of polynomials such as the (p,q)-
Bernoulli, the (p, g)-Euler and the (p, g)-Genocchi polynomials. He provided several
characterizations of these polynomials.

In this paper, we introduce a (p, g)-extension of the aforesaid bivariate Bernoulli
polynomials and establish their properties. Multifarious connections and inversion
formulas are stated and proved. In the following section, some preliminaries and
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definitions are given and in Section 3, a bivariate kind of (p, ¢)-Bernoulli polynomi-
als is introduced and some of its fundamental properties are stated and proved.

2. PRELIMINARIES AND DEFINITIONS

Let N denotes the set of all natural numbers, R denotes the set of all real numbers
and C denotes the set of all complex numbers. Let us introduce the following notation

(see [4,10,12])

[Mlpg=——"-. 0<lql<|pl=1

for any positive integer.
The twin-basic number is a natural generalization of the g-number, that is

1}1—I>n1 [n]p.q = [nlg-

The (p, q)-factorial is defined by

n

lpg! = [[Klpg!. n=1. [0lpq!=1.
k=1

Let us introduce also the so-called (p, g)-binomial coefficients

n [n]p,q!
= , 0<k<n.
|: k :|p,q [k]Pal]![n_k]P,q!

Note that as p — 1, the (p, g)-binomial coefficients reduce to the g-binomial coeffi-

cients.
n _ n
k | n—k )
p7q p’q

It is clear by definition that
Let us introduce also the so-called falling and raising (p, q)-powers respectively [4,

]

(x©a),, = (x—a)(px—aq)--(xp" ' —agq"™")

(x@a)y, = (x+a)(px+aq)--(xp" " +aq"™").

These definitions are extended to

’

oo

(@eb), = [[@p*—4"p).
k=0
o0

(a®b)y, =[] @* +4"p),
k=0

where the convergence is required.



1188 P. NJIONOU SADJANG AND UGUR DURAN

Definition 1 ([4, 12]). Let f be an arbitrary function and a be a real number, then
the (p,q)-integral of f is defined by

a 0 k k

q q .

/f(x)dp,qX=(p—q)aZ k+1f( kﬂa) if0<lg| <|p|<1.
0 k=0 P 4

Let f be a function defined on the set of the complex numbers.

Definition 2 ([4, 12]). The (p, g)-derivative of the function f is defined as

f(px)— f(gx)
(P—q)x
and (Dp,q f)(0) = f7(0), provided that f is differentiable at 0.

Dpqf(x)= . x#0,

Proposition 1. The (p,q)-derivative operator fulfills the following product and
quotient rules
Dpg(f(x)g(x)) = f(px)Dp4g8(x)+8(qx)Dp,q f(x).
Dpq(f(x)g(x)) = g(px)Dpq f(x)+ f(gx)Dp,g8(x).

’

D (f(X)) _ 8(qx)Dp g f(x)— f(gx)Dp48(x)
p.q

g(x) g(px)g(gx)
D (f(x)) _ g(Px)Dp,qf(x) - f(Px)Dp,qg(x)
P\ g(x) g(px)g(gx) '

Proposition 2. If F(x) is a (p,q)-antiderivative of f(x) and F(x) is continuous
at x =0, we have

b
/ f(x)dpqx = F(b)—F(a), 0<a<b <oo.

Corollary 1. If f'(x) exists in a neighbourhood of x = 0 and is continuous at
x =0, where f'(x) denotes the ordinary derivative of f(x), we have

b
| Dot rdpx = 16)- r(@.

