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a b s t r a c t

A widely investigated subject in combinatorial geometry, originated from Erdős, is the
following. Given a point set P of cardinality n in the plane, how can we describe the
distribution of the determined distances? This has been generalized in many directions.

In this paper we propose the following variants. What is the maximum number of
triangles of unit area, maximum area or minimum area, that can be determined by an
arrangement of n lines in the plane?

We prove that the order of magnitude for the maximum occurrence of unit areas
lies between Ω(n2) and O(n9/4+ε), for every ε > 0. This result is strongly connected
to additive combinatorial results and Szemerédi–Trotter type incidence theorems. Next
we show an almost tight bound for the maximum number of minimum area triangles.
Finally, we present lower and upper bounds for the maximum area and distinct area
problems by combining algebraic, geometric and combinatorial techniques.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There are number of interesting question originating from Erdős, concerning distances in planar point sets [8]. He asked
to determine the maximum number of equal distances that n planar points can form, the minimum number of distinct
istances they can form and the maximum number of appearances of the largest/smallest distance. He also considered
ow large subset is guaranteed to exist in a point set such that the distances within that subset are distinct.
Erdős and Purdy also studied the related problem of the maximum number of occurrences of the same area among

he triangles determined by n points in the plane [11]. Since then, several variants have been established and the former
esults of Erdős and Purdy have been settled for some cases, see e.g. [5,11,21].

In this paper we consider the following variants of the original problem, which can be considered as the dual setting.
e are given n lines on the Euclidean plane and we are seeking for conditions on the distribution of the areas of triangles
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ormed by the triples of lines. More precisely, we investigate the following four main problems and compare the results
o the corresponding problems concerning triples of points.

roblem 1.1. Determine the largest possible number f (n) of triangles of unit area formed by n lines in the Euclidean
lane.

roblem 1.2. Determine the largest possible number m(n) of triangles having minimum area formed by n lines in the
uclidean plane.

roblem 1.3. Determine the largest possible number M(n) of triangles with maximum area formed by n lines in the
uclidean plane.

roblem 1.4. Determine the largest possible number D(n) such that in any arrangement of n lines (satisfying some
enerality conditions) there are D(n) lines that form triangles of distinct areas.

Concerning these problems, we achieved the following results.

heorem 1.5. For the maximum number of triangles of unit area, we have

f (n) = O
(
n

9
4 +ε

)
or every fixed ε > 0, while f (n) = Ω(n2).

heorem 1.6.⌊
n2

− n
6

⌋
≤ m(n) ≤

⌊
n2

− 2n
3

⌋
olds for the occurrences of the minimum area, if n ≥ 6.

heorem 1.7. For the maximum number of triangles of maximum area, we have
7
5
n − O(1) < M(n) <

2
3
n(n − 2).

Theorem 1.8. For the largest subset of lines forming triangles of distinct areas, we have

n
1
5 < D(n),

provided that there are no six lines that are tangent to a common conic.

If one wishes to find a large subset of lines defining triangles that have distinct areas, it is necessary to make some
dditional assumptions about the set of lines we are considering. The most natural one is to assume that there are no
arallel lines in the set, and no three of them through a common point. However, we were not able to obtain non-trivial
ounds under these assumptions. Since 5 lines always have a common tangent conic (see e.g. in [1, p. 66]), another natural
eneral position assumption is to require that no 6 of them do, as in the hypothesis of Theorem 1.8.
To put these results into perspective, let us recall a related problem, first asked by Oppenheim in 1967, which reads

s follows: What is the maximum number of triangles of unit area that can be determined by n points in the plane?
he first breakthrough after the investigation of Erdős and Purdy [11] was due to Pach and Sharir [18], who obtained an
pper bound O(n2+1/3) via a Szemerédi–Trotter type argument. This bound was improved in [2,7] and recently by Raz and
harir to O(n2+2/9) in [21]. Here the lower bound is a simple lattice construction from [11], yielding Ω(n2 log log n). Our
heorem 1.5 also indicates that the straightforward application of some Szemerédi–Trotter type result can be improved.
owever, in the next Section we will point out that in some relaxation, it would provide the right order of magnitude.
As in the case of counting equal distances, the minimum and maximum area problems determined by point sets turned

