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Rosacea Is Characterized by a Profoundly
Diminished Skin Barrier

Barbara Medgyesi1,2,3,7, Zsolt Dajnoki1,2,7, Gabriella Béke1,2, Krisztián Gáspár1,2, Imre L}orinc Szabó1,2,
Eszter Anna Janka2, Szilárd Póliska4, Zoltán Hendrik5, Gábor Méhes5, Dániel Tör}ocsik2, Tamás Bı́ró6,
Anikó Kapitány1,2,8 and Andrea Szegedi1,2,8
Rosacea is a common chronic inflammation of sebaceous glanderich facial skin characterized by severe skin
dryness, elevated pH, transepidermal water loss, and decreased hydration levels. Until now, there has been no
thorough molecular analysis of permeability barrier alterations in the skin of patients with rosacea. Thus, we
aimed to investigate the barrier alterations in papulopustular rosacea samples compared with healthy seba-
ceous glanderich skin, using RNA sequencing analysis (n ¼ 8). Pathway analyses by Cytoscape ClueGO
revealed 15 significantly enriched pathways related to skin barrier formation. RT-PCR and immunohisto-
chemistry were used to validate the pathway analyses. The results showed significant alterations in barrier
components in papulopustular rosacea samples compared with sebaceous glanderich skin, including the
cornified envelope and intercellular lipid lamellae formation, desmosome and tight junction organizations,
barrier alarmins, and antimicrobial peptides. Moreover, the barrier damage in papulopustular rosacea was
unexpectedly similar to atopic dermatitis; this similarity was confirmed by immunofluorescent staining. In
summary, besides the well-known dysregulation of immunological, vascular, and neurological functions, we
demonstrated prominent permeability barrier alterations in papulopustular rosacea at the molecular level,
which highlight the importance of barrier repair therapies for rosacea.

Journal of Investigative Dermatology (2020) -, -e-; doi:10.1016/j.jid.2020.02.025
INTRODUCTION
Rosacea is a common chronic immune-mediated inflamma-
tory skin disease of unknown cause (Buhl et al., 2015; Gallo
et al., 2018a; Steinhoff et al., 2011). Rosacea mainly affects
sebaceous glanderich (SGR) skin regions, particularly the
central face, nose, chin, and forehead of light-skinned peo-
ple, aged 30e50 years (Buechner, 2005). The prevalence of
rosacea in Europe is 2e10% (Gallo et al., 2018b). Clinical
features of rosacea include flushing (transient erythema),
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persistent erythema, telangiectasia, papules, pustules, pla-
ques, edema, and phyma (Gallo et al., 2018b). The four
major clinical subtypes of rosacea are erythemato-
telangiectatic, phymatous, ocular, and papulopustular rosa-
cea (PPR) (Crawford et al., 2004; Gallo et al., 2018b).

Although rosacea occurs in SGR skin regions, affected
skin of patients is frequently observed as severely dry and
sensitive by dermatologists. Moreover, several functional
studies indicate that the skin permeability barrier is
dysfunctional in rosacea. The lesional skin of patients is
characterized by significantly increased pH and trans-
epidermal water loss, whereas skin hydration levels are
significantly decreased (Darlenski et al., 2013; Powell and
Ni Raghallaigh, 2011). Although recent studies demon-
strate that a dysfunctional barrier is capable of either initi-
ating or augmenting inflammatory skin diseases, barrier
damage in the skin of patients with rosacea has not been
thoroughly investigated.

Therefore, in this study, in the lesional skin of patients
suffering from PPR, we characterized the major groups of
molecules involved in permeability barrier formation
including cornified envelope and intercellular lipid lamellae
formation, desmosome and tight junction organizations,
barrier alarmins, and antimicrobial peptides (AMPs). We
performed whole transcriptomic analysis using RNA
sequencing (RNASeq) and confirmed our results with quan-
titative real-time reverse transcriptaseePCR and immuno-
histochemistry (IHC). In addition, we compared PPR barrier
damage to that of atopic dermatitis (AD), another inflam-
matory skin disease with a well-described dysfunctional skin
barrier. Because different healthy skin regions have unique
immune and barrier characteristics, exclusively SGR skin was
estigative Dermatology. This is an open access
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used as a healthy control for comparison with PPR specimens
(Béke et al., 2018; Dajnoki et al., 2017; Jenei et al., 2019).

According to our results, all major components of the skin
permeability barrier in patients with PPR were severely
affected and were unexpectedly similar to that of affected AD
skin. To confirm the similarities between the two inflamma-
tory skin diseases, we performed immunofluorescent staining
on selected molecules important in the formation of the
permeability skin barrier. Our findings also highlight the
importance of skin barrier restoring therapies for the man-
agement of rosacea. Based on our results, we recommend the
incorporation of skin barrier targeted therapies into clinical
guidelines for rosacea, similar to the recommendations for
AD.

RESULTS
RNASeq reveals prominent barrier differences between PPR
and SGR skin samples

Heatmap, principal component analysis. To identify the in-
depth differences in gene expression patterns between SGR
and PPR skin samples, RNASeq analysis was performed on
lysates of eight healthy SGR skin samples and eight PPR
samples. The PPR and SGR sample groups were clearly
separated in the heatmap as well as in the principal
component analysis of the RNASeq data (Figure 1a and b).
The following statistical cut-off level was applied: a minimum
of 1.5-fold alteration (fold change; higher or lower levels in
PPR over SGR) in the average expression of the given mo-
lecular transcript in all donors at P < 0.05 statistical signifi-
cance. A total of 5,136 genes were differentially expressed in
PPR compared with SGR skin. Of the differentially expressed
genes (DEGs), 3,133 genes showed higher expression,
whereas 2,003 genes were expressed at lower levels in PPR
as compared with SGR (Supplementary Table S1).

