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1. Introduction

There are number of interesting question originating from Erdds, concerning distances in planar point sets [8]. He asked
to determine the maximum number of equal distances that n planar points can form, the minimum number of distinct
distances they can form and the maximum number of appearances of the largest/smallest distance. He also considered
how large subset is guaranteed to exist in a point set such that the distances within that subset are distinct.

Erdds and Purdy also studied the related problem of the maximum number of occurrences of the same area among
the triangles determined by n points in the plane [11]. Since then, several variants have been established and the former
results of Erdés and Purdy have been settled for some cases, see e.g. [5,11,21].

In this paper we consider the following variants of the original problem, which can be considered as the dual setting.
We are given n lines on the Euclidean plane and we are seeking for conditions on the distribution of the areas of triangles
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formed by the triples of lines. More precisely, we investigate the following four main problems and compare the results
to the corresponding problems concerning triples of points.

Problem 1.1. Determine the largest possible number f(n) of triangles of unit area formed by n lines in the Euclidean
plane.

Problem 1.2. Determine the largest possible number m(n) of triangles having minimum area formed by n lines in the
Euclidean plane.

Problem 1.3. Determine the largest possible number M(n) of triangles with maximum area formed by n lines in the
Euclidean plane.

Problem 1.4. Determine the largest possible number D(n) such that in any arrangement of n lines (satisfying some
generality conditions) there are D(n) lines that form triangles of distinct areas.

Concerning these problems, we achieved the following results.

Theorem 1.5. For the maximum number of triangles of unit area, we have
fim) =0 (ni*)

for every fixed ¢ > 0, while f(n) = £2(n?).

Theorem 1.6.

an—nJ {nZ—ZnJ
<m(n) <
6 3

holds for the occurrences of the minimum area, if n > 6.

Theorem 1.7. For the maximum number of triangles of maximum area, we have

7 2
gn —0(1) < M(n) < gn(n - 2).

Theorem 1.8. For the largest subset of lines forming triangles of distinct areas, we have
1
n5 < D(n),
provided that there are no six lines that are tangent to a common conic.

If one wishes to find a large subset of lines defining triangles that have distinct areas, it is necessary to make some
additional assumptions about the set of lines we are considering. The most natural one is to assume that there are no
parallel lines in the set, and no three of them through a common point. However, we were not able to obtain non-trivial
bounds under these assumptions. Since 5 lines always have a common tangent conic (see e.g. in [1, p. 66]), another natural
general position assumption is to require that no 6 of them do, as in the hypothesis of Theorem 1.8.

To put these results into perspective, let us recall a related problem, first asked by Oppenheim in 1967, which reads
as follows: What is the maximum number of triangles of unit area that can be determined by n points in the plane?
The first breakthrough after the investigation of Erdés and Purdy [11] was due to Pach and Sharir [18], who obtained an
upper bound O(n?*1/3) via a Szemerédi-Trotter type argument. This bound was improved in [2,7] and recently by Raz and
Sharir to 0(n>*?/?) in [21]. Here the lower bound is a simple lattice construction from [11], yielding £2(n® loglogn). Our
Theorem 1.5 also indicates that the straightforward application of some Szemerédi-Trotter type result can be improved.
However, in the next Section we will point out that in some relaxation, it would provide the right order of magnitude.

As in the case of counting equal distances, the minimum and maximum area problems determined by point sets turned
out to be easier, and they were asymptotically settled by Brass, Rote and Swanepoel [5]. The result on the minimum area
problem was later refined in [7]. Concerning the occurrences of the maximum area, the upper bound happens to be exactly
n. This is a rather common phenomenon in this field, we could mention the well-known theorem of Hopf and Pannwitz
and similar results, see [4]. Surprisingly, Theorem 1.7 shows that this is not the case in our problem.