ut to be easier, and they were asymptotically settled by Brass, Rote and Swanepoel [5]. The result on the minimum area
roblem was later refined in [7]. Concerning the occurrences of the maximum area, the upper bound happens to be exactly
. This is a rather common phenomenon in this field, we could mention the well-known theorem of Hopf and Pannwitz
nd similar results, see [4]. Surprisingly, Theorem 1.7 shows that this is not the case in our problem.
The problem of the largest subset of points with distinct pairwise distances was originally posed by Erdős [9] and

eneralized recently to distinct k-dimensional volumes in Rd by Conlon et al. [6]. For a point of comparison, they note
hat in the case d = 2, Ω(n1/5) points can be chosen from a set of n points in general position so that the triples in this
ubset determine triangles of distinct areas. The best upper bound so far is attained by choosing Ω(n) points in general
osition on the n × n grid. From Pick’s Theorem [20] it is clear that twice the area of a lattice triangle is an integer.
herefore, lattice triangles on this grid define at most O(n2) areas, so the upper bound for the problem is O(n2/3).
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The paper is built up as follows. In Section 2 we discuss Problem 1.1 and prove Theorem 1.5. In order to do this, we
consider first the maximum number of unit area triangles lying on a fixed line, and prove tight results up to a constant
factor. Next we will apply a deep result of Pach and Zahl to complete the proof of our main theorem.

Section 3 is devoted to Problems 1.2 and 1.3, and we prove Theorems 1.6 and 1.7. Section 4 concerns Problem 1.4 and
contains the proof of Theorem 1.8. Finally, we discuss some related problems and open questions in Section 5.

2. The number of unit area triangles

2.1. Unit area triangles supported by a single line

A natural way to give an upper bound on f (n) is to consider how many of the unit area triangles can be supported by
a fixed line. Then f (n) is at most n/3 times larger.

Problem 2.1. Let ℓ be a line and L be a set of n lines and consider the triangles formed by ℓ and two elements of L.
Determine the largest possible number g(n) of triangles of unit area among these.

We determine the order of magnitude of g(n) by turning the problem into an incidence problem for points and lines.

Theorem 2.2. For the maximum number of triangles of unit area having a common supporting line ℓ, g(n) = Θ(n4/3) holds.

We may assume that ℓ is horizontal, and the lines in L = {ℓ1, . . . , ℓn} are not horizontal lines. Let xi denote the
-coordinate of the intersection of ℓ and ℓi and let yi = cotαi where αi denotes the (directed) angle determined by ℓ
nd ℓi. Let Tij denote the triangle formed by ℓ, ℓi and ℓj. Notice that the parameters (xi, yi) i = 1, . . . , n provide an exact
escription of any line not parallel to ℓ, while a parallel line ℓ′

∥ ℓ would not contribute to the number of unit area
riangles supported by ℓ. Let us denote by e(x, y) the line described by parameters (x, y).

emma 2.3. Assume that xi ̸= xj and yi ̸= yj. The area of triangle Tij is

Area(Tij) =
(xj − xi)2

2|(yi − yj)|
.

Proof. The equations of the lines e(xi, yi) and e(xj, yj) are y =
x−xi
yi

and y =
x−xj
yj

respectively. Therefore, their intersection

oint is (x, y) =

(
xjyi−xiyj
yi−yj

,
xj−xi
yi−yj

)
.

Area(Tij) =
1
2
|xj − xi|

⏐⏐⏐⏐ xj − xi
yi − yj

⏐⏐⏐⏐ =
(xj − xi)2

2|(yi − yj)|
□

Proof of Theorem 2.2. We apply the lemma above. Supposing that yi > yj, Tij is of unit area if and only if 2yi − x2i =

−2xixj +x2j +2yj. In other words Tij is of unit area if and only if the point (xi, 2yi −x2i ) lies on the line y = −2xjx+2yj +x2j .
By the Szemerédi–Trotter theorem, n lines and n points have O(n4/3) incidences. Applying this to the lines y =

−2xjx + 2yj + x2j and the points (xi, 2yi − x2i ) we get g(n) = O(n4/3).
On the other hand there exist n/2 lines and n/2 points that have Ω(n4/3) incidences. We can write these points in the

orm (xi, 2yi − x2i ) for some (x1, y1), . . . , (xn/2, yn/2). Similarly we can write the lines in the form y = −2xjx + 2yj + x2j
or some (xn/2+1, yn/2+1), . . . , (xn, yn). The n lines given by the assignment (xi, yi) → e(xi, yi) determine Ω(n4/3) unit area
riangles. Therefore, g(n) = Θ(n4/3). □

Let us mention that the same upper bound is also implied by the powerful theorem of Pach and Sharir [19].

heorem 2.4 ([19]). Let P be a set of m points and let Γ be a set of n distinct irreducible algebraic curves of degree at most
, both in R2. If the incidence graph of P × Γ contains no copy of Ks,t , then the number of incidences is

O(m
s

2s−1 n
2s−2
2s−1 + m + n).