Proposition 3. Suppose that f(x) and g(x) are two functions whose ordinary
derivatives exist in a neighbourhood of x = 0. a and b are two real numbers such
thata < b, then

b b
/ F(p) (Dpgg () dpgx = f(B)g(b)— f(@)g(@)— / £(qx) (Dpog () dpgx.
@2.1)
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As in the g-case, there are many definitions of the (p,g)-exponential function. The
following two (p, g)-analogues of the exponential function (see [3,4, 10, 1 1]) will be
frequently used throughout this paper:

©  5()
P
= , 22
alc) ,;,mpq!z &2
q(g) "
Epgq(2) = Z (2.3)

From the definitions (2.2) and (2.3) of the (p,g)-exponential functions, it is easy to
see that [10]

epg(X)Ep g(—x) =1. 2.4)
From (2.2) we can derive
() ( ) n ("5
p n (— 1) p (=D)"p 2n+1
epqiz) = Z[]p’ (i2)" = Z T Z AR
(2.5

By (2.5), the (p,q)-cosine and the (p,q)-sine functions are defined (see [4, 10]) as
follows:
2n
"p)
coSp 4(2) = %
P.q Z [2n]p g!

. (—l)np(zn;rl) 2n+1
= - - - . 2.7
*ip.a(2) HZZO 2n+1pg! @7

In the following definition, we generalize the notion of g-addition introduced by
Jackson and studied later by Ward and Al-Salam, see [, 2] for more details. Our
(p,q)-addition reduces to the g-addition defined by Euler and recalled in [13]

", (2.6)

Definition 3. Let x and y be two complex numbers.

(1) The (p,q)-addition of x and y which we denote by x @, 4 v is defined by

n
(x@pgy)" =) [ . } prEmkynk, 2.8)
k=0 b q

(2) The (p,q)-subtration of x and y which we denote by x © 4 y is defined by

n
(xEpgy) =3 [ Z ] (—1ynk phtk=n) ke yn—k 2.9)
k=0 P
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Theorem 1. The following relation holds true for any x,y € R.
ep.q(X)ep.q(¥) = €p.g(x Bp.g ) (2.10)
ep.q(X)epg(—y) = €pg(x Sp,q ¥). (2.11)

Proof. By the definition of the (p,¢)-addition and the Cauchy product we can
readily see that

© 5k 2 (0t
ep,q(x)ep,q(y)zzpk x| ZP Y

i—o Kpa! (= llpg!

> (§)+(n k) k n —k
= P X
- (k;) [k ]p,q![n—k]p,q! )

n=0
SN ENE k(k—n) ko n—k P(g)
= Z k p X"y ol ep.q (X ®p,q ¥)-
n=0 \k=0 p4q P
The second assertion is proved in the same way. g

3. A BIVARIATE KIND OF (p,q)-BERNOULLI POLYNOMIALS

Let x,y € R. It is well-known that the Taylor expansion of the two functions
X! cos yt and eX! sin yt are as follows [7]

*cosyt = ZCn(x y) 3.D
and
sinys = an(x y) (3.2)
where
L5] "
Ca(x.y) =Y (=¥ (Zk)x”‘z"yz", (3.3)
k=0
and
L2571 ] .
Sp(x.y)= Y (—1)"<2k +1)x"‘z"“yz"“. (3.4)
k=0

Here we introduce a (p,q)-extension of the two above polynomials C,(x,y) and
Sy (x,y) by the following generating functions:

k

o0
t
ep.q(xt)cospq(yt) = Z Ck,p,q(x’y)W7 (3.5)
k=0 J2UM
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and
o k
ep.g(x1)singg(y1) = ) Sk p.g(x,¥) o, (3.6)
k=0 Klp.q!
Some particular cases are
_ n (2”) 2n _
Con,p,q(0,y) = (=1)"p'27y"", Cont1,p,q(0,y) =0
and -
S2npa(©.0) =0, S2nt1,pg(0,y) = (=) p ) y2n 1,
The following Lemma will be useful in the derivation of several results.
Lemma 1 ([9]). The following elementary series manipulations hold
oo |n/2]
Z ZA(k ny=Y_ > A(k.n—2k), (3.7)
n=0k=0 n=0 k=0
o [(n—1)/2]
Z Z B(k.n)=Y_ Z B(k,n—1-"2k). (3.8)
n=0k=0 n=0 =
Theorem 2. The following representations hold
L15] .
n k k(k— —2k 2k
Cnpg(x,y)= p(z) Z(_l) |: ok ] p2 (k—n)  ,n—2 y2 (3.9)
k=0 P4
and
n—1
) - k n 4k2—2kn .n—2k—1_2k+1
Snpae.y)=pt2) 3 (=D b x YL (3.10)
k=0 P4
Proof. By series manipulation procedure (3.7), we have
(n) (2}1)
P (=D*pi2
ep.q(xt)cosy 4 (yt) = Z (x1)" Z (y1)*"
¢ [nlp.q! [21]p.4!
ln/2] n—2k 2%k
_ i \ P2 )2k (—l)kP(Z)(yt)zk
=0 k—0 [n—2k]pq! [2k]p.q!
[ ,® \- n ) n—2k 2k | 1"
— 2 (_1)k|: ] p2k(k—n xn—2 y2 ’
nX:(:) kX:;) 2k D [n]p.q!

