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We present a unified treatment of the Elliott-Yafet (EY) amel D’yakonov-Perel’ (DP) spin-relaxation mech-
anisms using the Mori-Kawasaki formula, which gives thengeiaxation rate to lowest order in the spin-orbit
coupling (SOC) but to infinite order in the quasi-particlatsering rate]". We consider a four-state Hamiltonian
of the conduction and a nearby (valence) band with spin degey, including SOC between adjacent bands
(inter-SOC) and within the same band (intra-SOC). We findgireament with the expectations that intra-SOC
yields the DP- whereas the inter-SOC the EY-like restlbwever, we identify parameter domainsIofand
the band structure where a crossover occurs between the/pws of spin-relaxation mechanisms. The result
ultimately connects the EY and the DP spin-relaxation meisimas into a unified description and it leads to a
better understanding of spin-relaxation in strongly datesl systems and where band degeneracy plays a role
such as e.qg. in graphene.

PACS numbers: 76.30.Pk, 71.70.Ej, 75.76.+j

Introduction. Spintronics is an emerging new paradigm a)
which intends to perform calculations and store infornratio
using the spin-degree of freedom of electrons &ncbuld
eventuallyreplace conventional electronics [1]. A future spin-
tronic device would operate with a spin-polarized enserable
electrons whose spin-state is manipulated in a trandigtr-
configuration and is read out with a spin-detector gpm-
valve). Clearly, the utility of spintronics relies on whether the
spin-polarization of the electron ensemble can be maiethin b)
sufficiently long.The basic idea behind spintronics is that co-
herence of a spin-ensemble persists longer than the cateeren
of electron momentum due to the relatively weaker coupling
of the spin to the environment. The coupling is relativisina
hasthus a relatively weak effect known as spin-orbit coupling
(SOC).

The time characterizing the decay of spin-polarization is

the_ so-c_alled spln-_rela)_(anon time (often also referre@sto FIG. 1. Schematic relaxation processes: a) the Elliotetafecha-
spin-lattice relaxation time)rs. It can be measured either pism, b) the D'yakonov-Perel’ mechanism. Note that spiattsting
using electron spin-resonance spectroscopy (ESR) [2] or iBccurs rarely in the EY scenario (typically for eveiy*..10°th scat-
spin-transport experimentd [3, 4fluch as the theory and ex- tering in alkali metals), whereas the spin direction camtisly pre-
periments of spin-relaxation measurements are develdped,cesses around the internal magnetic field due to SOC in thee®P s
remains an intensively studied field for novel materialg, e. "a"0:

the value ofrs is the matter of intensive theoretical studies

] and spin-transport experime[@—lS] in graplene

present.

Conventionally, the theory of spin-relaxation in metals -
and semiconductors is discussed alaligjoint avenuesthe ~ Nally up state reads‘:T> = ax|1) + b [{) (hereay, by, are
so-called Elliott-Yafet (EY) and the D’yakonov-Perel’ (DP band structure dependent) abd/a, = L/A, wherelL is
mechanisms due to reasons described below. The EY theotlie SOC matrix element between the adjacent bandsAand
[IE,E’] describes spin-relaxation in metals and semicondu is their separation. E.g. in alkali metalsg A ~ 10-2..10~3
tors with inversion symmetry. Therein, the SOC does not spIi[Ref.m]. Elliott showed using first order time-dependestp
the spin-up/down state§f{, |{)) in the conduction banﬂilS], turbation theory that an electron can flip its spin with proba
however the presence of a near lying band weakly mixes thedality (L/A)2 at a momentum scattering event. As a result,
states while maintaining the energy degeneracy. The nomthe spin scattering rat&'{ = //27s) reads:
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wherel' = 1/27 is the quasi-particle scattering rate with H
being the corresponding momentum scattering (or relaxptio
time. This mechanism is schematically depicted in Eig. 1a.
For semiconductors with zinc-blende crystal structurehsu
as e.g. GaAs, the lack of inversion symmetry results in an
efficient relaxation mechanism, the D’yakonov-Perel’ spin
relaxation ]. Therein, the spin-up/down energy levals i
the conduction bands are split. The splitting acts on the-ele
trons as if an internalk-dependent magnetic field would be
present, around which the electron spins precess with a Lar-
mor frequency of)(k) = Z(k)/h. Here Z (k) is the energy
scale for the inversion symmetry breaking induced SOC. Were
no momentum scattering present, the electron energiesiwoul
acquire a distribution according t@2(k). In the presence
of momentum scattering which satisfig@gk) - 7 < 1, the
distribution is "motionally-narrowed" and the resultingrs
relaxation rate reads: 11,4)