Indeed, the lines were described by their parameters (x1, y1), . . . , (xn, yn), and consider the unit parabolas 2y =

x2 − 2xxj + x2j − 2yj (j = 1, . . . , n). The ith point lies on the jth parabola if and only if the triangle Tij has unit area.
A unit parabola is determined by two of its points, so the incidence graph does not contain K2,2 and Theorem 2.4 can be
applied for s = t = 2. Since we have n points and n curves, the number of unit area triangles having a common supporting
line is O(n2/3n2/3) = O(n4/3).

Corollary 2.5. The bound above yields f (n) = O(n7/3) for the maximum number of unit area triangles.



4 G. Damásdi, L. Martínez-Sandoval, D.T. Nagy et al. / Discrete Mathematics 343 (2020) 112105

f
t

2

w

T
c
p
a

Fig. 1. The calculation of the triangle area, formed by the lines ℓi , ℓj and ℓk .

2.2. Upper bound on the maximum number of unit area triangles

2.2.1. Reformulation in additive combinatorics
For any arrangement of n lines, an y-axis can be chosen such that the parameters of these lines as introduced above

in Lemma 2.3, satisfy x1 ≤ x2 ≤ . . . ≤ xn and y1 ≥ y2 ≥ · · · ≥ yn. Let H = {(xi, yi) | 1 ≤ i ≤ n} ⊆ R2.

Proposition 2.6. The number of unit-area triangles in the arrangement equals the number of solutions in H×H×H to the
(rational) equation

(xj − xi)2

yi − yj
+

(xk − xj)2

yj − yk
+

(xi − xk)2

yk − yi
= 2. (1)

Proof. We may assume by rotation that none of the n lines are horizontal, and consider a horizontal line ℓ located under
all the intersections of the n lines. Taking ℓ as the x axis of a coordinate system, we let xi to be the coordinate of the ith
intersection of ℓ with another line (which we denote by ℓi). Let αi denote the (directed) angle appearing between ℓ and
ℓi, see Fig. 1. Let yi = cotαi. Since there are no intersections under or on ℓ, we have α1 ≤ α2 ≤ . . . ≤ αn and therefore
y1 ≥ y2 ≥ · · · ≥ yn.

Since yi ≥ yj, the area of the triangle Tij determined by ℓ, ℓi and ℓj is
(xj−xi)2

|2(yi−yj)|
=

(xj−xi)2

2(yi−yj)
. (If yi = yj, then ℓi and ℓj are

parallel, and they form no triangle.) The area of the triangle determined by the lines ℓi, ℓj and ℓk can be calculated as

Area(Tij) + Area(Tjk) − Area(Tik) =
(xj − xi)2

2(yi − yj)
+

(xk − xj)2

2(yj − yk)
−

(xk − xi)2

2(yi − yk)
=

(xj − xi)2

2(yi − yj)
+

(xk − xj)2

2(yj − yk)
+

(xi − xk)2

2(yk − yi)
.

Therefore, the problem of finding an arrangement of lines determining f (n) triangles of unit area is equivalent to
inding some reals x1 < x2 < · · · < xn and y1 ≥ y2 ≥ · · · ≥ yn such that (1) is satisfied for the maximal number of index
riples. □

.2.2. Improved upper bound for f (n)
We improve here the bound achieved by Corollary 2.5. To do this, we recall a recent result of Sharir and Zahl [22],

hich is a strengthening of Theorem 2.4.

heorem 2.7 (Incidences Between Points and Algebraic Curves, [22]). Let P be a set of m points in the plane. Let C be a set of
algebraic plane curves of degree at most D, no two of which share a common irreducible component. Assume that we can
arameterize these curves using s parameters. Then for any ε > 0, the number I(P, C) of incidences between the points of P
nd the curves of C satisfies

I(P, C) = O
(
m

2s
5s−4 c

5s−6
5s−4 +ε

+ m2/3c2/3 + m + c
)
.
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Now we are ready to prove our main result.

