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We present a unified treatment of the Elliott-Yafet (EY) and the D’yakonov-Perel’ (DP) spin-relaxation mech-
anisms using the Mori-Kawasaki formula, which gives the spin-relaxation rate to lowest order in the spin-orbit
coupling (SOC) but to infinite order in the quasi-particle scattering rate,Γ. We consider a four-state Hamiltonian
of the conduction and a nearby (valence) band with spin degeneracy, including SOC between adjacent bands
(inter-SOC) and within the same band (intra-SOC). We find in agreement with the expectations that intra-SOC
yields the DP- whereas the inter-SOC the EY-like result.However, we identify parameter domains ofΓ and
the band structure where a crossover occurs between the two types of spin-relaxation mechanisms. The result
ultimately connects the EY and the DP spin-relaxation mechanisms into a unified description and it leads to a
better understanding of spin-relaxation in strongly correlated systems and where band degeneracy plays a role
such as e.g. in graphene.

PACS numbers: 76.30.Pk, 71.70.Ej, 75.76.+j

Introduction. Spintronics is an emerging new paradigm
which intends to perform calculations and store information
using the spin-degree of freedom of electrons andit could
eventuallyreplace conventional electronics [1]. A future spin-
tronic device would operate with a spin-polarized ensembleof
electrons whose spin-state is manipulated in a transistor-like
configuration and is read out with a spin-detector (orspin-
valve). Clearly, the utility of spintronics relies on whether the
spin-polarization of the electron ensemble can be maintained
sufficiently long.The basic idea behind spintronics is that co-
herence of a spin-ensemble persists longer than the coherence
of electron momentum due to the relatively weaker coupling
of the spin to the environment. The coupling is relativisticand
hasthus a relatively weak effect known as spin-orbit coupling
(SOC).

The time characterizing the decay of spin-polarization is
the so-called spin-relaxation time (often also referred toas
spin-lattice relaxation time),τs. It can be measured either
using electron spin-resonance spectroscopy (ESR) [2] or in
spin-transport experiments [3, 4].Much as the theory and ex-
periments of spin-relaxation measurements are developed,it
remains an intensively studied field for novel materials; e.g.
the value ofτs is the matter of intensive theoretical studies
[5–11] and spin-transport experiments [12–15] in grapheneat
present.

Conventionally, the theory of spin-relaxation in metals
and semiconductors is discussed alongdisjoint avenues, the
so-called Elliott-Yafet (EY) and the D’yakonov-Perel’ (DP)
mechanisms due to reasons described below. The EY theory
[16, 17] describes spin-relaxation in metals and semiconduc-
tors with inversion symmetry. Therein, the SOC does not split
the spin-up/down states (|↑〉, |↓〉) in the conduction band [18],
however the presence of a near lying band weakly mixes these
states while maintaining the energy degeneracy. The nomi-
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FIG. 1. Schematic relaxation processes: a) the Elliott-Yafet mecha-
nism, b) the D’yakonov-Perel’ mechanism. Note that spin-scattering
occurs rarely in the EY scenario (typically for every104..106 th scat-
tering in alkali metals), whereas the spin direction continuously pre-
cesses around the internal magnetic field due to SOC in the DP sce-
nario.

nally up state reads:
∣
∣
∣↑̃
〉

= ak |↑〉 + bk |↓〉 (hereak, bk are

band structure dependent) andbk/ak = L/∆, whereL is
the SOC matrix element between the adjacent bands and∆
is their separation. E.g. in alkali metalsL/∆ ≈ 10−2..10−3

[Ref. 17]. Elliott showed using first order time-dependent per-
turbation theory that an electron can flip its spin with proba-
bility (L/∆)

2 at a momentum scattering event. As a result,
the spin scattering rate (Γs = ~/2τs) reads:

http://arxiv.org/abs/1211.0826v1
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Γs,EY ≈

(
L

∆

)2

Γ, (1)

whereΓ = ~/2τ is the quasi-particle scattering rate withτ
being the corresponding momentum scattering (or relaxation)
time. This mechanism is schematically depicted in Fig. 1a.