Pathway analysis 1. To identify the function of the DEGs,
multiple bioinformatics analyses were performed using the
Cytoscape ClueGO bioinformatics tool (Bindea et al., 2009).
First, to identify the general biological function of DEGs, we
performed a pathway enrichment analysis on all DEGs with
fold change � 1.5. To identify the significantly enriched (P �
0.05) terms and/or pathways with global functions, the
following criterion was applied: all terms contain at least 50
genes from our input gene set (the detailed parameters of the
analysis can be found in the Materials and Methods section).
By using the above approach, 1,239 significantly enriched
terms were found by ClueGO. Unsurprisingly, the identified
terms were mostly involved in cellular/metabolic functions
(e.g., ion transport, lipid biosynthetic process, and transferase
activity) and innate (e.g., response to external stimulus,
response to stress, cytokine secretion, defense response to
bacterium, NOD-like receptor signaling pathway, and com-
plement activation) and adaptive (e.g., T-cell activation,
leukocyte migration, TNF production, IFN-gamma produc-
tion, and chemokine signaling pathway) immune mecha-
nisms. In addition, genes taking part in vascularization (e.g.,
regulation of vasculature development and angiogenesis) and
the nervous system (e.g., nervous system development) were
differentially expressed (Figure 1c, Supplementary Table S2).
Most importantly, 24 terms related to skin barrier were also
Journal of Investigative Dermatology (2020), Volume -
differentially expressed (e.g., epithelium development,
morphogenesis of an epithelium, epithelial cell differentia-
tion, and epithelial cell proliferation) (Figure 1c,
Supplementary Table S2).

Pathway analysis 2. Next, we performed a second pathway
enrichment analysis to determine the specific functions of
DEGs; thus, a stricter analytical approach was applied and
the up- and downregulated DEGs were analyzed as two
different clusters by ClueGO (the detailed parameters of the
analysis can be found in the Materials and Methods section).
This analytical approach revealed 426 significantly enriched
terms and/or pathways (Supplementary Table S3) and most of
them (291) belonged to innate and adaptive immune mech-
anisms (e.g., T helper type [Th] 17 cell differentiation, toll-
like receptor cascades, T-cell selection, and neutrophil
migration). In addition, several terms were involved in
cellular and metabolic functions (63 terms; e.g., transport
along microtubule, exocytosis of specific granule membrane
proteins, and response to cAMP) and took part in vasculari-
zation (2 terms; positive regulation of vasculature develop-
ment and positive regulation of angiogenesis) and the
nervous system (21 terms; e.g., axonogenesis, glial cell dif-
ferentiation, and axon guidance) were differentially
expressed (Supplementary Table S3). Notably, 15 terms were
found to be related to skin barrier function (e.g., keratiniza-
tion, cornification, and tight junction) (Figure 1d and e,
Supplementary Table S3). Hereafter, we focused on the skin
barrier-related pathways (Figure 1d).

RT-qPCR and IHC validation confirm the significant
alterations in the major skin barrier components in PPR

To gain further insight into the permeability barrier differ-
ences in PPR versus healthy SGR skin, we examined the
expression of genes belonging to the major groups of skin
barrier molecules by RT-qPCR. These major groups included
(i) cornified envelope formation (FLG, KRT1, KRT10, LCE1D,
LCE1F, LOR, SPRR1A, SPRR2A, TGM1, TGM3, and TGM5),
(ii) intercellular lipid lamellae formation (ABCA12), (iii)
desmosome organization (CDH1, corneodesmosin [CDSN],
desmoglein 1 [DSG1], DSC1, and PKP1), (iv) corneocyte
desquamation (kallikrein [KLK]5, KLK7, and KLK14), (v) tight
junction formation (CLDN1, CLDN16, CLDN23, and
OCLN), (vi) barrier alarmins (KRT6, KRT16, and KRT17), and
(vii) AMPs (S100A7, S100A8, S100A9, DEFB4B, LCN2, and
cathelicidin). Furthermore, we also assessed the expression of
selected molecules at the protein level by using IHC.

Cornified envelope formation. First, we focused on inves-
tigating the mRNA levels of molecules composing the cor-
nified envelope in healthy SGR and PPR skin samples. Using
RT-qPCR, we verified the RNASeq results. Most structural
molecules (KRT1, KRT10, FLG, LOR, LCE1D, and LCE1F)
were downregulated in PPR samples, whereas SPRR1A and
SPRR2A mRNA levels were higher in the diseased samples
compared with the healthy controls (Table 1, Supplementary
Figure S1). The differences were statistically significant in all
cases, except for LCE1D, LCE1F, and SPRR1A. Enzymes
crucial for peptide cross-linking (TGM1 and TGM3) were
expressed at similar levels in PPR and SGR samples, except
for TGM5. TGM5 was significantly downregulated in PPR
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Figure 1. RNASeq analyses revealed significant skin barriererelated differences between PPR and healthy SGR skin samples. (a) Heat map was created by

analyzing genes showing significantly different expression (P < 0.05) between SGR (n ¼ 8) and PPR (n ¼ 8) skin. (b) Principal component analysis generated by

StrandNGS software could distinguish the two sample groups unambiguously. (c) The distribution of significantly enriched terms based on their functions on the

basis of the first-round enrichment analyses of significantly differentially expressed genes with FC > 1.5 between SGR and PPR by Cytoscape and ClueGO

(www.cytoscape.org). (d) Barrier-related significantly enriched terms revealed by Cytoscape and ClueGO between SGR and PPR in the second pathway analysis

of significantly differentially expressed genes with FC > 1.5. (e) Representative barrier-related terms visualized by ClueGO. CASP, caspase; CDSN,

corneodesmosin; FC, fold change; Nr., number; PPR, papulopustular rosacea; RNASeq, RNA sequencing; SGR, sebaceous glanderich.
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samples compared with SGR samples (Table 1,
Supplementary Figure S1).

Next, we analyzed cornified envelope components at the
protein level using IHC. LOR and KRT1 protein levels were
significantly lower in PPR than SGR skin, whereas FLG levels
were similar in the sample groups (Table 1, Figure 2). Among
the previously mentioned enzymes, no significant differences
in TGM5 were detected between healthy SGR and PPR
samples (Table 1, Figure 2).
Intercellular lipid lamellae formation. Among molecules
with a pivotal role in composing intercellular lipid lamellae,
the gene expression level of ABCA12 was assessed by RT-
qPCR in PPR and SGR samples. According to our results,
ABCA12 was significantly downregulated in the diseased
specimens (Table 1, Supplementary Figure S1).

Desmosome organization. The gene expression levels of
desmosome components (DSG1, DSC1, CDSN, PKP1, and
CDH1) were examined by RT-qPCR. We found that all
investigated molecules were highly and significantly down-
regulated in PPR specimens, except for CDSN. CDSN mRNA
levels were not significantly different between the two groups
(Table 1, Supplementary Figure S1). To validate our results at
the protein level, we also examined two junction compo-
nents, DSG1 and CDSN, by IHC. DSG1 protein levels were
significantly lower in PPR compared with SGR samples,
whereas CDSN protein was expressed at a similar level in the
two sample groups (Table 1, Figure 2).
www.jidonline.org 3
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Corneocyte desquamation. We measured mRNA levels for
skin barriererelated enzymes having a crucial role in
desquamation (KLK5, KLK7, and KLK14). The expression
levels for KLK5, KLK7, and KLK14 were similar in PPR versus
SGR samples (Table 1, Supplementary Figure S2). We
immunostained for KLK5 in healthy SGR and PPR samples,
and no significant differences between PPR and SGR were
detected (Table 1, Figure 2).