Theorem 2.8. For every fixed ε > 0, the maximum number of triangles of unit area satisfies

f (n) = O(n
9
4 +ε).

roof. Consider the additive combinatorial equivalent form of the problem in Eq. (1), take the solution set with maximum
umber of solutions and denote it by H . For every ordered pair (xi, yi), (xj, yj) where xi < xj, the solutions of Eq. (1) are
oints (xk, yk) of a bounded degree rational curve defined by (1), with the condition that xj < xk must hold. Hence we

obtain m = n points on at most c =
(n
2

)
plane curves belonging to an s = 4-dimensional family, as the family depends

on the real values {xi, yi, xj, yj}. One can verify also rather easily that no two of these curves share a common irreducible
component. This can be done either directly, by deducing from Eq. (1) an equivalent reformulation, a degree 2 polynomial
in variables xk, yk where the coefficients are (polynomial) functions of xi, yi, xj, yj, or by referring to Lemma 4.1 which
provides a description of the locus of the points (xk, yk) satisfying (1) in terms of {xi, yi, xj, yj}. Hence, applying the result
of Sharir and Zahl (Theorem 2.7), we get the desired bound. □

The lower bound for f (n) follows from the results in the next section, by scaling the triangles of minimum area to have
rea 1, which have a quadratic cardinality in n.

. Number of maximum and minimum area triangles, bounds on m(n) and M(n)

3.1. Minimum area triangles

In this subsection we prove Theorem 1.6 by determining the maximal possible number of triangles of minimal area
constituted by n lines, up to a factor of 2. This will follow from the results on the lower and upper bound below.

Proposition 3.1. m(n) ≤ ⌊n(n − 2)/3⌋ for every n and m(n) ≤ ⌊n(n − 2)/3⌋ − 1 if n ≡ 0, 2 (mod 6).

Proof. Observe that if a triangle is of minimal area, then none of the lines can intersect its sides. Hence the maximal
number of triangles of minimal area is at most the number of triangular faces K (n) in an arrangement of n lines. The latter
problem became famous as the so-called Tokyo puzzle or the problem of Kobon triangles. The best bound is by Bader and
Clément [3], who showed that K (n) ≤ ⌊n(n − 2)/3⌋ for every n and K (n) ≤ ⌊n(n − 2)/3⌋ − 1 if n ≡ 0, 2 (mod 6). □

The bound on K (n) is almost sharp since Füredi and Palásti constructed a general arrangement to prove K (n) ≥

n(n − 3)/3⌋ [14]. See also the construction of Forge and Ramírez-Alfonsín [13].

roposition 3.2. Assume that n ≥ 3. Then

m(n) ≥

{
6l2 if n = 6l,
6l2 + 2jl + j − 2 if n = 6l + j, 1 ≤ j ≤ 5.

roof. Take the grid depicted in Fig. 2. Choose n lines such that they are as close to the center of a hexagonal face as
ossible. If there are 2, 3 or 4 lines in the outermost layer, pick these to be in consecutive clockwise position.
Assume that n = 6l. Add the lines to the diagram layer by layer, starting from the center. Adding the six lines of the

th layer will create 6(2i − 1) new triangular faces (6i outside the hexagon formed by those lines and 6(i − 1) inside it).
herefore, the total number of triangular faces is

∑l
i=1 6(2i − 1) = 6l2. If n = 6l + j the result follows similarly with

lementary counting on the outermost layer. □

onjecture 3.3. The lower bound of Proposition 3.2 is sharp if n is large enough.

Note that these lower bounds are not met if n is small. C. T. Zamfirescu [23] recently proved that even the number
f facial congruent triangles exceeds this bound if n ≤ 12, see Table 1. On the other hand, the construction described
n Proposition 3.2 provides a general lower bound as well for the number of facial congruent triangles in terms of the
umber of lines, which exceeds the bound of C.T. Zamfirescu if n is large.
We can obtain the same order of magnitude in an essentially different way as well.

roposition 3.4. Assume that n ≥ 3. Then

m(n) ≥

{
6l2 + 2jl − 2 if n = 6l + j, j ∈ {0,±1,±2},
6l2 + 6l if n = 6l + 3.
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Table 1
Comparison of the constructions for the number of congruent or minimal area triangles in small cases.
# of lines, n 3 4 5 6 7 8 9 10 11 12

# of congruent facial
triangles, lower bound

1 2 5 6 ≥ 9 ≥ 12 ≥ 15 ≥ 20 ≥ 23 ≥ 26

# of congruent triangles,
lower bound via
Proposition 3.2

1 2 3 6 7 10 13 16 19 24

# of congruent triangles,
lower bound via
Proposition 3.4

0 1 2 4 6 8 12 14 18 22

Fig. 2. A hexagonal grid formed by 12 lines.

