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Abstract: Automatically determining speaker emotions in human speech is a frequently 

studied task, where various techniques have been employed over the years. An efficient 

method is to represent the utterances by employing the Bag-of-Audio-Words technique, 

inspired by the Bag-of-Visual-Words approach from the area of image processing. In the 

past few years, however, Bag-of-Visual-Words has been replaced by the so-called Fisher 

vector representation, as it was shown to give a better classification performance. Despite 

this, in audio processing, Fisher vectors to date have only been rarely applied. In this 

study, we show that Fisher vectors are also a viable way of representing features in speech 

technology; more precisely, we use them in the task of emotion classification. Based on our 

results on two datasets, Fisher vectors can be effectively employed for this task: we 

measured 4% relative improvements in the UAR scores for both corpora, which rose to 9-

16% when we combined this approach with the standard paralinguistic one. 

Keywords: audio processing; emotion detection; Fisher vector representation; Support 

Vector machines 

1 Introduction 

Within speech technology, automatic emotion recognition from audio (also known 

as affective processing) is a very active research topic [1, 18, 19, 20], which also 

has several possible applications in human-computer interaction and also in 

monitoring human communications. The potential application areas include 

human-robot interaction [14], dialogue systems [2], health monitoring [12, 25] and 

call centres [43]. 

From a wider perspective, acoustic emotion recognition can be viewed a task 

belonging to the area of computational paralinguistics [37], which contains tasks 

focusing on locating and identifying phenomena present in human speech other 

than the actual words uttered. (Besides emotion detection, notable tasks belonging 

to this area include conflict intensity estimation [16, 29], and determining speaker 

gender and age [23].) In this area an important research question is to design 
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reliable, compact, and descriptive feature representations; but a specific difficulty 

of this task is to find a fixed-length feature representation for varying-length 

speech utterances. 

A recently proposed such feature representation is the Bag-of-Audio-Words 

(BoAW) technique, inspired by the image processing approach of Bag-of-Visual-

Words (BoV, [3, 5]). In the BoAW approach we take the frame-level features (e.g. 

Mel-frequency cepstral coefficients (MFCCs) or perceptual linear predictions 

(PLPs)) of the utterances of the training set and cluster them. Then, for the next 

step, each frame-level feature vector is replaced by its cluster index; utterance-

level feature vectors are calculated as the (normalized) histogram of the clusters of 

the frame vectors of the given utterance [26]. Since their introduction, BoAW 

representations have been successfully employed in emotion detection [11, 27, 32] 

as well as in several other paralinguistic tasks [10, 21, 31, 36]. 

Recalling the motivation behind Bag-of-Audio-Words, a similar and perhaps even 

more informative representation approach for image processing is that of Fisher 

vectors (FV, [13]). A handful of studies used Fisher vectors in speech processing 

for categorizing audio files as speech, music, and other [24], for speaker 

verification [40, 45] and for determining food type from eating sounds [17]. Still, 

we cannot say that applying FVs has become widespread or even well-known in 

audio processing. Although in the past few years there has been a rush of 

computational paralinguistic and audio-based emotion research, we only found the 

above few studies that employ this representation in the area. 

In this study we utilize the Fisher vector feature representation for audio 

processing; more specifically, we adapt the image recognition approach of Fisher 

vectors for speech-based emotion categorization. To demonstrate the efficiency of 

this technique, we use two emotion datasets in our experiments, and compare the 

proposed approach with the standard computational paralinguistic one (`ComParE 

functionals’) first presented in 2013 [35]. Our experimental results indicate that 

the Fisher vector-based representation leads to competitive scores: we achieved 

relative error reduction values around 4% when using the Fisher vectors alone, 

which increased to 9-16% via a combination with the baseline approach. Our 

results also confirm that the Fisher vector representation appears to be (relatively) 

compact, as it consisted of only 10-20% of the number of features in the standard 

ComParE functionals feature set. 

2 Fisher Vectors 

The aim of Fisher vector representation was to combine the generative and 

discriminative machine learning approaches by deriving a kernel from a 

generative model of the data [13]. In it, a set of low-level feature vectors (e.g. 

extracted from the image) is modelled by their deviation from the distribution. 
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That is, let X = x1, …, xT be a sert of d-dimensional low-level feature vectors 

extracted from an input sample, and let their distribution be modelled by a 

probability density function p(X|Θ), Θ being the parameter vector of the model. 