Tight junction formation. The mRNA levels of tight junc-
tion components (CLDN1, CLDN16, CLDN23, and OCLN)
were measured. The tight junction molecules were signifi-
cantly downregulated in PPR samples compared with healthy
SGR skin (Table 1, Supplementary Figure S2). To confirm our
results at the protein level, we measured CLDN1 by IHC and
detected significantly lower levels in PPR than SGR samples
(Table 1, Figure 2).

Barrier alarmins. KRT6, KRT16, and KRT17 are highly
induced in response to an epidermal barrier breach.
Journal of Investigative Dermatology (2020), Volume -
Therefore, we investigated the gene expression levels of these
barrier alarmins. According to our results, the mRNA levels of
KRT6, KRT16, and KRT17 were significantly upregulated in
PPR compared with SGR (Table 1, Supplementary Figure S2).
Immunostaining of KRT6 confirmed our mRNA data. KRT6
was almost absent from SGR skin but highly expressed in PPR
(Table 1, Figure 2).

AMPs. We also examined the gene expression levels for
key components of the immunological barrier, including the
following AMPs: S100A7, S100A8, S100A9, DEFB4B, LCN2,
and cathelicidin. All of the investigated AMPs were signifi-
cantly upregulated in PPR samples compared with healthy
SGR skin samples (Table 1, Supplementary Figure S2). To
confirm that the increased mRNA levels resulted in increased
protein, we measured the protein levels of S100A8 and
LCN2. S100A8 and LCN2 protein levels were significantly
higher in PPR samples compared with controls (Table 1,
Figure 2).



Table 1. Comparison of Barrier Components in PPR and SGR Skin

Variable

RNASeq (PPR vs SGR) qRT-PCR (PPR vs SGR) IHC (PPR vs SGR) ROS vs HC literature AD vs HC literature

P-Value FC P-Value FC1 P-Value FC1
protein/

mRNA data (Ref.)
protein/

mRNA data (Ref.)

Cornified envelope

formation

FLG NS 2.60E-03 2.95Y NS NS mRNA (Deng et al., 2019) Y prot. and

mRNA

(Brunello, 2018;

De Benedetto et al., 2011;

Ghosh et al., 2015;

Pellerin et al., 2013;

Sugiura et al., 2005)

KRT1 3.28E-03 2.86Y <1.00E-4 2.20Y 4.80E-03 2.22Y # Y prot. and mRNA Y prot. and

mRNA

(Sugiura et al., 2005;

Totsuka et al., 2017)KRT10 3.28E-03 2.52Y 9.00E-04 2.75Y Nd NS mRNA (Deng et al., 2019)

LCE1D 2.32E-03 3.57Y 3.42E-02 1.97Y Nd # Y mRNA Y mRNA (De Benedetto et al., 2011)

LCE1F NS NS Nd # NS mRNA

LOR 8.65E-03 2.95Y 1.16E-02 2.03Y 2.11E-02 1.81Y NS mRNA (Deng et al., 2019) Y mRNA (De Benedetto et al., 2011;

Ghosh et al., 2015;

Sugiura et al., 2005)

SPRR1A 1.17E-02 3.26[ NS Nd # NS mRNA [ mRNA (Sugiura et al., 2005)

SPRR2A 1.63E-03 8.64[ 2.59E-02 4.96[ Nd [ mRNA [ mRNA (De Benedetto et al., 2011;

Sugiura et al., 2005)

TGM1 NS NS Nd # NS mRNA no available data

TGM3 NS NS Nd # NS mRNA no available data

TGM5 NS NS NS # NS prot. and mRNA no available data

Intercellular lipid

lamellae formation

ABCA12B NS 1.00E-03 2.09Y Nd # Y mRNA no available data

Corneodesmosome

organization

CDH1 3.57E-02 1.38Y 5.10E-03 1.60Y Nd # Y mRNA no available data

CDSN 3.57E-02 1.92Y NS NS # NS mRNA no available data

DSC1 1.13E-03 2.49Y 1.50E-03 4.03Y Nd # Y mRNA Y prot. (Totsuka et al., 2017)

DSG1 2.32E-03 1.85Y <1.00E-4 5.76Y 1.60E-03 2.86Y # Y prot. and mRNA

PKP1 1.63E-03 2.79Y 5.00E-04 2.19Y Nd # Y mRNA no available data

Corneocyte

desquamation

KLK5 8.65E-03 1.69Y NS Nd [ exp. and

act.

(Deng et al., 2019;

Yamasaki and Gallo, 2011)

NS prot. (Brunello, 2018;

Rawlings and Voegeli, 2013)

KLK7 NS NS Nd # NS mRNA NS prot. (Brunello, 2018;

Igawa et al., 2017)

KLK14 NS NS Nd # NS mRNA NS prot. and

mRNA

(Brunello, 2018;

Rawlings and Voegeli, 2013)

(continued )
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Table 1. Continued

Variable

RNASeq (PPR vs SGR) qRT-PCR (PPR vs SGR) IHC (PPR vs SGR) ROS vs HC literature AD vs HC literature

P-Value FC P-Value FC1 P-Value FC1
protein/

mRNA data (Ref.)
protein/

mRNA data (Ref.)