12,1)

W

A (kr)

1, 1)

T ~ {2 ) FIG. 2. Color online. The band structure of a 2DEG in a magnetic
sbP r - field. The effects of the weak SOC are not showfertical arrows

S ) o show the energy separations between the relevant bands.
This situation is depicted in Fi§] 1b. Clearly, the EY and DP

mechanisms result in different dependencd omhich is of-
ten usedor the empirical assignment of the relaxation mech-petic field, which reads:
anism Eb].

The observation of an anomalous temperature dependence

of the spin-relaxation time in MgB[|2_J|] and the alkali ful- H = Ho + Hz + Hecar+ Hso (3a)
lerides I@Z] and the development of a generalization of the ;

EY theory highlighted that the spin-relaxation theory ig no Ho = Z €k,a Ch s Chya,s (3b)
yet complete. In particular, the first order perturbatiosctty k,o,s

of Elliott breaks down when the quasi-particle scatteriatg r Hy = Ay Z S 011 o sChas (3c)
is not negligible compared to the other energy scales. One ex has

pects similar surprises for the DP theory when the magnitude
of e.g. the Zeeman energy is considered in comparison to the
other relevant energy scales.

Herein, we develop a general and robust theory of Spinghareq, — 1 (nearby)2 (conduction) is the band index with
relaxation in metals and semiconductors including SOC be; _ (1), (L) spin, exa = H2k2/2m* — 6,1 A is the single-
tween different bands and the same bands, provided the C,ryﬁérticle dispersion \}vithnj; _ (_1)%m* effective mass and

tal symm.etry aIIows_for the .Iatter. We_ employ t.he Mori- A band gapAy — gusB. is the Zeeman energfiscais re-
Kawasaki theory which considers the kinetic motion of thesponsible for the finite quasi-particle lifetime due to imify

electrons under the perturbation of the SOC. We obtain a gening electron-phonon scatteringd Lo, o, » (k) is the SOC.

e_ral resuII'F V\_/:uchhcor:tt_]ams bo.th trl.elEY agd j[he Dz mecha- The corresponding band structure is depicted in[Big.Ha
nisms as imits when the quasi-particie scattering an thg-m eigenenergies and eigenstates without SOC are
netic field are small. Interesting links are recognized leetw

the two mechanisms when these conditions are violated: the
EY mechanism appears to the DP-like wHers large com-

HSO = Z La,a’,s,s’ (k) CL,%SCk,a’,s” (3d)

’ ’
k,a,a’ s,s

pared toA and the DP mechanism appears to be EY-like when Chias = Ehia T+ SATZ ; (42)
the Zeeman energy is larger thEn Qualitative explanations I1,4) =1[1,0,0,0]" [1,1)=10,1,0,0] (4b)
are provided for these analytically observed behaviors. 12,1) =[0,0,1,0]" |2,1)=[0,0,0,1]T. (4c)

Results and Discussion.The minimal model of spin-
relaxation is a four-state (two bands with spin) model Hamil  The most general expression of the SOC for the above lev-
tonian for a two-dimensional electron gas (2DEG) in a mag-els reads:
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inversion symmetry broken inv. symm. Where B is the magnetic induction of the electromagnetic
P 0 finite radiation,x’| is the imaginary part of the spin-susceptibility,
I finite finite 1o is the permeability of vacuum, and is the sample vol-

ume. The spin-susceptibility is related to the retardece@se

€k, — €k, 0 finite .
T + function as

X1 (w) = =ImGE.g- (w), (8)

. L , .
TABLE |. Effect of the presence or absence of the inversiom-sy with _S = Sy £ iy, from which the ESR spectrum can be
metry on the intra-¢) and inter-band ) SOC and on the energy Obtained.

splitting of spin-states in the same baag, — ek, ;. The equation of motion of th6* operator reads as
ds+ ) ) )
aw L +1_ 2% +1 .2 +
dt A [HaS } A [HZ7S } + A [%5075 }7 (9)
§TT éﬁ Ly Lyp —ing SE iA
_ Ly Ly Ly .
Laats,s (k) = Ly Ly L L |7 () whered = 3 [Hso, ST] is the consequence of the SOThe
Ly, Ly % L Green’s function o655~ is obtained from the Green'’s func-
tion of A A as

where %, (k), Lss (k) are the wavevector dependent intra- B .
and inter-band terms, respectively. The terms mixing theesa ¢:® () _ 2(S:) LT ([A(0), 57 (0)]) + GTyi 4 (w).