The Fisher score describes X by the gradient G
X
Θ of the log-likelihood function, i.e. 

   |log
1

Xp
T

G X
. (1) 

This gradient function describes the direction in which the model parameters (i.e. 

Θ) should be changed to best fit the data. Notice that, at this point, the size of G
X
Θ 

is already independent of the number of low-level feature vectors (i.e. of T), and it 

depends only on the number of model parameters (i.e. Θ). The Fisher kernel 

between the sequences X and Y is then defined as 

  ,, 1 YX GFGYXK 



  (2) 

where FΘ is the Fisher information matrix of p(X|Θ), defined as 

    ].|log|log[
T

X XpXpEF    (3) 

Expressing F
-1
Θ as F

-1
Θ = L

T
ΘLΘ, we get the Fisher vectors as 

 .|log   XpLGL XX
 (4) 

In the case of image processing, a varying number of low-level descriptors such as 

SIFT descriptors (describing occurrences of rotation- and scale-invariant 

primitives [22]) are extracted from the images as low-level features. The p(X|Θ) 

distributions are typically modelled by Gaussian Mixture Models (GMMs) [6,30]; 

hence, assuming a diagonal covariance matrix, the Fisher vector representation of 

an image has a length of twice the number of Gaussian components for each 

feature dimension. For more details, the reader is kindly referred to the studies of 

Csurka and Perronnin [6] and Sánchez et al. [30]. 

2.1 Fisher Vector Representation of Audio Data 

To adapt Fisher vectors to audio processing, it is straightforward to use the frame-

level features (e.g. MFCCs, PLPs [28] or raw filter bank energies) of the 

utterances as the low-level features (i.e. X). Similar to the case of image 

classification, the distribution of the frame-level components can be modelled by 

GMMs. For GMMs, using MFCCs is a plausible choice since their components 

are quasi-orthogonal; however, it is unclear if we should make use of the first and 

second-order derivatives as well, or if we can obtain the best representation 

without the Δ and Δ Δ values. A parameter of the method is N, the number of 

Gaussian components. Our workflow of Fisher vectors used in audio processing is 

shown in Fig. 1. 
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Figure 1 

Workflow of the Fisher vector representation used for audio processing 

A plausible choice for the discriminative classification step is to utilize Support 

Vector Machines (SVMs, [33]) with a linear kernel for three reasons. Firstly, it is 

widely used in combination with Fisher vectors in image classification as well 

(see e.g. [30]). Secondly, it is the de facto standard solution for classifying 

(paralinguistic) audio data. Thirdly, it was shown (see e.g. [30]) that using the 

Fisher vector representation as features and performing classification with an 

SVM using a linear kernel is equivalent to using the SVM with the Fisher kernel. 

Before utilizing the extracted FVs as feature vectors; however, they should first be 

normalized or standardized. 

3 Experimental Setup 

3.1 The FAU AIBO Emotion Corpus 

The FAU AIBO Emotion Corpus [38] contains audio files recorded from German 

children while playing with Sony's pet robot Aibo. The children were told that 

Aibo responds to their commands, while it was actually remotely controlled by a 

human. Overall, 51 children were involved in the study from two schools; the 

9959 recordings from the Ohm school are commonly used as the training set in 

speaker-wise cross-validation (CV), while data from the Mont school (8257 

recordings) serve as the test set. Since the training set is fairly large, we defined a 

development set from the recordings of six speakers (2381 utterances), leaving 

data from 20 children (7578 recordings) in the actual training set. 

From the original 11 emotional categories, later a 5-class problem was created by 

merging emotional labels [34]. These classes are: Angry (containing the original 

categories of angry, touchy and reprimanding), Emphatic, Neutral, Positive 

(containing motherese and joyful), and Rest. 
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3.2 The Hungarian Emotion Corpus 

The Hungarian Emotion Database [39] contains sentences from 97 Hungarian 

speakers who participated in television programmes. A large portion of the 

segments were selected from spontaneous continuous speech rich in emotions 

(e.g. talk shows, reality shows), while the rest of the database came from 

improvised entertainment programmes. Note that, although actors tend to 

overemphasize emotions while acting, it was observed that in improvisation their 

performance is quite similar to real-life emotions [42]. 