Tight junction

formation

CLDN1 7.78E-04 2.22Y 1.30E-03 3.75Y 2.67E-02 1.91Y Y prot. and

mRNA

(Deng et al., 2019) Y mRNA (De Benedetto et al., 2011)

CLDN16 1.17E-02 1.68Y <1.00E-4 3.44Y Nd # Y mRNA NS mRNA

CLDN23 1.13E-03 3.28Y 1.26E-02 2.56Y Nd # Y mRNA Y mRNA

OCLN NS <1.00E-4 3.04Y Nd # Y mRNA NS prot. and

mRNA

Barrier alarmins

KRT6A 4.57E-03 5.03[ 3.70E-03 4.92[ 1.00E-03 109.28[ # [ prot. and mRNA [ mRNA (Ghosh et al., 2015;

Sugiura et al., 2005)KRT16 1.57E-02 2.50[ 6.00E-04 9.76[ Nd # [ mRNA [ mRNA

KRT17 8.65E-03 4.16[ 1.28E-02 3.26[ Nd # [ mRNA [ mRNA (Sugiura et al., 2005)

AMPs

DEFB4B 7.78E-04 84.35[ 3.82E-02 62.35[ Nd # [ mRNA NS mRNA (Sugiura et al., 2005)

CAMP 4.58E-02 2.91[ 3.44E-02 7.90[ Nd [ prot. and

mRNA

(Yamasaki et al., 2007) controversial (Ballardini et al., 2009;

Gambichler et al., 2008;

Patra et al., 2018)

LCN2 3.28E-03 6.93[ 3.15E-02 3.46[ 4.60E-03 3.08[ # [ prot. and mRNA no available data

S100A7 1.13E-03 19.30[ < 1.00E-4 19.68[ Nd # [ mRNA [ mRNA (De Benedetto et al., 2011;

Sugiura et al., 2005)S100A8 7.78E-04 24.75[ 2.00E-04 21.75[ 4.54E-02 2.20[ # [ prot. and mRNA [ mRNA

S100A9 7.78E-04 29.64[ 7.00E-04 18.57[ Nd # [ mRNA [ mRNA

Abbreviations: act., activity; AD, atopic dermatitis; CAMP, cathelicidin; CDSN, corneodesmosin; DSG1, desmoglein 1; exp., expression; FC, fold change; HC, healthy control; IHC, immunohistochemistry; KLK,
kallikrein; nd, not determined; NS, not significant; PPR, papulopustular rosacea; prot., protein; Ref., reference; RNASeq, RNA sequencing; ROS, rosacea; SGR, sebaceous glanderich.

Boxes represent the studied seven major groups of barrier composing molecules. The first column contains the molecules that have been investigated in our study. The second, third, and fourth columns summarize
our findings according to the applied methods: RNASeq, qRT-PCR and IHC, respectively. Eight samples were examined in each group regarding all the investigated molecules.

Available literature data about papulopustular rosacea regarding all the investigated molecules, as well as our present findings from column 1e3 are compiled in Column 5. In this column, # represents that to our
knowledge our study provides novel, previously unreported data, whereas the absence of # represents preexisting literature data. Available literature data about atopic dermatitis regarding all the investigated
molecules are referenced in column 6. Comparison of column 5 and 6 highlights the similarities between the barrier alterations of these two skin disorders.

Statistical analyses between protein and mRNA levels were determined by two-sample t-test. Bold type indicates data with significant differences.
1Arrows indicate the direction of significant changes.
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Figure 2. Prominent differences in the protein expression levels of skin barriererelated molecules between PPR and healthy SGR skin samples. Representative

images for immunostaining and quantification of epidermal levels of FLG, LOR, KRT1, TGM5, CDSN, DSG1, CLDN1, KRT6, S100A8, and LCN2 in SGR and

PPR skin sections. The graphs show the mean � 95% confidence interval of measured protein levels (*P < 0.05; **P < 0.01; ***P < 0.001, as determined by

two-sample t-test). CDSN, corneodesmosin; DSG1, desmoglein 1; PPR, papulopustular rosacea; SGR, sebaceous glanderich. Bar ¼ 50 mm.
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Figure 3. Highly similar barrier

alteration occurs in PPR and AD. PPR

and AD, as well as their respective

control samples (SGR and SGP), were

immunostained. Representative

images for immunofluorescent

staining of epidermal levels of LOR,

DSG1, KRT6, and S100A8 in SGR,

PPR, SGP, and AD skin sections. AD,

atopic dermatitis; DSG1,

desmoglein1; PPR, papulopustular

rosacea; SGP, sebaceous glandepoor;

SGR, sebaceous glanderich. Bar ¼ 50

mm.
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Disrupted skin barrier features of PPR are similar to that of
AD

Literature search. As barrier alterations in PPR seemed to
be similar to that of lesional AD skin, we reviewed the
literature on AD barrier damage and compared barrier al-
terations of the two disorders (Table 1). According to the
literature search, the skin barrier alterations were similar in
PPR and AD skin compared with the respective healthy
control skin (SGR and sebaceous glandepoor [SGP]).

Immunofluorescent staining. To confirm similarities in skin
barrier changes between PPR and AD, immunofluorescent
staining was performed in PPR and AD samples and the
respective SGR and SGP skin specimens. According to the
immunostaining results, a cornified envelope structural
molecule (LOR) and key components of desmosomes (DSG1)
and tight junctions (CLDN1) were highly downregulated in
PPR and AD samples compared with controls (Figure 3). In
contrast, the barrier alarmin KRT6 and the AMP S100A8 were
almost absent from healthy skin types and were expressed at
high levels in PPR and AD skin specimens (Figure 3).
Notably, the expression patterns of these proteins were
similar in PPR and AD skin (Figure 3).

DISCUSSION
Clinical features and functional studies on the affected facial
skin of patients with rosacea indicate the presence of
Journal of Investigative Dermatology (2020), Volume -
permeability barrier alterations (Darlenski et al., 2013;
Powell and Ni Raghallaigh, 2011). However, no detailed
analysis of skin barrier disruption in rosacea at the molecular
level has been conducted so far. In the present study, we
performed whole transcriptomic analysis (RNASeq) of PPR
skin samples, and gene expression profiles of diseased skin
were compared with that of healthy SGR skin. According to
our findings, all major components of the skin barrier are
severely altered in PPR.

An intact skin barrier is essential for maintaining homeo-
stasis as it protects the body against external agents and mi-
crobes and provides a waterproof cover. According to the
literature, stratum corneum, the outermost layer of the
epidermis, and tight junctions are considered the most
important components of the skin permeability barrier
(Egawa and Kabashima, 2016; Egawa and Kabashima, 2018).
Molecules forming the stratum corneum can be further
divided into four groups: cornified envelope formation,
intercellular lipid lamellae formation, corneodesmosome
organization, and corneocyte desquamation (Egawa and
Kabashima, 2016; Egawa and Kabashima, 2018).

Cornified envelope is built up from several types of intra-
cellular structure proteins, including FLG, LOR, LCE, and
SPRR proteins; envoplakin; periplakin; involucrin; and KRT
filaments that are derived from keratohyalin granules
(Carregaro et al., 2013; Egawa and Kabashima, 2016; Koch
et al., 2000; Palmer et al., 2006). These proteins undergo
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cross-linking, which is catalyzed by TGM1, TGM3, and
TGM5 (Eckert et al., 2005). According to our results, FLG,
LOR, KRT1, KRT10, and LCE1D were significantly down-
regulated, whereas SPRR2A was significantly upregulated in
PPR skin compared with healthy SGR skin. The significant
decrease in LOR and KRT1 levels was also confirmed at the
protein level. Regarding the expression of TGMs, no signifi-
cant difference was detected either at mRNA or protein
levels.