For semiconductors with zinc-blende crystal structure, such
as e.g. GaAs, the lack of inversion symmetry results in an
efficient relaxation mechanism, the D’yakonov-Perel’ spin-
relaxation [19]. Therein, the spin-up/down energy levels in
the conduction bands are split. The splitting acts on the elec-
trons as if an internal,k-dependent magnetic field would be
present, around which the electron spins precess with a Lar-
mor frequency ofΩ(k) = L (k)/~. HereL (k) is the energy
scale for the inversion symmetry breaking induced SOC. Were
no momentum scattering present, the electron energies would
acquire a distribution according to~Ω(k). In the presence
of momentum scattering which satisfiesΩ(k) · τ ≪ 1, the
distribution is "motionally-narrowed" and the resulting spin-
relaxation rate reads:

Γs,DP≈
L 2

Γ
. (2)

This situation is depicted in Fig. 1b. Clearly, the EY and DP
mechanisms result in different dependence onΓ which isof-
ten usedfor the empirical assignment of the relaxation mech-
anism [20].

The observation of an anomalous temperature dependence
of the spin-relaxation time in MgB2 [21] and the alkali ful-
lerides [22] and the development of a generalization of the
EY theory highlighted that the spin-relaxation theory is not
yet complete. In particular, the first order perturbation theory
of Elliott breaks down when the quasi-particle scattering rate
is not negligible compared to the other energy scales. One ex-
pects similar surprises for the DP theory when the magnitude
of e.g. the Zeeman energy is considered in comparison to the
other relevant energy scales.

Herein, we develop a general and robust theory of spin-
relaxation in metals and semiconductors including SOC be-
tween different bands and the same bands, provided the crys-
tal symmetry allows for the latter. We employ the Mori-
Kawasaki theory which considers the kinetic motion of the
electrons under the perturbation of the SOC. We obtain a gen-
eral result which contains both the EY and the DP mecha-
nisms as limits when the quasi-particle scattering and the mag-
netic field are small. Interesting links are recognized between
the two mechanisms when these conditions are violated: the
EY mechanism appears to the DP-like whenΓ is large com-
pared to∆ and the DP mechanism appears to be EY-like when
the Zeeman energy is larger thanΓ. Qualitative explanations
are provided for these analytically observed behaviors.

Results and Discussion.The minimal model of spin-
relaxation is a four-state (two bands with spin) model Hamil-
tonian for a two-dimensional electron gas (2DEG) in a mag-

|1, ↓〉

|1, ↑〉

|2, ↓〉

|2, ↑〉

k

ek

µ

kF

∆Z

∆Z

∆(kF)∆

FIG. 2. Color online. The band structure of a 2DEG in a magnetic
field. The effects of the weak SOC are not shown.Vertical arrows
show the energy separations between the relevant bands.

netic field, which reads:

H = H0 +HZ +Hscatt+HSO (3a)

H0 =
∑

k,α,s

ǫk,α c†k,α,sck,α,s (3b)

HZ = ∆Z

∑

k,α,s

s c†k,α,sck,α,s (3c)

HSO =
∑

k,α,α′,s,s′

Lα,α′,s,s′ (k) c
†
k,α,sck,α′,s′ , (3d)

whereα = 1 (nearby),2 (conduction) is the band index with
s = (↑) , (↓) spin,ǫk,α = ~

2k2/2m∗
α − δα,1∆ is the single-

particle dispersion withm∗
α = (−1)αm∗ effective mass and

∆ band gap,∆Z = gµBBz is the Zeeman energy.Hscatt is re-
sponsible for the finite quasi-particle lifetime due to impurity
and electron-phonon scatteringandLα,α′,s,s′ (k) is the SOC.

The corresponding band structure is depicted in Fig. 2.The
eigenenergies and eigenstates without SOC are

ek,α,s = ǫk,α + s∆Z (4a)

|1, ↓〉 = [1, 0, 0, 0]
⊺

|1, ↑〉 = [0, 1, 0, 0]
⊺ (4b)

|2, ↓〉 = [0, 0, 1, 0]
⊺

|2, ↑〉 = [0, 0, 0, 1]
⊺
. (4c)

The most general expression of the SOC for the above lev-
els reads:
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inversion symmetry broken inv. symm.