Four emotion categories were defined, namely Anger, Joy, Neutral, and Sadness. 

Since at the time of recording, it was not standard practice to create a speaker-

independent split, we defined our own training and test sets; the training set 

consisted of 831 segments, while the test set had 280 utterances. Due to the 

relatively small size of the dataset, we split the training set into 10 roughly equal-

sized, speaker-independent folds, and performed ten-fold cross-validation. Note 

that, due to this re-partitioning, our results presented here cannot be directly 

compared to those presented in the earlier studies (i.e. [39,42]), but in general 

authors reported classification accuracy scores around 66-70%. 

3.3 Fisher Vector Parameters 

We used the open-source VLFeat library [41] to fit GMMs and to extract the FV 

representation; and from the various ports available, we employed the Matlab 

integration. When fitting Gaussian Mixture Models, we experimented with N = 4, 

8, 16, 32, 64, and 128 components. As the input feature vectors, we utilized 

MFCCs, extracted by the HTK tool [44]. We experimented with using the 12 

MFCC vectors along with energy as frame-level feature vectors, and we also tried 

adding the first and second-order derivatives. 

3.4 Utterance-Level Classification 

Our experiments followed standard paralinguistic protocols. After feature 

standardization, we used applied SVMs with linear kernel for utterance-level 

classification, using the LibSVM [4] library; the value of C was tested in the range 

10{-5,…,2}, just like in our previous paralinguistic studies. (e.g. [8, 9]). Optimal 

meta-parameters (C for SVM and N for Fisher vectors) were determined on the 

development set (FAU AIBO Corpus) or in ten-fold cross-validation (Hungarian 

Emotion Dataset). To measure performance, we employed the Unweighted 

Average Recall (UAR) metric, being equivalent of the mean of the class-wise 

recall values. Following preliminary tests, we employed downsampling for both 

corpora as it tends to lead to class-wise balanced predictions, and this improves 

the UAR scores. 
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As the baseline paralinguistic solution, we used the 6373 ComParE features (see 

e.g. [35]), extracted by using the openSMILE tool [7]. The feature set includes 

energy, spectral, cepstral (MFCC) and voicing related low-level descriptors 

(LLDs), from which specific functionals (e.g. mean, standard deviation, 

percentiles, peak statistics, etc.) are computed to provide utterance-level feature 

values. 

Furthermore, we hypothesized that it might turn out to be beneficial to combine 

the two approaches (in our case, feature sets). For such a fusion, there are two 

common approaches: in the first one, called early fusion, we concatenate the two 

or more feature sets, and we train a common machine learning model on the fused 

feature vectors. The drawback of this approach might be that the different types of 

features might require different meta-parameters (e.g. C for SVM) for optimal 

performance and that we are required to train a large number of classifier models 

on huge feature sets. In contrast, in late fusion we train separate classifier models 

on the different types of feature vectors and merge the predictions instead. This 

latter approach also has the advantage that we actually do not need to train any 

further SVMs, therefore we opted for this solution. We realized late fusion by 

taking the weighted mean of the posterior estimates obtained by using the two 

types of features (i.e. the ComParE feature set and Fisher vector representation); 

combination weights were determined on the development set (FAU AIBO) or in 

cross-validation (Hungarian Emotion) with 0.05 increments as the ones leading to 

the highest UAR score. 

4 Results 

 

Figure 2 

Measured UAR values on the development set of the FAU AIBO dataset as a function of N 
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Fig. 2 shows the UAR scores obtained as a function of Gaussian components for 

the development set of the FAU AIBO dataset. Clearly, we got the lowest scores 

when we just relied on the original 13 MFCC vectors; by adding the first-order 

derivatives, the UAR values increased, while further utilizing the ΔΔs usually 

brought an additional slight improvement. Regarding the number of Gaussians, 

relatively low values (i.e. N=8 and N=16) proved to be optimal on the 

development set. 