The problem of the largest subset of points with distinct pairwise distances was originally posed by Erdds [9] and
generalized recently to distinct k-dimensional volumes in R? by Conlon et al. [6]. For a point of comparison, they note
that in the case d = 2, £2(n'/?) points can be chosen from a set of n points in general position so that the triples in this
subset determine triangles of distinct areas. The best upper bound so far is attained by choosing £2(n) points in general
position on the n x n grid. From Pick’s Theorem [20] it is clear that twice the area of a lattice triangle is an integer.
Therefore, lattice triangles on this grid define at most O(n?) areas, so the upper bound for the problem is O(n?/3).
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The paper is built up as follows. In Section 2 we discuss Problem 1.1 and prove Theorem 1.5. In order to do this, we
consider first the maximum number of unit area triangles lying on a fixed line, and prove tight results up to a constant
factor. Next we will apply a deep result of Pach and Zahl to complete the proof of our main theorem.

Section 3 is devoted to Problems 1.2 and 1.3, and we prove Theorems 1.6 and 1.7. Section 4 concerns Problem 1.4 and
contains the proof of Theorem 1.8. Finally, we discuss some related problems and open questions in Section 5.

2. The number of unit area triangles
2.1. Unit area triangles supported by a single line

A natural way to give an upper bound on f(n) is to consider how many of the unit area triangles can be supported by
a fixed line. Then f(n) is at most n/3 times larger.

Problem 2.1. Let £ be a line and £ be a set of n lines and consider the triangles formed by ¢ and two elements of L.
Determine the largest possible number g(n) of triangles of unit area among these.

We determine the order of magnitude of g(n) by turning the problem into an incidence problem for points and lines.

Theorem 2.2. For the maximum number of triangles of unit area having a common supporting line £, g(n) = ®(n*3) holds.

We may assume that ¢ is horizontal, and the lines in £ = {¢4, ..., ¢,} are not horizontal lines. Let x; denote the
x-coordinate of the intersection of ¢ and ¢; and let y; = cot; where «; denotes the (directed) angle determined by ¢
and ¢;. Let T;; denote the triangle formed by ¢, ¢; and ¢;. Notice that the parameters (x;, y;) i = 1, ..., n provide an exact
description of any line not parallel to ¢, while a parallel line ¢ || ¢ would not contribute to the number of unit area
triangles supported by £. Let us denote by e(x, y) the line described by parameters (x, y).

Lemma 2.3. Assume that x; # X; and y; # y;. The area of triangle Tj is
2
X — X
Area(T;) = M
2|(yi — )l

Proof. The equations of the lines e(x;, y;) and e(x;, y;) are y = % andy = X;—x’ respectively. Therefore, their intersection
i j

XiYi—Xiyj  Xj—Xi )

point is (x,y) = (

Yiyj  VitY

1 Xi — Xi X — %)
Area(Ty) = —|x; — x| | 2—— | = (X — x;)

2 yi—yil 210 =yl

Proof of Theorem 2.2. We apply the lemma above. Supposing that y; > y;, Tjj is of unit area if and only if 2y; — xiz =
—2XiX;j +x].2 +2y;. In other words Ty is of unit area if and only if the point (x;, 2y; —xl-z) lies on the line y = —2x;x+ 2y; +xj2.

By the Szemerédi-Trotter theorem, n lines and n points have O(n*?) incidences. Applying this to the lines y =
—2xx + 2y; + sz and the points (x;, 2y; — x?) we get g(n) = 0(n*/?).

On the other hand there exist n/2 lines and n/2 points that have £2(n*?) incidences. We can write these points in the
form (x;, 2y; — xiz) for some (x1,y1), ..., (Xn/2, Yns2). Similarly we can write the lines in the form y = —2x;x + 2y; + sz
for some (Xn/211, Ynj2+1)s - - - » (Xa, yn). The n lines given by the assignment (x;, y;) — e(x;, y;) determine £2(n*3) unit area
triangles. Therefore, g(n) = ©(n*3). O

Let us mention that the same upper bound is also implied by the powerful theorem of Pach and Sharir [19].

Theorem 2.4 ([19]). Let P be a set of m points and let I" be a set of n distinct irreducible algebraic curves of degree at most
k, both in R2. If the incidence graph of P x I" contains no copy of Ks., then the number of incidences is

s 25—2
O(m2-Tn2=1 + m+ n).