L 0 finite

L finite finite

εk,↑ − εk,↓ 0 finite

TABLE I. Effect of the presence or absence of the inversion sym-
metry on the intra- (L ) and inter-band (L) SOC and on the energy
splitting of spin-states in the same band,εk,↑ − εk,↓.

Lα,α′,s,s′ (k) =







L↑↑ L↓↑ L↑↑ L↓↑

L↑↓ L↓↓ L↑↓ L↓↓

L↑↑ L↓↑ L↑↑ L↓↑

L↑↓ L↓↓ L↑↓ L↓↓







, (5)

whereLss′ (k), Lss′ (k) are the wavevector dependent intra-
and inter-band terms, respectively. The terms mixing the same
spin direction can be ignored as they commute with theSz

operator and do not cause spin-relaxation. The SOC terms
contributing to spin-relaxation are

Lα,α′,s,s′ (k) =







0 L 0 L
L † 0 L† 0
0 L 0 L

L† 0 L † 0







. (6)

Table I. summarizes the role of the inversion symmetry on
the SOC parameters. For a material with inversion symme-
try, the Kramers theorem dictates (without magnetic field) that
ǫ↑ (k) = ǫ↓ (k) and thusL = 0, which term would otherwise
split the spin degeneracy in the same band. When the inver-
sion symmetry is broken,L is finite and the previous degen-
eracy is reduced to a weaker condition:ǫ↑ (k) = ǫ↓ (−k) as
the time-reversal symmetry is retained.

We consider the SOC as the smallest energy scale in our
model(L (kF) , L (kF)), while we allow for a competition of
the other energy scales, namely∆Z, Γ and∆, which can be of
the same order of magnitude, as opposed to the conventional
EY or DP case. We are mainly interested in the regime of a
weak SOC, moderate magnetic fields, high occupation, and a
large band gap.We treat the quasi-particle scattering rate to
infinite order thus large values ofΓ are possible.

The energy spectrum of the spins (or the ESR line-
width) can be calculated from the Mori-Kawasaki formula
[23, 24], which relies on the assumption that the line-shapeis
Lorentzian. This was originally proposed for localized spins
(e.g. Heisenberg-type models) but it can be extended to itin-
erant electrons. The standard (Faraday) ESR configuration
measures the absorption of the electromagnetic wave polar-
ized perpendicular to the static magnetic field. The ESR signal
intensity is

I (ω) =
B2

⊥ω

2µ0
χ′′
⊥ (q = 0, ω)V, (7)

whereB⊥ is the magnetic induction of the electromagnetic
radiation,χ′′

⊥ is the imaginary part of the spin-susceptibility,
µ0 is the permeability of vacuum, andV is the sample vol-
ume. The spin-susceptibility is related to the retarded Green’s
function as

χ′′
⊥ (ω) = −ImGR

S+S− (ω) , (8)

with S± = Sx ± iSy, from which the ESR spectrum can be
obtained.

The equation of motion of theS+ operator reads as

dS+

dt
=

i

~

[
H, S+

]
=

i

~

[
HZ, S

+
]

︸ ︷︷ ︸

−i∆Z
S+

~

+
i

~

[
HSO, S

+
]

︸ ︷︷ ︸

iA

, (9)

whereA = 1
~
[HSO, S

+] is the consequence of the SOC.The
Green’s function ofS+S− is obtained from the Green’s func-
tion of A†A as

GR
S+S− (ω) =

2 〈Sz〉

ω − ∆Z

~

+
−〈[A (0) , S− (0)]〉+GR

A†A
(ω)

(
ω − ∆Z

~

)2 .

(10)

The second term is zero without SOC thus a completely sharp
resonance occurs at the Zeeman energy. The line-shape is
Lorentzian for a weak SOC:

GR
S+S− (ω) =

2 〈Sz〉

ω − ∆Z

~
− Σ(ω)

~

, (11)

where the self-energy is

Σ (ω) =
−〈[A (0) , S− (0)]〉+GR

A†A
(ω)

2 〈Sz〉
, (12)

which is assumed to be a smooth function ofω near∆Z/~.
The spin-relaxation rate is equal to the imaginary part of

Σ (ω) as

Γs =
ImGR

A†A

(
∆Z

~

)

2 〈Sz〉
. (13)

TheGR
A†A

(ω) correlator is obtained from the Matsubara
Green’s function ofA†A, given by

GA†A (iνm) =

ˆ β~

0

dτeiνmτ
〈
TτA

† (τ)A (0)
〉
. (14)

The effect ofHscatt is taken into account in the Green’s func-
tion by a finite, constant momentum-scattering rate [25].