 

Figure 3 

Measured UAR values on the test set of the FAU AIBO dataset as a function of N 

The UAR scores on the test set (see Fig. 3) show a similar tendency: here relying 

only on the 13 MFCC components led to the lowest scores as well, while there 

were only slight differences among the performance between the models using 26 

and 39 frame-level attributes. We observe optimal performance with the settings N 

= 8 or N = 16, while larger values (especially N = 128) indicate the presence of 

overfitting. Of course, now we were interested only in the tendency of the UAR 

scores on the test; optimal N value, being the meta-parameter of the Fisher 

Vectors method, is always chosen based on development set performance. 

Examining the UAR values measured in cross-validation for the Hungarian 

Emotion corpus (see Fig. 4), we can see similar trends as we found on the FAU 

AIBO database: using just the raw MFCC values led to the lowest scores, while 

the difference between the performance of the MFCC+Δ and the MFCC+Δ+ΔΔ 

configurations was usually much smaller. The optimal GMM size was N = 16 for 

the latter two configurations, while N = 4 led to the highest score for the 13 

MFCC components. On the test set (see Fig. 5) the UAR scores behave similarly: 

although the highest UAR score for the MFCC+Δ+ΔΔ feature set was measured 

with N = 64, we obtained similar scores for the cases 4 ≤ N ≤ 32, while in the 

MFCC+Δ case the optimal value is found at N = 16 both in cross-validation and 

on the test set. 
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Figure 4 

Measured UAR values in cross-validation on the Hungarian Emotion dataset as a function of N 

 

Figure 5 

Measured UAR values on the test set of the Hungarian Emotion dataset as a function of N 

Inspecting the best results for each configuration on the test set (see Tables 1 and 

2) reinforces our previous findings. Relying on the Fisher vector representation 

alone even outperformed the results achieved via the standard ComParE feature 

set, at least in the MFCC+Δ and the MFCC+Δ+ΔΔ cases. Although the best result 

was achieved by just using the first-order derivatives on the test set, due to the 

development set/CV scores, we have to rely on the UAR values obtained via all 39 

MFCC attributes. The appropriate scores mean improvement of 4% in terms of 

relative error reduction (RER) for both corpora. 
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Table 1 

Results obtained for the FAU AIBO corpus 

  Dev Test 

Feature Set Size Acc. UAR Acc. UAR 

ComParE functionals (baseline) 6373 44.5% 44.1% 35.9% 37.8% 

Fisher Vectors (MFCC) 208 38.8% 36.7% 33.9% 36.2% 

Fisher Vectors (MFCC+Δ) 832 44.6% 41.5% 42.2% 41.7% 

Fisher Vectors (MFCC+Δ+ΔΔ) 624 46.7% 43.3% 40.1% 40.2% 

ComParE + FV MFCC 6581 46.2% 45.0% 37.7% 40.3% 

ComParE + FV MFCC+Δ 7205 47.4% 46.2% 41.4% 43.0% 

ComParE + FV MFCC+Δ+ΔΔ 6997 48.1% 46.4% 40.3% 43.1% 

Combining these FV-based models with the ones trained on the ComParE feature 

set yielded further improvements in the UAR values. For the FAU AIBO corpus, 

relying on all 39 attributes yielded similar scores as omitting the second-order 

derivatives did, leading to 9% improvements in RER on the test set (UAR scores 

of 43.0% and 43.1%). For the Hungarian Emotion dataset, using just the first-

order derivatives (and the MFCC vectors) proved to be slightly more efficient 

both in cross-validation and on the test set (62.1% and 68.5%), leading to an RER 

score of 16% on the latter subset, but using the whole 39-sized MFCC vector led 

to quite similar UAR scores (61.7% and 68.1%, cross-validation and test sets, 

respectively). 