Lipid lamellae formation is also a critical event in the
development of intact stratum corneum, in which lip-
oxygenases (ALOX12B and ALOXB3) and lipid transporters
(ABCA12) are essential to lipid synthesis and transport (Iwai
et al., 2012; Kelsell et al., 2005; Krieg and Fürstenberger,
2014). In our study, ABCA12 was significantly down-
regulated at the mRNA level in PPR compared with controls.

Another component of the stratum corneum is the
desmosome apparatus, which is responsible for cell adhesion
of corneocytes (Egawa and Kabashima, 2016; Egawa and
Kabashima, 2018). Based on our findings, desmosomes are
highly disrupted in PPR, as demonstrated by the significantly
decreased gene expression levels of CDH1, CDSN, DSC1,
DSG1, and PKP1. The significant decrease in DSG1 was also
confirmed at the protein level by IHC.

In the stratum corneum, corneocytes are shed as part of an
event called desquamation, which is primarily regulated by
KLKs (KLK5, KLK7, and KLK14) via a pH-dependent proteo-
lytic cascade (Brattsand et al., 2005; Rippke et al., 2004). In
this study, we detected similar gene expression levels of
KLK5, KLK7, and KLK14 in lesional PPR compared with
healthy skin; however, the enzymes’ protein levels and ac-
tivity were not examined.

In addition to the stratum corneum, tight junctions are also
key components for the integrity of the skin barrier by sealing
adjacent keratinocytes in the stratum granulosum and acting
as a barrier for water and solutes. Tight junctions are
composed of transmembrane proteins, particularly the
CLDNs and OCLN (Kirschner et al., 2010; Yokouchi et al.,
2015). In our study, mRNA levels for CLDN1, CLDN16,
CLDN23, and OCLN were significantly decreased in PPR
compared with controls. The significant decrease in CLDN1
was confirmed at the protein level by IHC.

In parallel with the stratum corneum and tight junction
components, we focused on investigating two additional
groups of molecules, key barrier alarmins and AMPs, because
the expression levels of these molecules are tightly connected
with the level of permeability barrier structural components
(Borkowski and Gallo, 2011; Zhang et al., 2019). In our
study, all investigated barrier alarmins (KRT6A, KRT16, and
KRT17) and AMPs (cathelicidin, hBD-2, LCN2, S100A7,
S100A8, and S100A9) were significantly upregulated in PPR
skin compared with controls. The significantly higher pres-
ence of LCN2, S100A8, and KRT6 in PPR was confirmed at
the protein level.

To our knowledge, until now, only one study has investi-
gated rosacea samples at a whole transcriptomic level. In this
previous study, the authors focused on examining the
immunological characteristics of different rosacea subtypes,
and no data were published on barrier components (Buhl
et al., 2015). Another study, performed by Deng et al.,
focused on mRNA expression levels of cornified envelope
components, including KRT10, FLG, and LOR in different
rosacea subtypes (Deng et al., 2019). They also studied the
tight junction protein CLDN1 and could detect significantly
lower gene expression and protein levels of CLDN1 in PPR
samples compared with controls, in agreement with our re-
sults. Regarding the mRNA levels of KRT10 and LOR, the
authors of this study did not find significant differences when
comparing PPR to controls, and protein levels were not
assessed (Deng et al., 2019). The expression of KLK5 in ro-
sacea has been studied previously by another workgroup,
and its mRNA and protein levels were demonstrated to be
significantly increased, in parallel with elevated enzyme
activity; however, the authors did not specify which rosacea
subtype had been assessed (Morizane et al., 2010; Yamasaki
and Gallo, 2011). In our study, in PPR, we could not detect
significantly elevated KLK5 mRNA levels, but protein levels
and enzyme activity were not assessed. Among AMPs, only
the expression of cathelicidin was assessed previously in
PPR, whereas data regarding hBD-2 is available only in
ocular rosacea (Gökçnar et al., 2019; Morizane et al., 2010;
Yamasaki and Gallo, 2011). In line with these previous re-
sults, in our study, cathelicidin and hBD-2 were significantly
upregulated in PPR as compared with SGP skin at the mRNA
level.

As a whole, our in-depth molecular biological investiga-
tion, using whole transcriptomic and bioinformatics analyses,
qRT-PCR, and quantitative IHC, indicate that all major
components of the permeability skin barrier are severely
disrupted in PPR, which may significantly contribute to dis-
ease pathophysiology. Barrier alterations have gained far-
reaching importance in recent years. In AD, it has been
proven that barrier disruption is able to induce skin inflam-
mation, and, in this manner, can be considered as an initiator
of disease pathogenesis. From this point of view, it is quite
interesting that we could detect highly similar barrier alter-
ations in PPR and AD. According to our literature search and
results, these similarities included the altered expression of
cornified envelope components, desmosome and tight junc-
tion molecules, barrier alarmins, and AMPs. Moreover, we
could confirm some of these similarities at the protein level
by immunofluorescent staining of selected molecules. The
demonstrated similarity between the barrier disruptions in
PPR and AD is surprising because, up until now, mainly the
differences in clinical features and immune composition of
these diseases have been highlighted (Figure 4).

Although it is well known that barrier dysfunction is a
potent initiator of inflammation in AD, on the basis of our
results, we cannot determine the role of barrier alterations in
rosacea, if it is the result or the cause of inflammation. Barrier
damage may occur because of the Th1/Th17 type inflam-
mation that is characteristic in rosacea, and IL-17A recently
has been shown to downregulate FLG, LOR, and KRT10
mRNA levels in organotypic three-dimensional skin equiva-
lents (Pfaff et al., 2017). In contrast, it is also possible that
dysfunctional barrier is the initiating factor of rosacea
development. Although barrier alteration is an adjuvant fac-
tor for Th2 type inflammation in AD, the reason why similar
barrier disruption may precipitate Th1/Th17 type inflamma-
tion in rosacea could be that AD has an SGP region
www.jidonline.org 9
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Figure 4. The possible role of permeability barrier alteration in the pathogenesis of PPR. Until now, when comparing AD and PPR, mainly the differences in

their clinical and immunological characteristics were pronounced by dermatologists. However, based on our results, these two skin disorders can be considered

from another point of view, because both are characterized by severe and notably similar skin barrier damage, although being developed on distinct skin areas.