which proves (3.5). The proof of (3.6) is similar by means of the series manipulation
method (3.8).
O
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Theorem 3. The following derivative rules are valid

Dp,q,xck,p,q(x7y) = [k]p,qck—l,p,q(vaY)7 (3.11)
Dp.q.yCr,p,q(x.¥) = —[klp.gSk—1,p,q(x. PY). (3.12)
Dp.g.xSk,p.q(x.¥) = [Klp.qgSk—1,p.q(PX, ), (3.13)
DP,q,ySk,p,q(x’Y) = [k]p,qck—l,p,q(x,P)’)- (3.14)
Proof. Relation (3.5) yields
0 n o n+1
Z Dp,gxCn.p.q(X.y) = =tepg(pxt)cosp 4 (yt) = Z Cn,pg(Px.y) 7o
— [n]p.q! =0 [n]p.q!
00 o
= ’; Cn-1.p.q(PX.y) = 1!
00

n

= Z[ ]qun 1,p.q(Px, V)"

2 [lpq!
proving (3.11). The other equations (3.12), (3.13) and (3.14) can be similarly proved.
O
Theorem 4. The following relations are valid
n
n n—k _
Crpg. )= [ k ] pU2)Chp g (0.)x"7F, (3.15)
k=0 b4
n n L
Snpa(x.7) =Y [ L ] PU2D) Sk g0, 9)x" %, (3.16)
k=0 b4
Theorem 5. The following power representations hold
) 2n « mn
()" p(3)y2n = Z(—l)kq(z)[ . } Can—k, p.q (X, y)x*, (3.17)
k=0 )20
and
- 2n+1 ol 27 +1
(=1 pC )yt = %7 (—l)kq(z)[ k ] San+1-k.p.g (¥, ¥)x".
k=0 D.q
(3.18)

Proof. Multiplying both sides of (3.5) by E, 4(—xt) and using (2.4), it follows
that

Z( l)np( )yZn 2n (Zq(ﬂ ( x)ntn)(z npq(x y)[ " )

=0 [nlp.q! n—0 np.q!
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—Z(Z( kg (2)|: } Cn_k,p’q(x,y)xk) #

n=0 \k=0

which proves (3.17). The proof of (3.18) is similar. ]

Theorem 6. The following connection formulas hold

2n
k1 2n 41
Con+1,pq(X,y) = Z(_l)k(]( 2 )|: k+1 :| C2n—k,p,q(x»)’)xk+l, (3.19)
p.q

k=0

and
2n—1

Sanpatn) = 2 04| Skt G20
k=0 b.q

Proof. From the relation

o0 n
2n k n tn
Z( l)np( )yzn Z (Z(_l)kq(z)[ K j| Cn—k,p,q(x,y)xk) —
[n]p.q! n=0 \k—0 P4 [n]p.q!
it follows that
2n+1
Ky 2n+1
p’q
Hence (3.19) is proved. We prove (3.20) in the same way.
O
We can now introduce two kinds of bivariate g-Bernoulli polynomials as
Leat0) o,y (ye) = ZB,E”;q(x,y) - (3.21)
epq(1)— ’ n]p.q!
and
[ep q(x ) ) t
s1n (yt) = B (x,y) . (3.22)
epg)—1"""1 Z npd [n]p.q!