Table 2 

Results obtained for the Hungarian Emotion corpus 

  CV Test 

Feature Set Size Acc. UAR Acc. UAR 

ComParE functionals (baseline) 6373 63.4% 58.4% 72.9% 62.5% 

Fisher Vectors (MFCC) 208 57.3% 54.5% 72.5% 56.5% 

Fisher Vectors (MFCC+Δ) 832 59.7% 59.3% 73.6% 68.0% 

Fisher Vectors (MFCC+Δ+ΔΔ) 624 63.4% 60.5% 70.7% 63.9% 

ComParE + FV MFCC 6581 64.7% 60.0% 73.6% 64.0% 

ComParE + FV MFCC+Δ 7205 65.5% 62.1% 78.9% 68.5% 

ComParE + FV MFCC+Δ+ΔΔ 6997 66.5% 61.7% 77.9% 68.1% 

Notice that the Fisher vector representations were also quite compact: although we 

tested them by even using 128 Gaussian components, we always got the best  

scores with N=4, N=8 or N=16 values. Even though we have two attributes for 

each low-level feature (e.g. MFCC) dimension, the largest feature vector just 

consisted of 1248 attributes. Although (based on our experiments) for optimal 

performance we also need to utilize the ComParE feature set with its 6k+ 

attributes, this is also true for the Bag-of-Audio-Words representation; which in 

contrast tends to consist of thousands or even ten thousand features [27, 32]. 
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Figure 6 

The normalized confusion matrix on the test set of the FAU AIBO corpus when using the ComParE 

functionals (left, UAR: 37.8%) and when using the combination of the models trained on the ComParE 

functionals and on the Fisher Vector (MFCC+Δ+ΔΔ) features (right, UAR: 43.1%) 

Examining the normalized confusion matrix obtained on the test set of the FAU 

AIBO corpus using the ComParE functionals feature set (see the left-hand side of 

Fig. 6), we can see that only the classes Angry, Neutral and Peaceful could be 

identified at a relatively good rate, as the remaining two categories (Emphatic and 

Rest) had recall scores of 27.9% and 26.0%. Of course, this behaviour was 

reflected in the overall UAR score of 37.8%, but this only indicates that automatic 

emotion detection from speech is not a straightforward task at all. However, 

examining the normalized confusion matrix corresponding to the combination of 

this model with the one employing the Fisher Vectors representation 

(MFCC+Δ+ΔΔ) (see the right-hand side of Fig. 6), we can see that emotion 

identification improved noticeably. Although for the Rest category we now got a 

lower recall value (22.7%), the scores improved for the other four classes. 

Specifically, the recall of the Emphatic emotion category improved from 27.9% to 

43.6%. Overall, we can see that the increase in the UAR score (from 37.8% to 

43.1%, meaning a relative error score of 9%) did not come from a more accurate 

detection of one or two specific emotion categories, but it reflects an improved 

general performance. 

In the case of the Hungarian Emotion corpus (see Fig. 7) we can see similar 

trends: using the ComParE functionals as features (left-hand side) led to a good 

performance on the Anger and Neutral categories, while on the Joy and Sadness 

emotions detection was mediocre (recall scores of 47.4% and 50.0%). Combining 

this model with the one trained on Fisher Vectors (MFCC+Δ frame-level 

attributes, the right-hand side of Fig. 7) markedly improved the recall value of the 

Joy and Neutral classes, while for the two remaining categories the recall values 

dropped to a slight extent. Overall, the combination of the two approaches led to a 

more balanced performance than using solely the standard ComParE functionals. 
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Figure 7 

The normalized confusion matrix on the test set of the Hungarian Emotion corpus when using the 

ComParE functionals (left, UAR: 62.5%) and when using the combination of the models trained on the 

ComParE functionals and on the Fisher Vector (MFCC+Δ) features (right, UAR: 68.5%) 

5 Applying Principal Component Analysis 

Recall that, when we utilized GMMs to model the distribution of the frame 

vectors, we assumed that the MFCCs have quasi-orthogonal components. Next, 

we will verify whether this assumption holds, or we can actually improve the 

classification performance by enforcing our frame-level feature vectors to actually 

be decorrelated. To do this, we applied Principal Component Analysis (PCA, 

[15]). Therefore, next, we will present our experiments with first transforming the 

MFCC frame-level feature vectors by PCA, and applying the FV procedure in the 

second step. The rest of our classification pipeline was identical to our previous 

experiments. As is standard for applying PCA, we decided to keep 95% and 99% 

of the total information; this led to 33 and 38 dimensional vectors, for 95% and 

99%, respectively. Note that we performed these experiments solely on the 

Hungarian Emotion corpus. 