We propose that the prominently different steady-state immune and barrier features of (a) the skin regions (SGR and SGP skin) where these diseases prefer to

localize can influence (b) the barrier damageeconnected inflammation differently, leading to (c) region-specific immune-mediated skin diseases and explaining

the prominent distinctions between AD and PPR. AD, atopic dermatitis; AMP, antimicrobial peptide; DC, dendritic cell; KC, keratinocyte; lfTSLP, long form

thymic stromal lymphopoietin; sfTSLP, short form thymic stromal lymphopoietin; PPR, papulopustular rosacea; SGP, sebaceous glandepoor; SGR, sebaceous

glanderich; Th, T helper; Th17(b), noninflammatory Th17 cell; Th17(23), inflammatory Th17 cell; TLR2, toll-like receptor 2; Treg, regulatory T cell.
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preference, whereas rosacea localizes exclusively on SGR
skin. SGR and SGP skin areas have prominently different
homeostatic immune and barrier characteristics (Béke et al.,
2018; Dajnoki et al., 2017). Whereas SGR skin regions
dispose significantly higher AMP levels, noninflammatory
Th17(b) and regulatory T-cell counts, and constitutive
expression of homeostatic short form thymic stromal lym-
phopoietin (sfTSLP), SGP skin is characterized by low AMP
levels and T-cell counts, without TSLP presence under steady-
state (Béke et al., 2018; Dajnoki et al., 2017). These features
of the skin seem to be very similar to that of another barrier,
namely the gut, where the regional immune-related differ-
ences are well known. Th17(b) cells are enriched and sfTSLP
is expressed in the small intestine, in contrast to the colon,
where Th17(b) cells are absent and sfTSLP is present only in
the proximal part (Iliev et al., 2009; Rimoldi et al., 2005). It
has been raised that these unique immune and barrier char-
acteristics of different gut sections can lead to distinct types of
immune-mediated diseases. In Crohn’s disease, the loss of
sfTSLP from the small intestine can promote the activation of
inflammatory Th1/Th17 cells (Iliev et al., 2009; Rimoldi et al.,
2005), whereas in ulcerative colitis, significantly increased
inflammatory long form TSLP levels initiate Th2 type
inflammation in the colon (Fornasa et al., 2015). On the basis
of these findings, we hypothesize that similar barrier alter-
ations of SGR and SGP skin regions, because of their different
homeostatic immune and barrier milieu, initiate distinct
immune-mediated skin diseases with unique clinical features
driven by different Th subsets (AD on SGP and PPR on SGR
areas) (Figure 4). Notably, De Benedetto et al. already raised
the possibility that barrier defects can lead to the production
of keratinocyte-derived mediators including pro-Th2 and pro-
Th17 types that affect the characteristics of Th response (De
Benedetto et al., 2012).

To determine if PPR barrier damage is the initiator of the dis-
ease or a consequence of manifested inflammation, the exact
time of barrier disruption should be studied and a detailed
analysis of the perilesional and/or nonlesional skin of patients
with PPR should be performed in the future. Moreover, analo-
gous experiments are needed in other subtypes of rosacea.

In summary, our results unambiguously prove the presence
of severe barrier alterations in the facial skin of patients with
PPR; thus, we suggest that skin barrier restoring therapies
should be incorporated into clinical guidelines for rosacea
management, similar to that of AD.

MATERIALS AND METHODS
Skin biopsies

Skin punch biopsies (0.5e1 cm2) were taken from normal SGR skin

sites of eight healthy individuals (mean age � SD: 56.25 � 13.11

years) undergoing plastic surgery and from lesional skin of eight

patients with PPR (mean age � SD: 59.38 � 13.59 years)

(Supplementary Table S4). Written informed consent according to

the Declaration of Helsinki principles was obtained by all in-

dividuals before participating in the study. The study was approved

by the local ethics committee of the University of Debrecen.

RNA isolation and reverse transcription

Samples were homogenized in Tri reagent (Sigma-Aldrich, St. Louis,

MO) with Tissue Lyser (Qiagen, Hilden, Germany) using previously
autoclaved metal beads (Qiagen). RNA concentration and purity were

measured and cDNA was synthesized using the High Capacity cDNA

Archive Kit (Invitrogen, Thermo Fisher Scientific, Waltham, MA).

RT-qPCR

RT-PCR was carried out in triplicate using pre-designed MGB assays

(Thermo Fisher Scientific). The assessed TaqMan Gene Expression

assays are listed in Supplementary Materials and Methods. All re-

actions were performed with an ABI PRISM 7000 Sequence Detec-

tion System. Relative mRNA levels were calculated using the 2-DDCt
method normalized to the expression of PPIA mRNA.

RNASeq analysis

Complementary DNA library for RNASeq was generated from 1 mg
total RNA using TruSeq RNA Sample Preparation Kit (Illumina, San

Diego, CA) according to the manufacturer’s protocol. A single read

50 base pair sequencing run was performed on Illumina HiScan SQ

instrument (Illumina), and 16e18 million reads per sample were

obtained. Sequenced reads were aligned to Human Genome v19

using TopHat and Cufflinks algorithms and bam files were generated.

StrandNGS software was used for further statistical analysis. To

identify statistically significant gene expression patterns, nonpara-

metric WilcoxoneManneWhitney test was used. Library prepara-

tions, sequencing, and data analysis were performed at the Genomic

Medicine and Bioinformatics Core Facility of University of Debre-

cen. RNA sequencing data of our samples were deposited to the

Sequence Read Archive database (https://www.ncbi.nlm.nih.gov/

sra), under accession numbers PRJNA421246 and PRJNA592080.

Pathway analyses

Multiple bioinformatics analyses were performed by Cytoscape

ClueGO bioinformatics tool. Pathway enrichment analyses were

performed on all DEGs with fold change � 1.5. The details of our

analytical approach can be found in the Supplementary Materials

and Methods.

Immunohistochemistry

For IHC analyses, paraffin-embedded sections from patients and

healthy controls were deparaffinized. Heat-induced antigen retrieval

was performed. Sections were stained with primary antibodies listed

in Supplementary Materials and Methods. Subsequently, anti-mouse/

rabbit horseradish peroxidaseeconjugated secondary antibody

(Biogenex, Fremont, CA) was employed. Staining was detected with

the Vector NovaRed Kit (Vector Laboratories, Burlingame, CA).