roof. Take a triangular grid. If n ≡ 3 (mod 6), choose those n lines of the grid, which are the closest to a fixed point
n the grid. If n ̸≡ 3 (mod 6), choose those n lines of the grid, which are the closest to a fixed point, which is the center

of a triangle in the grid. A simple inductive argument similar to the one in Proposition 3.2 shows that the number of
constructed facial triangles equals the desired quantity, see Fig. 3. □

The above constructions differ in several aspects. Firstly, the former one does not contain concurrent triples of lines.
econdly, note that in the upper bound on K (n) of Bader and Clément [3] a key observation was that every line segment
etween consecutive intersections on a line belongs to at most one triangular region. This property appears only in the
ormer construction. Thus if Conjecture 3.3 holds, it would imply that the arrangements that almost attain the extremum
ay have significantly different structure.

.2. Maximum area triangles

We start with a construction to prove the lower bound of Theorem 1.7 on the number of maximum area triangles. The
ain idea is the following. Suppose you have a construction with some number of maximal area triangles. Then we can
dd a new line that does not create large triangles, i.e. the maximal area does not increase. We can slide this line until
t creates an extra triangle of maximal area. This way we can create a new maximal area triangle per line. To improve
his we will show that we can add five lines together to get seven new maximal area triangles. Five of the new maximal
riangles will appear between these five new lines and then by sliding the five lines together we will get two extra ones.

The precise construction requires a couple of lemmas first.

roposition 3.5. Let ABC be one of the maximal area triangles in the arrangement and let ℓ be one of the lines of the
arrangement. Then either ℓ intersects the interior of ABC or it is parallel to one of the sides of ABC.

Proof. If ℓ is not parallel to one of the three sides, then it intersects each of the three lines. Suppose ℓ avoids the interior
of the triangle. By symmetry we may assume that ℓ runs as in Fig. 4(a). Hence A′BC ′ is a triangle of larger area which
contradicts the maximality of ABC . □

Proposition 3.6. Assume that there are no parallel lines in the arrangement and that the triangle∆, formed by lines (ℓ1, ℓ2, ℓ3),
is a maximal area triangle. Then all the maximal area triangles that are supported by ℓ1 lie on the same side of ℓ1.
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Fig. 3. A triangular grid formed by 12 lines.

Fig. 4. Line positions with respect to a maximum area triangle.

Proof. Suppose that a triangle∆′, formed by the lines (ℓ1, ℓ4, ℓ5), is also a maximal area triangle and it lies on the opposite
ide of ℓ1. Let P = ℓ4 ∩ ℓ5 and consider the possible positions of P . We will denote the three regions by R1, R2 and R3 as
een in Fig. 4(b).
Suppose that P lies in the interior of R1 ∪ R3. By Proposition 3.5 we know that ℓ4 and ℓ5 must intersect the interior of

he triangle ABC , therefore they intersect ℓ1 on the interior of the
−→
BC ray. But then the line ℓ2 avoids the maximal triangle

′, contradicting Proposition 3.5. Similarly P cannot lie in the interior of R2 ∪ R3. □

roposition 3.7. If there are no parallel lines in an arrangement, then we can add a new line ℓ to the arrangement such that
t supports no maximal area triangle in the new arrangement.

roof. Pick an arbitrary direction that is not parallel to any of the lines of the arrangement. Choose ℓ to be the line that
as the chosen direction and for which the largest new triangle area created is the smallest possible. Suppose this area is
. Then ℓ must support two triangles on opposite sides that have area q. Otherwise we could translate ℓ slightly in one
irection to decrease all the new areas below q. By Proposition 3.6 this implies that the q cannot be the maximal area in
he whole arrangement. □

roposition 3.8. If there are no parallel lines in an arrangement, then we can find a rectangle ABCD such that if we add any
ine to the arrangement that intersects both AB and CD we create no new maximal area triangles.

roof. By Proposition 3.2 we can find a line ℓ that creates no new maximal area triangles. Let ℓ′ be a line parallel to ℓ
hich also does not create a new maximal triangle and lies so close to ℓ that no two line of the arrangement intersects
ach other between ℓ and ℓ′. Then any line f that intersects all lines of the arrangement between ℓ and ℓ′ does not create
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Fig. 5. Ingredients for the recursive construction.