Indeed, the lines were described by their parameters (X1, y1), ..., (Xn, ¥n), and consider the unit parabolas 2y =
x> — 2xx; + sz —2y; G = 1,...,n). The ith point lies on the jth parabola if and only if the triangle T; has unit area.
A unit parabola is determined by two of its points, so the incidence graph does not contain K, ; and Theorem 2.4 can be
applied for s = t = 2. Since we have n points and n curves, the number of unit area triangles having a common supporting
line is O(n?/3n%3) = O(n*/3).

Corollary 2.5. The bound above yields f(n) = O(n’/3) for the maximum number of unit area triangles.
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SRR

Fig. 1. The calculation of the triangle area, formed by the lines ¢;, ¢; and ¢;.

2.2. Upper bound on the maximum number of unit area triangles

2.2.1. Reformulation in additive combinatorics
For any arrangement of n lines, an y-axis can be chosen such that the parameters of these lines as introduced above
in Lemma 2.3, satisfy x; <x, <...<xpandy; >y, > --- >y, Let H={(x;,y;) | 1 <i <n} C R

Proposition 2.6. The number of unit-area triangles in the arrangement equals the number of solutions in HxH xH to the
(rational) equation
(% — x;)? n (xk — %) n (x; — x )
Yi—Yj Yi — Yk Yk — Vi

=2. (1

Proof. We may assume by rotation that none of the n lines are horizontal, and consider a horizontal line £ located under
all the intersections of the n lines. Taking ¢ as the x axis of a coordinate system, we let x; to be the coordinate of the ith
intersection of ¢ with another line (which we denote by ¢;). Let «; denote the (directed) angle appearing between ¢ and
¢;, see Fig. 1. Let y; = cotq;. Since there are no intersections under or on ¢, we have o1 < a; < ... < a, and therefore
Yizy2z:--=Yn. X X

Since y; > yj, the area of the triangle T;; determined by ¢, ¢; and ¢; is % = (22:}),) (If y; = y;, then ¢; and ¢; are

parallel, and they form no triangle.) The area of the triangle determined by the lines ¢;, £; and £, can be calculated as

X —x)? | (k—%)  (—x)
Area(T;;) + Area(Tj) — Area(Ty) = + — =
' " T ) 20w 20030

G —x)? | (e—x) | (% —x)?
20i—y) 20 —y) 20k —yi)
Therefore, the problem of finding an arrangement of lines determining f(n) triangles of unit area is equivalent to

finding some reals x; < x; < --- <Xy, and y; >y, > --- >y, such that (1) is satisfied for the maximal number of index
triples. O

2.2.2. Improved upper bound for f(n)
We improve here the bound achieved by Corollary 2.5. To do this, we recall a recent result of Sharir and Zahl [22],
which is a strengthening of Theorem 2.4.

Theorem 2.7 (Incidences Between Points and Algebraic Curves, [22]). Let P be a set of m points in the plane. Let C be a set of
c algebraic plane curves of degree at most D, no two of which share a common irreducible component. Assume that we can
parameterize these curves using s parameters. Then for any ¢ > 0, the number I(P, C) of incidences between the points of P
and the curves of C satisfies

I(P,c)=0 (m%c%” +m?Pc?BP +m+ c) )
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Now we are ready to prove our main result.

Theorem 2.8. For every fixed ¢ > 0, the maximum number of triangles of unit area satisfies
f(n) = 0(ni*e).

Proof. Consider the additive combinatorial equivalent form of the problem in Eq. (1), take the solution set with maximum
number of solutions and denote it by H. For every ordered pair (x;, yi), (%;, ;) where x; < x;, the solutions of Eq. (1) are
points (X, yx) of a bounded degree rational curve defined by (1), with the condition that x; < x, must hold. Hence we
obtain m = n points on at most ¢ = (;) plane curves belonging to an s = 4-dimensional family, as the family depends
on the real values {x;, yi, x;, ¥;}. One can verify also rather easily that no two of these curves share a common irreducible
component. This can be done either directly, by deducing from Eq. (1) an equivalent reformulation, a degree 2 polynomial
in variables xi, yx where the coefficients are (polynomial) functions of x;, y;, X;, y;, or by referring to Lemma 4.1 which
provides a description of the locus of the points (xi, yx) satisfying (1) in terms of {x;, y;, x;, y;}. Hence, applying the result
of Sharir and Zahl (Theorem 2.7), we get the desired bound. O

The lower bound for f(n) follows from the results in the next section, by scaling the triangles of minimum area to have
area 1, which have a quadratic cardinality in n.