. . . . - GS+S7 Ay 2
spin direction can be ignored as they commute with $he w—F£ (w _ A_hz)
operator and do not cause spin-relaxation. The SOC terms (10)
contributing to spin-relaxation are
The second term is zero without SOC thus a completely sharp
0 £ 0 L ; ;
resonance occurs at the Zeeman energy. The line-shape is
Loo ss (k)= Zt 0 LT o (6) Lorentzian for a weak SOC:
DA 0 L 0 2| (5.)
t f 2 (5
L 0z 0 G?’*S* (LU) = Ay S(w) (11)
W T T

Table[l. summarizes the role of the inversion symmetry on
the SOC parameters. For a material with inversion symmeyphere the self-energy is
try, the Kramers theorem dictates (without magnetic fidid} t
¢+ (k) = €; (k) and thusZ = 0, which term would otherwise
split the spin degeneracy in the same band. When the inver-
sion symmetry is brokenZ is finite and the previous degen- o _
eracy is reduced to a weaker conditian:(k) = €, (—k) as which is a_ssumed t_o be a smooth funcUomuqﬁear_AZ/h.
the time-reversal symmetry is retained. The spin-relaxation rate is equal to the imaginary part of
We consider the SOC as the smallest energy scale in odr (w) as
model(.Z (ke) , L (ke)), while we allow for a competition of ImGR (ﬁ)
the other energy scales, namély, I" andA, which can be of [g=—AA A J
the same order of magnitude, as opposed to the conventional 2(Sz)
EY or DP case. We are mamly mterestgd in the regime of a The Gim (w) correlator is obtained from the Matsubara
weak SOC, moderate magnetic f|(_alds, _h|gh occup_atlon, and @reen’s function ofA’ A, given by
large band gapWe treat the quasi-particle scattering rate to
infinite order thus large values bfare possible. Bh .
The energy spectrum of the spins (or the ESR line-  Gara (ivm) = / dreT (T, AT (1) A0)).  (14)
width) can be calculated from the Mori-Kawasaki formula 0
[23,124], which relies on the assumption that the line-stiape The effect ofHscatis taken into account in the Green’s func-
Lorentzian This was originally proposed for localized spins tion by a finite, constant momentum-scattering rate [25].
(e.g. Heisenberg-type models) but it can be extended to itin The most compact form of the spin-relaxation is obtained
erant electrons. The standard (Faraday) ESR configuratioiihen the Fermi energy is not close to the bottom of the con-
measures the absorption of the electromagnetic wave polaguction band{ 2 A) and a calculation (detailed in the Sup-
ized perpendicular to the static magnetic field. The ESResign plementary Material) using Ed.([13) leads to our main result
intensity is

—([A(0), 5™ (0)]) + GF 4 (w)

E(OJ): 2<Sz> )

(12)

(13)

A0|Z (ke)* | AT|L (ke)®
= F -
Xi(g=0.w)V, @ ST A2 AT A ()

(15)
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rsT semiconductors in high magnetic fields. For metals with in-
(op) version symmetry, this is the canonical EY regime.
—F%— When the states are broadened beyond distinguishabil-
< pf ity (i,e. T > A(kg) or Az), spin-relaxation is caused
2 by two quasi-degenerate states and the relaxation is of DP-
§ » type,I's o« 1/I', even for a metal with inversion symmetry,
- < = 0. The latter situation was observed experimentally in
~T MgB, Ref.) and the alkali fullerides @Cgo and R Cgp)
‘ (Ref.[22), which are strongly correlated metals with laFge
Is / ~ Ay r When the intra-band SOC dominates, i.e. for a strong inver-
sion symmetry breaking, this is the canonical DP regime.
Similar behavior can be observed in other models (see
- @ LEL Ref. ]), I's x I'andI's « 1/T remain valid in the two
g different limits but the intermediate behavior is not umaad.
g __________ A particularly compelling situation is the case of graphene
- - ) where a four-fold degeneracy is present at the Dirac-poidt a
~T \ both inter- and intra-band SOC are present thus changing the
‘ r R chemical potential would allow to map the crossovers pre-
“A (ke T dicted herein.