new maximal area triangle. This follows from the fact that if f supports a triangle, then either ℓ or ℓ′ avoids that triangle,
o by Proposition 3.5 the triangle cannot be maximal. Next we can choose points A,D on ℓ and B, C on ℓ′ appropriately,
ee Fig. 5(a). □

For an arrangement L let T (L) denote the number of maximal area triangles. For example T (L) = 5 if L consists of
ive lines forming a regular pentagon. For an affine transformation ϕ let ϕ(L) denote the image of L.

roposition 3.9. If L and K are arrangements of lines that contain no parallel lines, then there exist affine transformations ϕ
nd ψ such that T (ϕ(L) ∪ ψ(K)) ≥ T (L) + T (K) + 2.

roof. We may assume that the maximal area triangles have the same area in L and K. Using Proposition 3.8 we can
efine rectangle ABCD for L and rectangle EFGH for K. Then, applying an area preserving affine transformation, we can
lace the two construction such that the two rectangles cross each other (see Fig. 5(b)). Now every line of ϕ(L) crosses
F and GH and every line of ψ(K) crosses AB and CD. By Proposition 3.8 this means that in the new construction the
aximal area triangles are the same as they are in K and L. So we have exactly T (L) + T (K) maximal triangles.
Finally, we increase this number by two in two steps. Translate first the lines of ϕ(L) together in an arbitrary direction

ntil a new maximal area triangle appears, formed by lines both from the translates of ϕ(L) and ψ(K). We may assume
hat only one such triangle ∆∗ is formed, and it has exactly one supporting line ℓ∗ in ψ(K). Now if we translate again the
ines of ϕ(L), this time along the line ℓ∗, then obviously neither the area of triangles formed by the lines from ϕ(L) or
(K), nor the area of ∆∗ will change. However, some translated lines of ϕ(L) will eventually form yet another triangle
f maximal area together with some lines from ψ(K). □

It is easy to see that the lower bound of Theorem 1.7 follows. We start with five lines forming a regular star pentagon
see Fig. 5(c)). Then we use Proposition 3.9 repeatedly, always using the previous construction as L and five lines forming
regular pentagon as K.

heorem 3.10. M(n) ≤
2
3n(n − 2).

roof. We will show that in an arrangement of n lines, any fixed line ℓ supports at most 2(n − 2) triangles of maximal
area. This immediately implies the statement of the theorem.

Let ℓ be a fixed line in the arrangement. We may assume that all other lines intersect it as otherwise they would
not form any triangle together. Consider ℓ as the x axis of a coordinate system, and let xi denote the x coordinate of the
intersection of ℓ and ℓi for all i = 1, 2, . . . , n − 1. We also use the notation yi for the cotangent of the (directed) angle
etermined by ℓ and ℓi. By Lemma 2.3, the area of the triangle Tij determined by the lines ℓ, ℓi and ℓj is Area(Ti,j) =

(xi−xj)2

2|yi−yj|
.

(If xi = xj or yi = yj, then there is no triangle to speak of.) If the sign of xi − xj and yi − yj is the same, then the triangle
s located under ℓ, otherwise it is located over it.

Without loss of generality, we may assume that the maximal triangle area is 1/2. Then (xi − xj)2 ≤ |yi − yj| applies to
all pairs (i, j), with equality if and only if Area(Ti,j) is maximal.

Let us define the graph G+

ℓ , and resp. G−

ℓ on the vertex set {v1, v2, . . . , vn−1} and connect vi to vj if (xi − xj)2 = |yi − yj|
nd the sign of xi − xj and yi − yj is the same or respectively, the opposite. We will show that there is no cycle in G+

ℓ ,
herefore |E(G+

ℓ )| ≤ n − 2 holds for the cardinality of the edge set. The same argument applies to G−

ℓ as well, yielding
E(G−

ℓ )| ≤ n−2. Therefore, the total number of edges, which is equal to the number of triangles of maximal area supported
y ℓ, is at most 2(n − 2).
Suppose that there is a cycle vi1vi2 . . . vik in G+

ℓ . We will get a contradiction using two simple propositions. In the
ollowing two statements we consider the indexing of the vertices modulo k.
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Proposition 3.11. The signs of xit − xit+1 and xit+1 − xit+2 are the opposite.

roof. Suppose that the signs are the same. Then

|yit+2 − yit | = |yit+2 − yit+1 | + |yit+1 − yit | = (xit+1 − xit+2 )
2
+ (xit − xit+1 )

2 < (xit − xit+2 )
2

would hold, a contradiction. □

roposition 3.12. There are no four vertices va, vb, vc and vd in G+

ℓ such that xa < xb < xc < xd and vavc, vbvc, vbvd ∈ E(G+

ℓ ).