Sections were counterstained with methylene green and digitized by

Whole Slide Imaging, and Pannoramic Viewer software was used for

the evaluation of the degree of staining of the slides.

Statistical analysis

Data distribution was analyzed by Kolmogorov-Smirnov test.

Because our data showed normal distribution, two groups of sam-

ples were compared statistically by two-sample t-test. Differences

between the groups were demonstrated using mean � 95% confi-

dence interval. P-values < 0.05 were considered statistically sig-

nificant (*P < 0.05; **P < 0.01; ***P < 0.001). Statistical data was

analyzed using GraphPad Prism v6 (GraphPad Software Inc., La

Jolla, CA) and SPSS 25 (SPSS package for Windows, Chicago, IL).

Additional details are provided in the Supplementary Information

online.

Data availability statement

The data that support the findings of this study are available from the

corresponding author upon reasonable request.
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Tamás Bı́ró: https://orcid.org/0000-0002-3770-6221
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SUPPLEMENTARY MATERIALS AND METHODS
Patients and healthy controls

Skin punch biopsies (0.5e1 cm2) were taken from lesional
facial skin of eight patients with papulopustular rosacea and
from sebaceous glanderich (SGR) skin of eight healthy in-
dividuals after obtaining written informed consent, according
to the Declaration of Helsinki principles (Supplementary
Table S4). The study was approved by the local ethics com-
mittee of University of Debrecen, Hungary.

Processing of skin biopsy specimens

All biopsies were cut into two pieces. For immunohisto-
chemistry, samples were formalin-fixed and paraffin-
embedded, and for quantitative RT-PCR, samples were
stored in RNAlater (Qiagen, Hilden, Germany) at �70 �C
until RNA isolation.

RNA isolation and reverse transcription

All samples were homogenized in Tri reagent solution
(Sigma-Aldrich, St. Louis, MO) with Tissue Lyser (Qiagen)
using previously autoclaved metal beads (Qiagen). The con-
centration and purity of the RNAwere measured by means of
NanoDrop spectrophotometer (Thermo Fisher Scientific,
Bioscience, Waltham, MA), and its quality was checked using
an Agilent 2100 bioanalyzer (Agilent Technologies, Santa
Clara, CA). For RT-PCR, cDNA was synthesized from the
isolated RNA using the High Capacity cDNA Archive Kit
(Invitrogen, Life Technologies, Carlsbad, CA).

RT-qPCR

RT-PCR was carried out in triplicate using pre-designed MGB
assays ordered from Applied Biosystems (Life Technologies).

The following TaqMan Gene Expression assays were used:
PPIA (Hs99999904_m1), FLG (Hs00856927_g1), KRT1
(Hs00196158_m1), KRT6A (Hs01699178_g1), KRT10
(Hs00166289_m1), KRT16 (Hs00373910_g1), KRT17
(Hs00356958_m1), LCE1D (Hs04224967_gH), LCE1F
(Hs00820275_sH), LOR (Hs01894962_s1), CLDN1
(Hs00221623_m1), CLDN16 (Hs00198134_m1), CLDN23
(Hs01013638_s1), OCLN (Hs00170162_m1), CDH1
(Hs01023895_m1), DSC1 (Hs00245189_m1), CDSN
(Hs00169911_m1), DSG1 (Hs00355084_m1), TGM1
(Hs00165929_m1), TGM3 (Hs00162752_m1), TGM5
(Hs00909973_m1), KLK5 (Hs01548153_m1), KLK7
(Hs00192503_m1), KLK14 (Hs00983577_m1), SPRR1A
(Hs00954595_s1), SPRR2A (HS03046643_s1), ABCA12
(Hs00292421_m1), PKP1 (Hs00240873_m1), S100A7
(Hs00161488_m1), S100A8 (Hs00374264_g1), S100A9
(Hs00610058_m1), LCN2 (Hs01008571_m1), DEFB4B
(hBD-2) (Hs00175474_m1), TSLP (Hs00263639_m1), and
LL37 (CAMP) (Hs00189038_m1). All reactions were per-
formed with an ABI PRISM 7000 Sequence Detection System.
Relative mRNA levels were calculated using the 2-DDCt
method normalized to the expression of PPIA mRNA.

RNA sequencing (RNASeq) analysis

Complementary DNA library for RNASeq was generated
from 1 mg total RNA using TruSeq RNA Sample Preparation
Kit (Illumina, San Diego, CA) according to the manufacturer’s
protocol. Briefly, poly-A tailed RNAs were purified by
oligodT-conjugated magnetic beads and fragmented on 94 �C
for 8 minutes, then first strand cDNA was transcribed using
Journal of Investigative Dermatology (2020), Volume -
random primers and SuperScript II reverse transcriptase (Life
Technologies). Following this step, second strand cDNA was
synthesized, double-stranded cDNA was end repaired and 30

ends adenylated, and Illumina index adapters were ligated.
After adapter ligation enrichment, PCR was performed to
amplify adapter ligated cDNA fragments. Fragment size dis-
tribution and molarity of libraries were checked on Agilent
BioAnalyzer DNA1000 chip (Agilent Technologies, Santa
Clara, CA). Concentrations of RNASeq libraries were set to 10
nM and five libraries were pooled together before
sequencing. A single read 50 base pair sequencing run was
performed on Illumina HiScan SQ instrument (Illumina), and
16e18 million reads per sample were obtained. CASAVA
software was used for pass filtering and demultiplexing pro-
cess. Sequenced reads were aligned to Human Genome v19
using TopHat and Cufflinks algorithms and bam files were
generated. StrandNGS software was used for further statistical
analysis. Bam files were imported and normalized using
DESeq algorithm. To identify statistically significant gene
expression patterns between conditions, nonparametric
WilcoxoneManneWhitney test was used.

Library preparations, sequencing, and data analysis were
performed at the Genomic Medicine and Bioinformatics Core
Facility of University of Debrecen.

A part of our RNASeq data (SGR1eSGR6 samples) has
been previously published and deposited to the Sequence
Read Archive database (https://www.ncbi.nlm.nih.gov/sra),
under accession number PRJNA421246, whereas SGR7,
SGR8, and PPR1ePPR8 samples are available in the
Sequence Read Archive database (https://www.ncbi.nlm.nih.
gov/sra), under accession number PRJNA592080.