The most compact form of the spin-relaxation is obtained
when the Fermi energy is not close to the bottom of the con-
duction band (µ & △) and a calculation (detailed in the Sup-
plementary Material) using Eq. (13) leads to our main result:

Γs =
4Γ |L (kF)|

2

4Γ2 +∆2
Z

+
4Γ |L (kF)|

2

4Γ2 +∆2 (kF)
, (15)
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FIG. 3. Γs as a function ofΓ according to Eq. (32) concerning sep-
arately the contributions due to intra- (upper) and inter-band (lower)
SOC’s. The insets are schematics of the band-structure including the
broadening due toΓ (double arrows indicate the matrix elements).
The arrows indicate the equivalence of the different spin-relaxation
regimes. The conventional DP and EY scenarios are those in the
top-right and bottom-left corners, respectively.

Results in more general cases are discussed in the Supplemen-
tary Material.
The contributions from intra- (L (kF)) and inter-band
(L (kF)) processes are additive to lowest order in the SOC
and have a surprisingly similar form. A competition is ob-
served between lifetime induced broadening (due toΓ) and
the energy separation between states (∆(kF) or∆Z). The sit-
uation, together with schematics of the corresponding band-
structures, is shown in Fig. 3. When the broadening is much
smaller than the energy separation, the relaxation is EY-like,
Γs ∝ Γ, even when the intra-band SOC dominates, i.e. for
a material with inversion symmetry breaking. This situation
was also studied in Ref. 26 and it may be realized in III-V

semiconductors in high magnetic fields. For metals with in-
version symmetry, this is the canonical EY regime.

When the states are broadened beyond distinguishabil-
ity (i.e. Γ ≫ ∆(kF) or ∆Z), spin-relaxation is caused
by two quasi-degenerate states and the relaxation is of DP-
type,Γs ∝ 1/Γ, even for a metal with inversion symmetry,
L = 0. The latter situation was observed experimentally in
MgB2 (Ref. 21) and the alkali fullerides (K3C60 and Rb3C60)
(Ref. 22), which are strongly correlated metals with largeΓ.
When the intra-band SOC dominates, i.e. for a strong inver-
sion symmetry breaking, this is the canonical DP regime.

Similar behavior can be observed in other models (see
Ref. [25]), Γs ∝ Γ andΓs ∝ 1/Γ remain valid in the two
different limits but the intermediate behavior is not universal.

A particularly compelling situation is the case of graphene
where a four-fold degeneracy is present at the Dirac-point and
both inter- and intra-band SOC are present thus changing the
chemical potential would allow to map the crossovers pre-
dicted herein.

Conclusions.In conclusion, we presented a unified treat-
ment of the Elliott-Yafet the the D’yakonov-Perel’ relaxation
mechanisms. We found that depending on the quasi-particle
scattering rate and the energy separation between states con-
nected by the SOC terms, the spin-relaxation time crosses
over smoothly from a DP to an EY-like behavior. In par-
ticular, theΓ ≪ ∆(kF) region of the EY term corresponds
to that of the DP in theΓ ≪ ∆Z region, since the lifetime
broadening is small and the separate energy states can clearly
be identified. As opposed to this, theΓ ≫ ∆(kF) regions
smears out the bands, connected by the SOC, causing them
to be quasi-degenerate in terms of their energy.These ob-
servations provide the ultimate link between these two spin-
relaxation mechanisms, which are conventionally thought as
being mutually exclusive.
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259374-Sylo, the Hungarian Scientific Research Funds Nos.
K72613, K73361, K101244, PD100373, the New Széchenyi
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Curie Grants PIRG-GA-2010-276834. BD acknowledges the
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SUPPLEMENTARY INFORMATION