Figure 8 shows the UAR values obtained in cross-validation; for reference, we 

also displayed the scores corresponding to the MFCC+Δ+ΔΔ case. Clearly, there 

are no huge differences among the three cases; in particular, in the 4 ≤ N ≤ 16 

interval, we got higher scores without applying PCA. When 32 ≤ N ≤ 64, we 

obtained roughly the same scores, and PCA led to better performance only for N = 

128. On the test set, the differences were even smaller: in fact, we can observe a 

significant difference only in the N = 128 case. 
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Figure 8 

Measured UAR values in cross-validation on the Hungarian Emotion dataset as a function of N after 

applying Principal Component Analysis 

 

Figure 9 

Measured UAR values on the test set of the Hungarian Emotion dataset as a function of N after 

applying Principal Component Analysis 

Table 3 contains the best UAR performances of the tested approaches in cross-

validation and the corresponding scores on the test set. We can see that the UAR 

values are indeed quite similar to each other: they lie in the range 54.4-60.5% in 

cross-validation and 63.9-65.9% on the test set. After combination, these values 

rose to 61.0-61.7% and to 66-68.1%, cross-validation and test set, respectively. 
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Table 3 

Results obtained for the Hungarian Emotion corpus after applying Principal Component Analysis 

  CV Test 

Feature Set Size Acc. UAR Acc. UAR 

ComParE functionals (baseline) 6373 63.4% 58.4% 72.9% 62.5% 

Fisher Vectors (MFCC+Δ+ΔΔ) 624 63.4% 60.5% 70.7% 63.9% 

Fisher Vectors (MFCC + PCA 95%) 2112 62.6% 57.0% 75.4% 64.1% 

Fisher Vectors (MFCC + PCA 99%) 9728 59.0% 54.4% 78.9% 65.9% 

ComParE + FV MFCC+Δ+ΔΔ 6997 66.5% 61.7% 77.9% 68.1% 

ComParE + FV MFCC + PCA 95% 8485 67.4% 61.0% 76.4% 68.3% 

ComParE + FV MFCC + PCA 99% 16101 67.0% 61.2% 78.9% 66.0% 

Even though the best single UAR score belongs to the MFCC + PCA 99% case, 

and the best combined one to the ComParE + FV MFCC + PCA 95% model 

combination, these models obviously have a suboptimal cross-validation 

performance. Furthermore, their advantage compared to the non-PCA model is not 

really convincing even for the test set, especially in the combined case: the 0.2% 

absolute difference is clearly not statistically significant. When we also note that, 

after PCA, the number of calculated features rose by 230-1400%(!), and that it 

was more beneficial to discard the ΔΔ values and rely only on the MFCC+Δ 

frame-level attributes, it is clear that overall it is not really worth applying PCA on 

the MFCC vectors. To experiment with just discarding the first and second-order 

derivatives before fitting the Gaussian Mixture Models (see Section 4) seems to be 

a more efficient approach, as this led both to better performance and to a more 

compact machine learning model. 

Conclusions 

In this study, we performed audio-based emotion classification by employing the 

Fisher vector (FV) feature representation approach, originally developed for 

image processing. We adapted the original workflow by using MFCCs as low-

level features, modeling their distribution via GMMs, and applying Support 

Vector Machines with a linear kernel for utterance-level classification. To 

demonstrate the effectiveness of this approach, we performed our experiments on 

two emotion recognition datasets, one containing German and one Hungarian 

speech. Our results indicate that Fisher vectors are indeed descriptive 

representations for audio just as well as for images, as the Unweighted Average 

Recall scores obtained were slightly higher for both corpora than those got via the 

ComParE feature set, used as our baseline. More importantly, the combination of 

the two utterance representation techniques brought further improvements, leading 

to reductions of 9-16% in the error scores. From our results, the FV representation 

is also quite compact, as the extracted feature sets contained 104-1248 attributes 

overall. This is much smaller than either the ComParE feature set or a typical Bag-

of-Audio-Words representation. 
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