Upon setting x = y = 0 for both polynomials in (3.21) and (3.22), we have B,(f,g,,q (0,0)=
B,ﬁf},,q (0,0) := By, p,q which are called (p,q)-Bernoulli polynomials defined in [3].
When y = 0 in (3.21) and (3.22), we get the usual (p,q)-Bernoulli polynomials,

denoted by By, p 4(x), see [3,11].
Next, we give some basic properties of these polynomials.
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Theorem 7. B,(,f;,q (x,y) and B,(,S’;,,q (x,y) can be represented in terms of (p,q)-
Bernoulli numbers as follows

n - -

n
Bhqe) =31 1 | BrpaCotopa (). (3.23)
k=0~ dpa4
and )
n
B, ,(x.y) = Z L B, p.gSn—k.p.g(X. ), (3.24)
k=0o*" -p.q

Proof. Using the Cauchy product rule, we have

o0
t" t
Z Bﬁfl,q(x’y)[ Tpa! = — lep,q(xt)cosp,q(yt)

nlpq!  epq(t)

= (ZB "] ) (ZC””(X Dip )

n=0
o0
n "
= (X[4] BeraCorpaten]) ot
n=0 \k=0 P [np.q!
which proves (3.23). The proof of (3.24) is similar. 0

We now state the following theorem.

Theorem 8. The following connection formulas are valid
[5]
n 2k
Bpatrn) = 3 V| | Brainator®*, G2s)
P

and
(s) o k n (351 | 2k+1
bg(¥.) = Z( D oppq | Brmimakpg@p2 )y H(326)
P4
Proof. The formula (3.25) follows from (3.7) since

o0

Z B 2.q (X y)[ = tep,q(x_t)l cosp.q(¥t)

0 g epq(t)

n=

|
P
]38
=
S
N
_Q
~
=
R
S
N
18
T
~I
p—a
—_— S
S|
S
— N'S)
p—
~
~
p—
[\]
S
v
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The proof of (3.26) is similar via (3.8). ]
Theorem 9. The following connection formulas are valid
n k+1
p(3) [h 5©
Crpq(x,y) = Z[k+ DLk | Bripaty) (3.27)
'}
n k+1
PO Tal
Sn,p.q(X,y) = Z[k+ ol k| Brpalry). (3.28)
'}

Proof. From (3.21), we have

o0

B© (x. _ ltepg(x1) _
) = cosp,q(yt) = Cn,pq(x.y) :
;;) P [ ]p,q! epg(t) =171 epq(f) Z e [ ] p.a’
Hence
o0 o0
t" epq(t)—1
Cn,p.q(x.y) = 24 B (x,y)
,12:;) [n]p.q! t ,12;) npd [n ]p,q!
00 (n+1) n o0
_ B© (
= .Y)
(S i) (S )
n k+1
S (T n ] B o
=0 \ie Ok+1]pq X [n]p.q!
Thus (3.27) follows. (3.28) is proved in a similar way. O
Proposition 4. For every n € N, the following identities hold
B} g (18,4 x),9) = B, 4 (x.3) = []p.g Cn1,p,g (. 7), (3.29)
By g (1@p,g X)) = B}, ,(x.) = [nlp.g Sn—1,p.q(x. )- (3.30)
Proof. We have
o0
1B, 4 x)t]
(C) ((1 o) x) y) — tep’q[( D.q cos (yt)
,,2;, npd pa [n ]p,q! ep,q(t)—1 P4
tepg(xt)lep () —1+1]
= : ; COS 9 (y[)
epg(t)—1 P-4
tepq(xt)
=tep,q(xt)cospq(yt)+ i —C08p 4 (y1)
ep, q( )—1

B e
B Z Cn.pa [ lp.g Z ,p,q(X,y) [nlp.g!

which proves (3.29). The identity (3.30) is proved similarly. O
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Corollary 2. The following relations hold
BS) g (1) = By g (0.3) = 20+ 1 g (-1 p3) 2,
BY) , (13— BS) , ,0.) = nlp g (—1)"+ pCTa D y2e 1,

Proof. If we replace n by 2n + 1 in (3.29), and x by 0, we obtain

BY) 1 (1) =B (0.3) = 21+ 11p.gCan pg (0. 7).