Conclusions.In conclusion, we presented a unified treat-

FIG. 3. T's as a function of” according to Eq.[{32) concerning sep- ment of the Elliott-Yafet the the D’yakonov-Perel’ relaiat
arately the contributions due to intra- (upper) and in@nd(lower)  mechanisms. We found that depending on the quasi-particle
SOCs. The insets are schematics of the band-structuredimg the  scattering rate and the energy separation between states co
broadening _due_: t@ (double arrows indicate t_he matrix elem_ents). nected by the SOC terms, the spin-relaxation time crosses
TheT arrows indicate thg equivalence of the dlﬁerent splaxatlor! over smoothly from a DP to an EY-like behavior. In par-
regimes. The conventional DP and EY scenarios are thoseein th .
top-right and bottom-left corners, respectively. ticular, thel” < A (ke) region of thg EY tgrm corre_qunds

to that of the DP in thd® < A region, since the lifetime

broadening is small and the separate energy states calyclear
Results in more general cases are discussed in the Supplem®g identified. As opposed to this, tlie>> A (kr) regions
tary Material. smears out the bands, connected by the SOC, causing them
The contributions from intra- . (kg)) and inter-band to be quasi-degenerate in terms of their energijiese ob-
(L (kg)) processes are additive to lowest order in the sogcservations provide the ultimate link between these two-spin
and have a surprisingly similar form. A competition is ob- relaxation mechanisms, which are conventionally thought a
served between lifetime induced broadening (du&X@nd  being mutually exclusive.
the energy separation between stat®$/r) or Az). The sit- AcknowledgementsWe thank A. Palyi for enlightening
uation, together with schematics of the corresponding bandliscussions. Work supported by the ERC Grant Nr. ERC-
structures, is shown in Fiff] 3. When the broadening is mucl259374-Sylo, the Hungarian Scientific Research Funds Nos.
smaller than the energy separation, the relaxation is EX-li K72613, K73361, K101244, PD100373, the New Széchenyi
I's < T, even when the intra-band SOC dominates, i.e. foiPlan Nr. TAMOP-4.2.2.B-10/1.2010-0009, and by the Marie
a material with inversion symmetry breaking. This situatio Curie Grants PIRG-GA-2010-276834. BD acknowledges the
was also studied in Reff. 26 and it may be realized in 111-V Bolyai Program of the Hungarian Academy of Sciences.

SUPPLEMENTARY INFORMATION

This Supplementary Materig organized as follows: we first discuss the technical tetéthe calculations, i.e. how Eq. (15)
is obtainedfrom Eqg. (14). Second, we discuss the generalization of phe-relaxation for two kinds of band dispersions
(quadratic and linear or linearized) when the restrictiooscerning the relative magnitude of the parametérsu( m*) are
lifted. We arrive at the overall conclusion that while theaqtitative details of th& dependent spin-relaxatiofld) are modified
and no closed form of the result can be provided in the mostmgéicase, the overall trends, which characterize the EY and
DP behaviors and in particular the crossover between theremeain valid. Wherever possible, we provide closed forsults
though.Finally, we discuss the spin-relaxation for a model where only Rasjybaspin-relaxation is present.



I. TECHNICAL DETAILS OF THE CALCULATIONS

We consider Eq. (14) of the main manuscript as a startingtpdihe Matsubara Green’s function dff A can be written as
(16)

g.AT.A (’LVm) = % Z ‘<k « S|AT‘kvo/aS/>|2ga,s (an,k) ga’,s’ (iwn+iymak)7

iwn,k,a,a’,s,s
where
17)

ga,s (iwna k) = - X
Wn — % (ek,a,s - M) + Z%Sgn(wn)

is the Matsubara Green'’s function of fermionic field operato band () and spin §). The effect ofHscatiS taken into account

by the finite momentum-scattering rate,
Using the relationship between the Green'’s function andtspledensity, the Matsubara summation in EqJ (16) yields
w// —ng !
) ( )pa,s (w’, k) pa’,s’ (w//a k) 9 (18)