Proof. Suppose that there are four such vertices. Then

(xd − xa)2 ≤ yd − ya = (yd − yb) + (yc − ya) − (yc − yb) = (xd − xb)2 + (xc − xa)2 − (xc − xb)2

fter rearranging, we get

xaxc + xbxd ≤ xaxd + xbxc,

hich can be written as (xa − xb)(xc − xd) ≤ 0, a contradiction. □

Returning to the cycle vi1vi2 . . . vik , Proposition 3.11 implies that k is even. We may assume that |xi1 − xi2 | > |xi2 − xi3 |
fter shifting the indexing of the vertices if necessary. This means that xi3 is between xi1 and xi2 .
Proposition 3.11 tells us that xi4 must be in the same direction from xi3 as xi2 . However Proposition 3.12 implies that

it cannot be past xi2 . Note that xi2 = xi4 is also impossible since this would imply yi2 = yi4 and ℓi2 = ℓi4 . Therefore, xi4
must be between xi2 and xi3 .

Following this argument, we find that xit+2 must be between xit and xit+1 for all t = 1, 2, . . . , k − 2. Then the vertices
v1, vk−1, vk, vk−2 violate Proposition 3.12, a contradiction. □

Remark 3.13. Theorem 3.10 can be even strengthened, as M(n) ≤
1
3n(n − 1) also holds. Indeed, one can verify that

roposition 3.6 is true in a more general form, namely if there are parallel lines in the line arrangement, then there may
xist maximal area triangles on both sides of a fixed line ℓ, but on one of the sides there is no more than one maximal
rea triangle. This result yields |E(G−

ℓ )|+|E(G+

ℓ )| ≤ n−1 in the proof above, implying our stated improvement. The details
re left to the interested reader.

. Lines defining triangles with distinct areas

In this section we assume that the lines in the original arrangement are in general position. More specifically, we will
equire that no six of them are tangent to a common quadratic curve in the plane.

To prove Theorem 1.8, we begin with the following result.

emma 4.1. Let r1 and r2 be two rays from a point O and λ ∈ R+ fixed. Then those lines that form a triangle with r1 and r2
f area λ are all tangent to a fixed hyperbola. The two rays belong to the asymptotes of this hyperbola.

roof. Affine transformations preserve lines, conics and ratios of areas. Therefore, we may assume that r1 and r2 are
erpendicular and correspond to the positive parts of the x and y axis, respectively.
Now, for a positive real number c consider the hyperbola xy = c and any point (x1, y1) on it. The tangent t at (x1, y1)

s given by the equation xy1 + yx1 = 2c. Let P1 = (2c/y1, 0) and P2 = (0, 2c/y2) be the intersections of t and the x and y
xis, respectively. Then the area of the triangle OP1P2 is 4c2

2x1y1
= 2c .

Any line that intersects the positive parts of the x and y axis must be tangent to exactly one of these hyperbolas, and
as seen above the area of the triangle it defines depends completely and injectively on c . Therefore, triangles with the
same area must all be tangent to a fixed one of these hyperbolas. □

From here, we deduce the following result.

Corollary 4.2. Let ℓ1 and ℓ2 be two intersecting lines. Then for any fixed value λ ≥ 0, there can be at most 20 lines in general
position such that each of them forms a triangle with ℓ1 and ℓ2 of area λ.

roof. Note that ℓ1 and ℓ2 define four quadrants. If λ > 0, each line defines a triangle of positive area with ℓ1 and ℓ2, so
t intersects both rays of one of the quadrants. By Lemma 4.1, we can have at most 5 lines per quadrant, so we obtain at
ost 20 lines.
If λ = 0, then each line has to go through the point of intersection of ℓ1 and ℓ2. There can be at most 5 of these lines,

s otherwise the intersection point would be a common degenerate conic tangent to 6 lines. □

The second ingredient that we use is a rainbow Ramsey result. We apply the following particular version of a result
roven by Conlon et al. [6] and independently by Martínez-Sandoval, Raggi and Roldán-Pensado [17]. It has been used
efore to obtain similar results in combinatorial geometry in which a large structure with distinct substructures is desired.
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Fig. 6. Maximum area triangles lying on ℓ, formed by ℓ, ℓ′ , and a third line from the tangent line set.