3. Number of maximum and minimum area triangles, bounds on m(n) and M(n)
3.1. Minimum area triangles

In this subsection we prove Theorem 1.6 by determining the maximal possible number of triangles of minimal area
constituted by n lines, up to a factor of 2. This will follow from the results on the lower and upper bound below.

Proposition 3.1. m(n) < |n(n — 2)/3] for every n and m(n) < [n(n —2)/3] — 1ifn=0, 2 (mod 6).

Proof. Observe that if a triangle is of minimal area, then none of the lines can intersect its sides. Hence the maximal
number of triangles of minimal area is at most the number of triangular faces K(n) in an arrangement of n lines. The latter
problem became famous as the so-called Tokyo puzzle or the problem of Kobon triangles. The best bound is by Bader and
Clément [3], who showed that K(n) < [n(n — 2)/3] for every n and K(n) < [n(n —2)/3] —1ifn=0,2 (mod 6). O

The bound on K(n) is almost sharp since Fiiredi and Palasti constructed a general arrangement to prove K(n) >
Ln(n — 3)/3] [14]. See also the construction of Forge and Ramirez-Alfonsin [13].

Proposition 3.2. Assume that n > 3. Then

{612 ifn=6l,

>

Proof. Take the grid depicted in Fig. 2. Choose n lines such that they are as close to the center of a hexagonal face as
possible. If there are 2, 3 or 4 lines in the outermost layer, pick these to be in consecutive clockwise position.

Assume that n = 6. Add the lines to the diagram layer by layer, starting from the center. Adding the six lines of the
ith layer will create 6(2i — 1) new triangular faces (6i outside the hexagon formed by those lines and 6(i — 1) inside it).
Therefore, the total number of triangular faces is Z:Zl 6(2i — 1) = 6%, If n = 6l + j the result follows similarly with
elementary counting on the outermost layer. O

Conjecture 3.3. The lower bound of Proposition 3.2 is sharp if n is large enough.

Note that these lower bounds are not met if n is small. C. T. Zamfirescu [23] recently proved that even the number
of facial congruent triangles exceeds this bound if n < 12, see Table 1. On the other hand, the construction described
in Proposition 3.2 provides a general lower bound as well for the number of facial congruent triangles in terms of the
number of lines, which exceeds the bound of C.T. Zamfirescu if n is large.

We can obtain the same order of magnitude in an essentially different way as well.

Proposition 3.4. Assume that n > 3. Then

m(n) > 62 +2jl—2 ifn=61+jje{0,£1,+2},
~ |62 + 6l ifn==6l+3.
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z?)lr)rllleaalrison of the constructions for the number of congruent or minimal area triangles in small cases.
# of lines, n 3 4 5 6 7 8 9 10 11 12
# of congruent facial 1 2 5 6 >9 > 12 > 15 > 20 > 23 > 26
triangles, lower bound
# of congruent triangles, 1 2 3 6 7 10 13 16 19 24

lower bound via
Proposition 3.2

# of congruent triangles, 0 1 2 4 6 8 12 14 18 22
lower bound via
Proposition 3.4

AKX
A XX
A XXX
A XX
X X

Fig. 2. A hexagonal grid formed by 12 lines.