Pathway analyses

To identify the function of the aforementioned differentially
expressed genes (DEGs), multiple bioinformatics analyses
were performed by Cytoscape ClueGO bioinformatics tool
using Gene Ontology Biological Process, Immune System
Process, and Molecular Function; Kyoto Encyclopedia of
Genes and Genomes and Kyoto Encyclopedia of Genes and
Genomes Compound; Reactome Pathways; and Reactome
Reactions databases.

First, to identify the general biological function of DEGs,
we performed a pathway enrichment analysis on all DEGs
with fold change� 1.5. To reveal the significantly enriched (P
� 0.05) terms and pathways, the following criterion was
applied: all terms should have contained at least 50 genes
from our input gene set.

Then, we performed a second, stricter pathway enrichment
analysis to find out the function of barrier-related significant
DEGs with fold change � 1.5 in more detail; thus, a different
analytical approach was applied. Up- and downregulated
DEGs were subjected as two different clusters to a more
detailed pathway enrichment analysis by ClueGO. According
to the fact that most DEGs were upregulated (approximately
61%), the criteria of the analysis were different in the cases of
up- and downregulated gene sets. Regarding the cluster of
upregulated genes, terms should have contained at least 30
genes from our input gene set and at least 20% of all genes
characteristic to each term, whereas the cluster of down-
regulated genes required at least 18 genes from our input

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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gene set and at least 12% of all genes characteristic to each
term. This approach allowed us not only to reveal signifi-
cantly enriched specific terms and pathways but also made us
capable of easily distinguishing and visualizing up- and
downregulated DEGs belonging to each terms. Regarding the
statistical approach of the enrichment analyses by Cytoscape,
a P-value < 0.05 and kappa coefficient of 0.4 were consid-
ered as threshold values and correction was performed by
BenjaminieHochberg test.

Immunohistochemistry

For immunohistochemistry analyses, paraffin-embedded
sections from patients and healthy controls were deparaffi-
nized. Heat-induced antigen retrieval was performed, and
sections were preprocessed with H2O2 for 10 minutes. Sec-
tions were stained with primary antibodies against human
CDSN (rabbit polyclonal IgG [HPA054184], Sigma-Aldrich),
human CLDN1 (rabbit polyclonal IgG [ab15098], Abcam,
Cambridge, United Kingdom), human DSG1 (rabbit poly-
clonal IgG [NBP1-84567], Novus Biologicals, Centennial,
CO), human FLG (mouse monoclonal IgG [ab218862],
Abcam), human KRT1 (rabbit monoclonal IgG [ab185628],
Abcam), human KRT6 (mouse monoclonal IgG [ab18586],
Abcam), human lipocalin/NGAL (rabbit polyclonal IgG [PA5-
32476], Invitrogen), human LOR (rabbit monoclonal IgG
[NBP133610], Novus Biologicals), human S100A8 (rabbit
polyclonal IgG [PA532476], Invitrogen), and human TGM5
(rabbit polyclonal IgG [ab133786], Abcam).
Subsequently, the following horseradish
peroxidaseeconjugated secondary antibodies were
employed: anti-mouse/rabbit (Biogenex, Fremont, CA).
Before and after incubating with antibodies, washing of
samples was performed for 5 minutes, 3 times in each step.
Staining was detected with the Vector NovaRed Kit (Vector
Laboratories, Burlingame, CA). Sections were counterstained
with methylene green, dehydrated, and covered with a glass
coverslip. The detection of one protein was carried out on all
sections in parallel at the same time to enable us to evaluate
comparable protein levels. Positive, Ig, and isotype controls
were also used to normalize staining against all proteins
(mouse IgG2a Kappa [Covalab, Villeurbanne, France] and
rabbit immunoglobulin fraction [Sigma-Aldrich]).

The sections were digitized using Whole Slide Imaging
technology in the Department of Pathology, and the Pan-
noramic Viewer software was used for the evaluation of the
degree of staining of the slides.

Statistical analysis

Data distribution was analyzed by Kolmogorov-Smirnov test.
Because our data showed normal distribution, two groups of
samples were compared statistically by two-sample t-test.
Differences between the groups were demonstrated using
mean � 95% confidence interval. P-values < 0.05 were
considered statistically significant (*P < 0.05; **P < 0.01;
***P < 0.001). Statistical data was analyzed using GraphPad
Prism v6 (GraphPad Software Inc., La Jolla, CA) and SPSS 25
(SPSS package for Windows, Chicago, IL).
www.jidonline.org 13.e2
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Supplementary Figure S1. Significantly altered expression of the components of cornified envelope, intercellular lamellae formation, and desmosome

organization in ROS examined by qRT-PCR. (a) Cornified envelope. (b) Intercellular lamellae formation. (c) Desmosome organization. The graphs show the

mean � 95% confidence interval of measured mRNA transcript levels (*P < 0.05; **P < 0.01; ***P < 0.001, as determined by two-sample t-test). CDSN,

corneodesmosin; DSG1, desmoglein 1; ROS, papulopustular rosacea; SGR, sebaceous glanderich.
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Supplementary Figure S2. Significantly altered expression of the components of corneocyte desquamation, tight junctions, barrier alarmins, and antimicrobial

peptides in ROS examined by qRT-PCR. (a) Corneocyte desquamation. (b) Tight junctions. (c) Barrier alarmins. (d) Antimicrobial peptides. The graphs show the

mean � 95% confidence interval of measured mRNA transcript levels (*P < 0.05; **P < 0.01; ***P < 0.001, as determined by two-sample t-test). CAMP,

cathelicidin; ROS, papulopustular rosacea; SGR, sebaceous glanderich.
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Supplementary Table S4. Characteristics of the
Studied Skin Samples of Healthy Controls and Patients
with PPR

SGR skin samples (n [ 8)

Healthy individuals Sex Age Localization

SGR1 F 77 Hairy scalp

SGR2 M 62 Mandibula

SGR3 F 57 Nose

SGR4 F 61 Nose

SGR5 F 42 Scapula

SGR6 F 38 Chin

SGR7 M 47 Face

SGR8 M 66 Face

Mean age � SD 56.25 � 13.11

Rosacea skin samples (n [ 8)

PPR individuals Sex Age Localization

PPR1 F 36 Forehead

PPR2 F 53 Nose

PPR3 F 60 Chin

PPR4 M 79 Nose

PPR5 M 71 Nose

PPR6 F 69 Forehead

PPR7 F 57 Forehead

PPR8 F 50 Chin

Mean age � SD 59.38 � 13.59

Abbreviations: F, female; M, male; PPR, papulopustular rosacea; SGR,
sebaceous glanderich.
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