Theorem 4.3. Let H be an m-uniform hypergraph and k a positive integer. Assume that the hyperedges of H are colored in
such a way that no two vertices lie in k edges of the same color.

Then there exists a set of

Ωk(n1/(2m−1))

vertices for which all the hyperedges have distinct colors.

We are ready to prove the main result of this section.

Proof of Theorem 1.8. Note that there cannot be six or more lines with the same slope, as otherwise a seventh line
would be a degenerate conic tangent to all of them at infinity. Therefore, the lines define at least n

5 distinct slopes, and
taking at most one for each slope we may extract a subset L′ of size at least n

5 so that no two lines of L′ are parallel.
Consider the complete 3-uniform hypergraph H whose vertex set is L′. Since no two lines of L′ are parallel, we may

rovide a coloring of the 3-edges of H by assigning to each triple the area of the triangle it defines. By Corollary 4.2,
o pair of vertices belongs to 21 or more triples of the same color. Therefore, by Theorem 4.3 we obtain a set of
((n/5)1/5) = Ω(n1/5) lines such that the triangles that they define have all distinct areas. □

. Discussion and open problems

One could also raise here an analogue question to the well known problem due to Erdős, Purdy and Strauss, which is
ormulated as

roblem 5.1 (Erdős, Purdy, Straus, [12]). Let S be a set of n points in Rd not all in one hyperplane. What is the minimal
umber of distinct volumes of non-degenerate simplices with vertices in S?

Concerning the case d = 2, we refer to e.g. [7] and its reference list. Note that to obtain reasonable results on the
ardinality of distinct areas, one has to prescribe certain restrictions to avoid huge classes of parallel lines hence obtaining
nly few triangles. However, having assumed e.g. that no pair of parallel lines appear, the distribution of the areas can
hange significantly. We conjecture that the number of unit area triangles drops to O(n2) in that case, and in fact we could
ot even find evidence of that the order of magnitude is Ω(n2).
The proof of the upper bound on the number of maximum area triangles was relying on an argument about maximum

rea triangles sharing a common line ℓ that provides a linear upper bound. Although it is easy to see that a linear lower
ound is realizable by a set of n − 2 tangent and two asymptotes of a hyperbole branch (see Fig. 6), we conjecture that
his will not provide the right (quadratic) order of magnitude for M(n). Note that this phenomenon appeared concerning
he unit area triangles as well when we compared g(n) and f (n), see Section 2.

In fact, we believe that the following holds.

onjecture 5.2. The order of magnitude of M(n), largest possible number of triangles with maximum area in arrangements of
lines in the plane is O(n1+ε) for every ε > 0.
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In general we have seen that in these types of combinatorial geometry problems, small (or minimum) distances (or
areas) may occur much more frequently than large (or maximum) distances (areas).

Supposing that this assertion holds, it raises yet another interesting inverse research problem from a statistical point
of view.

Problem 5.3. Suppose that for each n, a set of n lines is given in the Euclidean plane. Assume that the number of triangles
having unit area, determined by triples of lines, is φ(n), where φ(n)/n → ∞. Prove a lower bound (in terms of φ(n)) on
the number of triangles having area greater than 1.

The analogue of Problem 5.3 for the original Erdős–Purdy problem on distances in a planar point set seems also widely
open. Some results were obtained by Erdős, Lovász and Vesztergombi [10].

We also note that the problem may be investigated in a finite field setting as well, similarly to [15].
In Theorem 1.8, we assume that no six lines are tangent to a common conic. This implies, in particular, that no six

lines are pairwise parallel. A more natural condition would be to simply require that no two lines are parallel. We were
not able to obtain any non-trivial bounds under this hypothesis.

Problem 5.4. What is the maximum number D′(n) such that in any arrangement of n lines on the plane, no two of them
parallel or three through a common point, there are D′(n) lines that form triangles of distinct areas?

The bound in Theorem 1.8 can be improved by a logarithmic factor, as mentioned in [6]. The problem could also be
generalized to higher dimensions as follows.

Problem 5.5. A set of n hyperplanes in general position are given in Rd. What is the maximum number Dd(n) such that
e can always find a subset of these hyperplanes of this size for which all the simplices that they define have distinct
-dimensional volumes?

We finish by mentioning that there are very few geometric problems with this combinatorial flavor in which the
ounds are asymptotically tight. A related question concerning circumradii is discussed in [16].
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