Proof. Take a triangular grid. If n = 3 (mod 6), choose those n lines of the grid, which are the closest to a fixed point
on the grid. If n # 3 (mod 6), choose those n lines of the grid, which are the closest to a fixed point, which is the center
of a triangle in the grid. A simple inductive argument similar to the one in Proposition 3.2 shows that the number of
constructed facial triangles equals the desired quantity, see Fig. 3. O

The above constructions differ in several aspects. Firstly, the former one does not contain concurrent triples of lines.
Secondly, note that in the upper bound on K(n) of Bader and Clément [3] a key observation was that every line segment
between consecutive intersections on a line belongs to at most one triangular region. This property appears only in the
former construction. Thus if Conjecture 3.3 holds, it would imply that the arrangements that almost attain the extremum
may have significantly different structure.

3.2. Maximum area triangles

We start with a construction to prove the lower bound of Theorem 1.7 on the number of maximum area triangles. The
main idea is the following. Suppose you have a construction with some number of maximal area triangles. Then we can
add a new line that does not create large triangles, i.e. the maximal area does not increase. We can slide this line until
it creates an extra triangle of maximal area. This way we can create a new maximal area triangle per line. To improve
this we will show that we can add five lines together to get seven new maximal area triangles. Five of the new maximal
triangles will appear between these five new lines and then by sliding the five lines together we will get two extra ones.

The precise construction requires a couple of lemmas first.

Proposition 3.5. Let ABC be one of the maximal area triangles in the arrangement and let £ be one of the lines of the
arrangement. Then either £ intersects the interior of ABC or it is parallel to one of the sides of ABC.

Proof. If ¢ is not parallel to one of the three sides, then it intersects each of the three lines. Suppose £ avoids the interior
of the triangle. By symmetry we may assume that £ runs as in Fig. 4(a). Hence A'BC’ is a triangle of larger area which
contradicts the maximality of ABC. O

Proposition 3.6. Assume that there are no parallel lines in the arrangement and that the triangle A, formed by lines (£1, €2, £3),
is a maximal area triangle. Then all the maximal area triangles that are supported by £, lie on the same side of £1.
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Fig. 3. A triangular grid formed by 12 lines.

JATX

) A line avoiding a maximal trlangle b) Regions around a triangle

Fig. 4. Line positions with respect to a maximum area triangle.

Proof. Suppose that a triangle A’, formed by the lines (£1, £4, £5), is also a maximal area triangle and it lies on the opposite
side of £;. Let P = £4 N £5 and consider the possible positions of P. We will denote the three regions by R;, R, and R3 as
seen in Fig. 4(b).

Suppose that P lies in the interior of R; U R3. By Proposition 3.5_)we know that ¢4 and £s must intersect the interior of
the triangle ABC, therefore they intersect £; on the interior of the BC ray. But then the line ¢, avoids the maximal triangle
A’, contradicting Proposition 3.5. Similarly P cannot lie in the interior of R, UR;. O

Proposition 3.7. If there are no parallel lines in an arrangement, then we can add a new line ¢ to the arrangement such that
it supports no maximal area triangle in the new arrangement.

Proof. Pick an arbitrary direction that is not parallel to any of the lines of the arrangement. Choose ¢ to be the line that
has the chosen direction and for which the largest new triangle area created is the smallest possible. Suppose this area is
g. Then ¢ must support two triangles on opposite sides that have area q. Otherwise we could translate ¢ slightly in one
direction to decrease all the new areas below gq. By Proposition 3.6 this implies that the g cannot be the maximal area in
the whole arrangement. O

Proposition 3.8. If there are no parallel lines in an arrangement, then we can find a rectangle ABCD such that if we add any
line to the arrangement that intersects both AB and CD we create no new maximal area triangles.

Proof. By Proposition 3.2 we can find a line £ that creates no new maximal area triangles. Let ¢’ be a line parallel to £
which also does not create a new maximal triangle and lies so close to ¢ that no two line of the arrangement intersects
each other between ¢ and ¢'. Then any line f that intersects all lines of the arrangement between ¢ and ¢’ does not create
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P(K)

H E

e AN
(a) No new maximal triangles. (b) Combining two constructions  (c) Pentagon

Fig. 5. Ingredients for the recursive construction.

a new maximal area triangle. This follows from the fact that if f supports a triangle, then either £ or £’ avoids that triangle,
so by Proposition 3.5 the triangle cannot be maximal. Next we can choose points A, D on ¢ and B, C on ¢’ appropriately,
see Fig. 5(a). O

For an arrangement £ let T(£) denote the number of maximal area triangles. For example T(£) = 5 if £ consists of
five lines forming a regular pentagon. For an affine transformation ¢ let ¢(£) denote the image of L.