The first relation is proved since from (3.9) we have C2, 4(0,y) = (—1)”p(22n)y2"
The second relation is proved similarly. O

Proposition 5. For every n € N, the following identities hold

n -

n
B\ (x®pq2) ) =D | 1 | Brpa)Cakpq(y.2), (3.31)
k=0~ dp4
and
n -n B
B g @®pg ) =D | 1 | Brpg(@)Sntpq(v.2), (3.32)
k=0~ -P4

Proof. We have

o0
te ((X b q Z)f)
B} ¢ (x®pg2).y) = PP cosp g (V1)
’;) n,p,q p.q [ ]pq ep,q(t)—l D.q
tepq(xt)
= —’ X epq(zt)cosy 4(yt)
ep, q(t) . D.q D,q
o0 tn
= ZB pa (g Y Crpay. )
]p -] \;,=o [nlp.q!
n n
= Z Z k| Bepa@Ck(:2) | o
n=0 \k=0 b4
which proves (3.31). The proof of (3.32) is similar. ]
Proposition 6. For every n € N, the following identities hold
n r -
n n—k _
B (x@pq.n=>"| 1 | pPU2)BE oyt (333
k=0- -PA
and
n - -
n n—k —
B, ((x@pg .= |1 | pP2BE oyt 334

k=oL = dp.a
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Proof. We have

oo

n
BE), o (x Bpg ), ) = L2t C a0 o
,,2;) n,p,q p.q [ ]pq ep,q(t)—l P.q
tep q(xt)
— (%I‘;(qﬁ COSp’q (yt) X ep’q (Zt)
3 ).
= B(C) p ’21 n
o0 n n
— n "3 k)B(c) ( n—k) !
= k..o (X Y)Z ;
r;) (1;) [ k L,q P [n]q!
which proves (3.33). The proof of (3.34) is similar. ]
Proposition 7. The following equations can be concluded
n
n+1 n+1—k
> [ . ] pTTIBE (x.y) =+ 1pgCrpa(x.y). (339
k=0 P4
n
n+1 n+1—k
3 [ B ] pUTIBY () =+ 1lpgSnpg(x.y).  (3.36)
k=0 P4

Proof. From (3.33), we have

n
(c) () n+1 n+1-ky (c)
Bncii—lpq((x@lhq 1)»y)_BnC:|_1’p,q(x,y)=Z|: k :| P( 2 )kap,q(xJ’)-
k=0 P-4
Hence, by using (3.29), relation (3.35) is derived. The proof of (3.36) is concluded
in a similar way. 0

Corollary 3. Relations (3.35) and (3.36) imply that

n
n+1 n+1—k
X[ ey

k=0
_ (—l)m[Zm—i—l]p,qp(zg’)yzm if n=2m isodd,
0 if n=2m+1 iseven,
and
[ n+1 +1—k
X[ 0
k=0 p.q

0 if n=2m isodd,
(=D™[2m +2]p,qp(2m2+1)y2m+1 if n=2m+1 iseven.
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Corollary 4. For every n € N, the following partial (p,q)-differential equations
hold

Dp.g.x Brgc,;,q (x.y) =[nlp,q B;SC—)I,p,q (px.y),

Dp.g.y Br(f;),q (x,y) =—[nlpq By(zc_)1,p,q (x,py).

DpgxBE) 4 (x.3) = 11pg B, o(px. ),

and

Dp.q.yB)(x.y) = nlpg B, .o (x. 1) (3.37)

Corollary 5. The following equations are valid
1
2n
/(; Béil)’p,q(px’y)dprqx = (_l)np( 2 )yzns

1 2n+1
/0 B 1 pa(Px.Y)dp g = (=111 pT) y2n41

which are proved by combining Proposition 4 and Corollary 2 using the definition of
the (p,q)-integral.
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