ThisSupplementary Materialis organized as follows: we first discuss the technical details of the calculations, i.e. how Eq. (15)
is obtainedfrom Eq. (14). Second, we discuss the generalization of the spin-relaxation for two kinds of band dispersions
(quadratic and linear or linearized) when the restrictionsconcerning the relative magnitude of the parameters (∆, µ,m∗) are
lifted. We arrive at the overall conclusion that while the quantitative details of theΓ dependent spin-relaxation (Γs) are modified
and no closed form of the result can be provided in the most general case, the overall trends, which characterize the EY and
DP behaviors and in particular the crossover between the two, remain valid. Wherever possible, we provide closed form results
though.Finally, we discuss the spin-relaxation for a model where only Rashba-type spin-relaxation is present.
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I. TECHNICAL DETAILS OF THE CALCULATIONS

We consider Eq. (14) of the main manuscript as a starting point.. The Matsubara Green’s function ofA†A can be written as

GA†A (iνm) =
1

β~

∑

iωn,k,α,α′,s,s′

∣
∣
〈
k, α, s

∣
∣A†

∣
∣k, α′, s′

〉∣
∣
2
Gα,s (iωn, k)Gα′,s′ (iωn + iνm, k) , (16)

where

Gα,s (iωn, k) =
1

iωn − 1
~
(ek,α,s − µ) + iΓ

~
sgn(ωn)

(17)

is the Matsubara Green’s function of fermionic field operators in band (α) and spin (s). The effect ofHscatt is taken into account
by the finite momentum-scattering rate,Γ.

Using the relationship between the Green’s function and spectral density, the Matsubara summation in Eq. (16) yields

GA†A (iνm) =
1

4π2

∑

k,α,α′,s,s′

∣
∣
〈
k, α, s

∣
∣A†

∣
∣k, α′, s′

〉∣
∣
2
ˆ ∞

−∞

ˆ ∞

−∞

dω′dω′′ nF (ω
′′)− nF (ω

′)

iνm − ω′′ + ω′
ρα,s (ω

′, k) ρα′,s′ (ω
′′, k) , (18)

where

ρα,s (ω, k) =
−2Γ

~
[
ω − 1

~
(ek,α,s − µ)

]2
+
(
Γ
~

)2 (19)

is the spectral density. By taking the imaginary part after analytical continuation, the energy integrals can be calculated at zero
temperature. Then, by replacing momentum summation with integration, we obtain

ImGR
A†A (ω) =

A

8π2

ˆ ∞

0

dk k
∑

α,α′,s,s′

∣
∣
〈
k, α, s

∣
∣A†

∣
∣k, α′, s′

〉∣
∣
2
ξα,s,α′,s′ (k, ω) , (20)

where

ξα,s,α′,s′ (k, ω) =
4~Γ

4Γ2 + (ẽk,α,s − ẽk,α′,s′ − ~ω)2
×

×

[

arctan

(
ẽk,α,s
Γ

)

− arctan

(
ẽk,α′,s′

Γ

)

− arctan

(
ẽk,α,s − ~ω

Γ

)

+ arctan

(
ẽk,α′,s′ + ~ω

Γ

)]

+

+
4~Γ2

(ẽk,α,s − ẽk,α′,s′ − ~ω)
[

4Γ2 + (ẽk,α,s − ẽk,α′,s′ − ~ω)
2
] ln

[

ẽ2k,α,s + Γ2
] [

ẽ2k,α′,s′ + Γ2
]

[

(ẽk,α,s − ~ω)
2
+ Γ2

] [

(ẽk,α′,s′ + ~ω)
2
+ Γ2

] (21)

andẽk,α,s = ek,α,s − µ, A is the area ofthe2DEG. The matrix elements of theA† operator are

〈
k, α, s

∣
∣A†

∣
∣k, α′, s′

〉
=








−L 0 −L 0

0 L 0 L

−L 0 −L 0

0 L 0 L








. (22)

We determinethe expectation value of thez-component of electron spin following similar steps as

〈Sz〉 =
∑

iωn,k,α,s

〈
k, α, s

∣
∣Sz

∣
∣k, α, s

〉
Gα,s (iωn, k) =

∑

k,α,s

〈
k, α, s

∣
∣Sz

∣
∣k, α, s

〉
ˆ ∞

−∞

dω′

2π
nF (ω

′) ρα,s (ω
′, k) =

=
∑

k,α,s

〈
k, α, s

∣
∣Sz

∣
∣k, α, s

〉
ζα,s (k) , (23)

where

ζα,s (k) =
1

2
−

1

π
arctan

(
ẽk,α,s
Γ

)

. (24)



6
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∆(kF)

∆Z

∆Z

FIG. 4. Band structure of quadratic dispersion model. Vertical arrows show the energy separations between the relevantbands.