Proposition 3.9. If £ and K are arrangements of lines that contain no parallel lines, then there exist affine transformations ¢
and  such that T(e(L£) U ¥(K)) > T(L) 4+ T(K) + 2.

Proof. We may assume that the maximal area triangles have the same area in £ and K. Using Proposition 3.8 we can
define rectangle ABCD for £ and rectangle EFGH for K. Then, applying an area preserving affine transformation, we can
place the two construction such that the two rectangles cross each other (see Fig. 5(b)). Now every line of ¢(£) crosses
EF and GH and every line of y/(K) crosses AB and CD. By Proposition 3.8 this means that in the new construction the
maximal area triangles are the same as they are in K and £. So we have exactly T(£) + T(K) maximal triangles.

Finally, we increase this number by two in two steps. Translate first the lines of ¢(£) together in an arbitrary direction
until a new maximal area triangle appears, formed by lines both from the translates of ¢(£) and ¥ (X). We may assume
that only one such triangle A* is formed, and it has exactly one supporting line £* in /(K). Now if we translate again the
lines of ¢(£), this time along the line ¢*, then obviously neither the area of triangles formed by the lines from ¢(£) or
¥ (K), nor the area of A* will change. However, some translated lines of ¢(£) will eventually form yet another triangle
of maximal area together with some lines from /(). O

It is easy to see that the lower bound of Theorem 1.7 follows. We start with five lines forming a regular star pentagon
(see Fig. 5(c)). Then we use Proposition 3.9 repeatedly, always using the previous construction as £ and five lines forming
a regular pentagon as K.

Theorem 3.10. M(n) < 2n(n — 2).

Proof. We will show that in an arrangement of n lines, any fixed line £ supports at most 2(n — 2) triangles of maximal
area. This immediately implies the statement of the theorem.

Let ¢ be a fixed line in the arrangement. We may assume that all other lines intersect it as otherwise they would
not form any triangle together. Consider £ as the x axis of a coordinate system, and let x; denote the x coordinate of the
intersection of £ and ¢; for alli = 1,2,...,n — 1. We also use the notation y; for the cotangent of the (directed) anglze
determined by £ and ¢;. By Lemma 2.3, the area of the triangle T;; determined by the lines £, ¢; and ¢; is Area(T;;) = (le;ff;l
(If x; = x; or y; = yj, then there is no triangle to speak of.) If the sign of x; — x; and y; — y; is the same, then the triang]le
is located under ¢, otherwise it is located over it.

Without loss of generality, we may assume that the maximal triangle area is 1/2. Then (x; — xj)2 < lyi — y;| applies to
all pairs (i, j), with equality if and only if Area(T;;) is maximal.

Let us define the graph GZ, and resp. G, on the vertex set {vy, vy, ..., vp—1} and connect v; to v; if (x; —xj)2 = |yi — yjl
and the sign of x; — x; and y; — y; is the same or respectively, the opposite. We will show that there is no cycle in GZ’,
therefore |E(G?)| < n — 2 holds for the cardinality of the edge set. The same argument applies to G, as well, yielding
|E(G, )| < n—2.Therefore, the total number of edges, which is equal to the number of triangles of maximal area supported
by ¢, is at most 2(n — 2).

Suppose that there is a cycle vy, v;, ... v, in GZ. We will get a contradiction using two simple propositions. In the
following two statements we consider the indexing of the vertices modulo k.
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Proposition 3.11. The signs of x; and x;,,, — X;.,, are the opposite.

~ Xiey
Proof. Suppose that the signs are the same. Then

2 2 2
|.Vit+2 _yit| = |.Vit+2 _yft+1| + |yit+1 _yftl = (XI'H_] - XiH_z) + (Xit - Xft+1) < (Xit - XiH_z)

would hold, a contradiction. O

Proposition 3.12. There are no four vertices v,, vp, v and vq in GZ such that x, < X, < Xc < Xg and vqv¢, VpUc, VpVg € E(GZ ).