/d 1
‘ / / W”‘i‘w

where
_9oL
Pas (W, k) = L 2 2
[w =7 (enas =] + ()
is the spectral density. By taking the imaginary part aftalgtical continuation, the energy integrals can be caked at zero
temperature. Then, by replacing momentum summation widgnation, we obtain
(20)

|me§M(w):%/ dk k Z ‘<k,a,s’AT’k,a’,s’>’2§a75_’a/ﬂs/ (k,w),

gATA(iVm):LL—;:_Q > Kk,

k,a,a 8,8’

(19)

a,a’ s, s’

where
4hI
ga,s,a/,s/ (k,CU) = - ~ 2 X
472 + (ek,a,s — €k,a’,s" — hw)
~ocs ~o/s’ N.as_hfw ~a’s’ hw
X [arctan <ekT) — arctan (ek’l_" > — arctan <ekf> + arctan (%)} +
2 [ekas+F2:| |:éko¢ s/+F2}
AT In (21)
2 [(ék as — hw)? + FQ] {(ék,a/,s/ + hw)” + FQ}

_|_
(Ekyor,s — €k a8’ T hw) |:4F2 + (ék=0675 — €kal,s — hw) ]
i, Ais the area ofhe 2DEG. The matrix elements of thé" operator are

andék,a,s = €k,a,s —
- 0 —-L 0
0 ¢ 0 L
k, o, s| Ak, o, s") = 22
<as"as> I 0 -2 0 (22)
0 L 0 %2
We determinehe expectation value of thecomponent of electron spin following similar steps as
oo d !
(s:) = zkj (k, 0, 5| 82|k, 0, 5) G s (iwn,k):kz<k,a,s\sz|k,a,s> /_ w%nF(w’)pa,s (' k) =
= (ka,s|8:]k a,5)Ca s (k), (23)
k,a,s
(24)

where

1 1 k. ov.s
Goss (F) = 5 = ~ arctan <ek,r_, > .
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FIG. 4. Band structure of quadratic dispersion model. ¥aftrrows show the energy separations between the releaads.

The matrix elements of th&, operator are

-10 0 0

Al 0 1 0 0
ka ) SZ ka ) =3 25
< « S’ ‘ « S> B 00 —10 ( )

0 001

The spin-relaxation rate can be obtained as
ImGR, , (82) . .

T = ATA\ & :Flntra Flnter' 26
: 2(S.) s. s (26)

We note this is the sum of intra- and inter-band terms which asedbed separately.

Il.  SPIN-RELAXATION FOR DIFFERENT MODEL DISPERSIONS
A. Quadratic dispersion model

First, we discuss a quadratic model witte e, , = h?k?/2m}, — .14 single-particle dispersion. In the conduction band,
the quasi-particles are electron-type (& > 0) however the quasi-particles of a nearby band are hole{iypen; < 0).
The band structure is depicted in Hig. 4. This model dessritxl two bands of the spectrum of semiconductors, howievar
realistic case (e.g. for Si and GaABere aranorenearby bands characterized by different band gaps andiefecasses.

1. Theintra-band term

An important and general limit of the model is when the Zeem@mergy is much smaller than the band gap (hg.< A),
andboth thespin-up and spin-down states are occupied in the condulséind (i.e Az < p). In this limit, the intra-band term
can be expressed as

e _ 412 (ke)’T
intra __
5= +AZ 27)
This term comes from processeghin the conduction band and the nearby band does not give alwatin to the intra-band
term.



2. Theinter-band term in the general case

Inthe Az < p, A limit, the inter-band term can be determined but it takes a more lgzatgd form When the broadening
is much smaller than the energy separation at the Fermi wawker (i.eI’ < A (kg) = A + (1 — m3/m7) p) the inter-band
spin-relaxation has the form of

i A|L (k)|
Flnter — T 28
S A2 (kF) ) ( )
which is directly proportional to the momentum-scatterniatg.
When the broadening is much larger than the energy sepau@eol’ > A (kg)) the spin-relaxation reads

—4mim; |L (k)|

. 29
Flsnter _ - =, (29)
(m5 —my)” T
which is inversely proportional to the momentum-scatigrimte.
3. Theinter-band term in the case of] = —m5

If the effective masses in the two barttve different signs but the same magnitutie spin-relaxation rate is obtained as

242
inter __ 4 |L (kF)|2 I I'ln 24+ (A+p)?