The matrix elements of theSz operator are

〈
k, α, s

∣
∣Sz

∣
∣k, α, s

〉
=

~

2








−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1








. (25)

The spin-relaxation rate can be obtained as

Γs =
ImGR

A†A

(
∆Z

~

)

2 〈Sz〉
= Γintra

s + Γinter
s . (26)

We note this is the sum of intra- and inter-band terms which are described separately.

II. SPIN-RELAXATION FOR DIFFERENT MODEL DISPERSIONS

A. Quadratic dispersion model

First, we discuss a quadratic model withtheǫk,α = ~
2k2/2m∗

α − δα,1∆ single-particle dispersion. In the conduction band,
the quasi-particles are electron-type (i.e.m∗

2 > 0) however the quasi-particles of a nearby band are hole-type(i.e. m∗
2 < 0).

The band structure is depicted in Fig. 4. This model describes well two bands of the spectrum of semiconductors, howeverin a
realistic case (e.g. for Si and GaAS)there aremorenearby bands characterized by different band gaps and effective masses.

1. Theintra-band term

An important and general limit of the model is when the Zeemann energy is much smaller than the band gap (i.e.∆Z ≪ ∆),
andboth thespin-up and spin-down states are occupied in the conductionband (i.e.∆Z ≪ µ). In this limit, the intra-band term
can be expressed as

Γintra
s =

4 |L (kF)|
2
Γ

4Γ2 +∆2
Z

. (27)

This term comes from processeswithin the conduction band and the nearby band does not give a contribution to the intra-band
term.
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2. Theinter-band term in the general case

In the∆Z ≪ µ,∆ limit, the inter-band term can be determined but it takes a more complicated form. When the broadening
is much smaller than the energy separation at the Fermi wavenumber (i.e.Γ ≪ ∆(kF) = ∆ + (1−m∗

2/m
∗
1)µ) the inter-band

spin-relaxation has the form of

Γinter
s =

4 |L (kF)|
2

∆2 (kF)
Γ, (28)

which is directly proportional to the momentum-scatteringrate.
When the broadening is much larger than the energy separation (i.e.Γ ≫ ∆(kF)) the spin-relaxation reads

Γinter
s =

−4m∗
1m

∗
2 |L (kF)|

2

(m∗
2 −m∗

1)
2

1

Γ
, (29)

which is inversely proportional to the momentum-scattering rate.

3. Theinter-band term in the case ofm∗
1 = −m∗

2

If the effective masses in the two bandshave different signs but the same magnitude, the spin-relaxation rate is obtained as

Γinter
s =

4 |L (kF)|
2
Γ

4Γ2 +∆2 (kF)



1 +
Γ ln Γ2+µ2

Γ2+(∆+µ)2

(∆ + 2µ)
(

π + arctan µ
Γ − arctan ∆+µ

Γ

)



 . (30)

4. Theinter-band term in the case ofm∗
1 = −m∗

2 andµ & ∆

When theFermi energy is not close to the bottom of the conduction band, the logarithmic termcan beneglected and we obtain
the most compact form of the inter-band spin-relaxation rate as

Γinter
s =

4 |L (kF)|
2 Γ

4Γ2 +∆2 (kF)
. (31)

5. Summary of theresult for the quadratic model

Summing of intra- and inter-band term yields Eq. (15) of the paper:

Γs =
4 |L (kF)|

2 Γ

4Γ2 +∆2
Z

+
4 |L (kF)|

2 Γ

4Γ2 +∆2 (kF)
. (32)

This is the main result, which is presented in the manuscript.
We note that similar expressions can be obtained if the chemical potential lies in the nearby band.