= 1+
s AT2 4+ A2 (k) (A +2u) <7r + arctan & — arctan %)

(30)

4. Theinter-band term in the case ot} = —m3 andy 2> A
When the=ermi energy is not close to the bottom of the conduction bredogarithmic terncan beneglected and we obtain
the most compact form of the inter-band spin-relaxatioe st

i 4|L (ke)°T
inter __
T e (31)

5. Summary of theesult for the quadratic model

Summing of intra- and inter-band term yields Eq. (15) of tapqr:

4L k)T | 4IL (k)T

s = : 32
STOAT2 £ A2 T AT? 4 A2 (k) (32)

This is the main result, which is presented in the manuscript
We note that similar expressions can be obtained if the atedpotential lies in the nearby band.

B. Linear band dispersion models

Herein, we discuss the spin-relaxation time for linear nid@persions. The importance of studying this model is folo-
First, every non-linear band dispersions can be linear&dtie Fermi wave-vector and the plausible expectationds tte
spin-relaxation rate can be obtained as a sum of the lirehsegments. Second, spin-relaxation can be calculatéugftinear
band dispersion model and as we show below, the qualitatiseltr i.e. dependence 6f on T for the intra- and inter-band
processes, is unchanged compared to the quadratic barstsispeven if the numerical factors are different. Thisvpsothat
our calculation of the spin-relaxation is robust againstdbtails of the band dispersion.

The linear band-dispersion models can take two charatitetly different scenarios: those with lines with slopdstiee
opposite and the same sign. The situation is depicted inHrigThe first situation can be obtained e.g. from linearizing a
quadratic band dispersion in Fig. 4 the Fermi wavenumbetladecond occurs e.g. for MgBs shown in Ref/ [21].
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FIG. 5. Linear band dispersion models, with line slopes of the ojp@da) and the same sign (b). The first situation can be obdiaéng. from
linearizing a quadratic band dispersion in fif. 4 and thesgéoccurs e.g. for MgBas shown in Ref. 21.

1. Linear band dispersions with the opposite slope

We consider that the higher lying conduction band has aipedfermi velocity thu&',L’j2 = hv§ (k — ke) + p, where the
Zeeman-energy is neglected. The nearby valence band cgpbexanated with a flat band with zero Fermi veIociE;'L‘.jl =
—A + pmi /mj, where the Zeeman splitting is also neglected too.

Then, our calculation yields for the intra-band contribatto the spin-relaxation rate:

, AT |.Z (k)|
l—‘Ismra = 412 + A% (33)
Similarly, we obtain for the inter-band term:
mer _ AIL (ke)|’T
rinter _ 34
S T TR AZ (k) (34)

which look likes as if it was obtained from the quadratic mo8g. (31) except the multiplication factor of tH&? in the
denominator. This is the result that we considered a zemmiRazlocity of the valence band.

2. Linear band dispersions with the same slope

The second linear model has two linear bands (apart frompimg with positive Fermi velocities of different magnitusie
The two bands cross the Fermi level at two separate pointsb@hd structure of this model is depicted in Eig. 5b. This ehod
describes the spectrum around the Fermi energy in e.g.,MgBt was shown in Ref. 21.

The intra-band term is similar to the previous results amelats:

: 4T L (ke 2
Pgﬁra_ 4 |2 ( )§| . (35)
The inter-band term can be expressed as
. 4T |L (ke 2
Flsnter | ( )l (36)

S A
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whereA; andA, are the distances of the two bands when one of the bands bBgtmi level. The formula is symmetric in
these two variables which means that the two bands changedhes as conduction and valence bands for the two Ferrel lev
crossing points.

A special case is whenf = o5, i.e. when the two linear bands are parallel thereftvie= A, = A. This yields a result
which is similar to the case of the quadratic dispersion iadls:

mer AT L (ke)|?
I = reRr 37)

Ill.  THE SPIN-RELAXATON FOR A MODEL WITH RASHBA-LIKE SOC

Now we determine the spin-relaxation rate of a model whehg Rashba-type SOC is present. The Rashba-like SOC can be
written as

Hso=» hX(ozky — oyka), (38)
k,«

whereo,, o, are the Pauli matrices. The matrix element of intra-band $&the expressed &%’ (k)| = hAk. We can expand
Eq. (32) to get

Sm3uA?
Dg= —2— .
STAr? £ A2 (39)

Using the spin and momentum life-times instead of relaxatgtes, we obtain

1 8miu)? T
L_Gmiph (40)
: L+ (%)

A similar expression was obtained recently (Eq. (40@\ 1261 this particular case.
|
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