B. Linear band dispersion models

Herein, we discuss the spin-relaxation time for linear model dispersions. The importance of studying this model is two-fold.
First, every non-linear band dispersions can be linearizedat the Fermi wave-vector and the plausible expectation is that the
spin-relaxation rate can be obtained as a sum of the linearized segments. Second, spin-relaxation can be calculated forthe linear
band dispersion model and as we show below, the qualitative result, i.e. dependence ofΓs on Γ for the intra- and inter-band
processes, is unchanged compared to the quadratic band dispersion even if the numerical factors are different. This proves that
our calculation of the spin-relaxation is robust against the details of the band dispersion.

The linear band-dispersion models can take two characteristically different scenarios: those with lines with slopes of the
opposite and the same sign. The situation is depicted in Fig.5. The first situation can be obtained e.g. from linearizing a
quadratic band dispersion in Fig. 4 the Fermi wavenumber andthe second occurs e.g. for MgB2 as shown in Ref. [21].
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m∗
1 < 0

m∗
2 > 0

vF1 = 0

vF2 > 0

ek

µ

∆(kF)

∆Z

∆Z

(a)

vF1 > 0

vF2 > 0

ek

µ

∆1

∆2

∆Z

∆Z

(b)

FIG. 5. Linear band dispersion models, with line slopes of the opposite (a) and the same sign (b). The first situation can be obtained e.g. from
linearizing a quadratic band dispersion in Fig. 4 and the second occurs e.g. for MgB

2
as shown in Ref. 21.

1. Linear band dispersions with the opposite slope

We consider that the higher lying conduction band has a positive Fermi velocity thusǫlin
k,2 = ~vF

2 (k − kF) + µ, where the
Zeeman-energy is neglected. The nearby valence band can be approximated with a flat band with zero Fermi velocity:ǫlin

k,1 =
−∆+ µm∗

2/m
∗
1, where the Zeeman splitting is also neglected too.

Then, our calculation yields for the intra-band contribution to the spin-relaxation rate:

Γintra
s =

4Γ |L (kF)|
2

4Γ2 +∆2
Z

. (33)

Similarly, we obtain for the inter-band term:

Γinter
s =

4 |L (kF)|
2
Γ

Γ2 +∆2 (kF)
, (34)

which look likes as if it was obtained from the quadratic model Eq. (31) except the multiplication factor of theΓ2 in the
denominator. This is the result that we considered a zero Fermi velocity of the valence band.

2. Linear band dispersions with the same slope

The second linear model has two linear bands (apart from the spin) with positive Fermi velocities of different magnitudes.
The two bands cross the Fermi level at two separate points. The band structure of this model is depicted in Fig. 5b. This model
describes the spectrum around the Fermi energy in e.g. MgB2 as it was shown in Ref. 21.

The intra-band term is similar to the previous results and itreads:

Γintra
s =

4Γ |L (kF)|
2

4Γ2 +∆2
Z

. (35)

The inter-band term can be expressed as

Γinter
s =

4Γ |L (kF)|
2

(∆1+∆2)
2

∆1∆2
Γ2 +∆1∆2

, (36)
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where∆1 and∆2 are the distances of the two bands when one of the bands cross the Fermi level. The formula is symmetric in
these two variables which means that the two bands change their roles as conduction and valence bands for the two Fermi level
crossing points.

A special case is whenvF
1 = vF

2 , i.e. when the two linear bands are parallel therefore∆1 = ∆2 = ∆. This yields a result
which is similar to the case of the quadratic dispersion and reads:

Γinter
s =

4Γ |L (kF)|
2

4Γ2 +∆2
. (37)

III. THE SPIN-RELAXATON FOR A MODEL WITH RASHBA-LIKE SOC

Now we determine the spin-relaxation rate of a model where only Rashba-type SOC is present. The Rashba-like SOC can be
written as

HSO =
∑

k,α

~λ (σxky − σykx) , (38)

whereσx, σy are the Pauli matrices. The matrix element of intra-band SOCcan be expressed as|L (k)| = ~λk. We can expand
Eq. (32) to get

Γs =
8m∗

2µλ
2

4Γ2 +∆2
Z
. (39)

Using the spin and momentum life-times instead of relaxation-rates, we obtain

1

τs
=

8m∗
2µλ

2

~2

τ

1 +
(
∆Zτ
~

)2 . (40)

A similar expression was obtained recently (Eq. (40) in [26]) for this particular case.
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