Proof. Suppose that there are four such vertices. Then

(Xa — Xl < Ya—Ya=Va = Yp) + Ve = Ya) = Ve — ¥b) = (Xa = %)* + (Xc — Xa)* — (xc — %)’
After rearranging, we get

XaXc + XpXd < XgXq + XpXc,
which can be written as (x, — Xp)(xc — X4) < 0, a contradiction. O

Returning to the cycle vj, vj, ... v;,, Proposition 3.11 implies that k is even. We may assume that |x;, — x;,| > [x;, — Xi,]
after shifting the indexing of the vertices if necessary. This means that x;, is between x;; and x;,.

Proposition 3.11 tells us that x;, must be in the same direction from x;, as x;,. However Proposition 3.12 implies that
it cannot be past x;,. Note that x;, = x;, is also impossible since this would imply y;, = y;, and ¢;, = ¢;,. Therefore, x;,
must be between x;, and x;,.

Following this argument, we find that Xi,,, must be between x;, and Xiyq forallt =1, 2,...,k— 2. Then the vertices
V1, Uk_1, Uk, Vg Vviolate Proposition 3.12, a contradiction. O

Remark 3.13. Theorem 3.10 can be even strengthened, as M(n) < %n(n — 1) also holds. Indeed, one can verify that
Proposition 3.6 is true in a more general form, namely if there are parallel lines in the line arrangement, then there may
exist maximal area triangles on both sides of a fixed line ¢, but on one of the sides there is no more than one maximal
area triangle. This result yields |E(G, )|+ |E(Gzr)| < n—1in the proof above, implying our stated improvement. The details
are left to the interested reader.

4. Lines defining triangles with distinct areas

In this section we assume that the lines in the original arrangement are in general position. More specifically, we will
require that no six of them are tangent to a common quadratic curve in the plane.
To prove Theorem 1.8, we begin with the following result.

Lemma 4.1. Let r; and r, be two rays from a point O and A € R* fixed. Then those lines that form a triangle with r; and r,
of area X are all tangent to a fixed hyperbola. The two rays belong to the asymptotes of this hyperbola.

Proof. Affine transformations preserve lines, conics and ratios of areas. Therefore, we may assume that r; and r, are
perpendicular and correspond to the positive parts of the x and y axis, respectively.

Now, for a positive real number ¢ consider the hyperbola xy = ¢ and any point (x, y1) on it. The tangent t at (x1, y1)
is given by the equation xy; + yx; = 2c. Let P; = (Zc/yl, ) and P, = (0, 2c/y-,) be the intersections of t and the x and y
axis, respectively. Then the area of the triangle OP; = 2c.

Any line that intersects the positive parts of the x and y axis must be tangent to exactly one of these hyperbolas, and
as seen above the area of the triangle it defines depends completely and injectively on c. Therefore, triangles with the
same area must all be tangent to a fixed one of these hyperbolas. O

From here, we deduce the following result.

Corollary 4.2. Let ¢, and ¢, be two intersecting lines. Then for any fixed value A > 0, there can be at most 20 lines in general
position such that each of them forms a triangle with £, and ¢, of area ).

Proof. Note that £; and ¢, define four quadrants. If A > 0, each line defines a triangle of positive area with £; and ¢;, so
it intersects both rays of one of the quadrants. By Lemma 4.1, we can have at most 5 lines per quadrant, so we obtain at
most 20 lines.

If A = 0, then each line has to go through the point of intersection of £; and ¢,. There can be at most 5 of these lines,
as otherwise the intersection point would be a common degenerate conic tangent to 6 lines. O

The second ingredient that we use is a rainbow Ramsey result. We apply the following particular version of a result
proven by Conlon et al. [6] and independently by Martinez-Sandoval, Raggi and Roldan-Pensado [17]. It has been used
before to obtain similar results in combinatorial geometry in which a large structure with distinct substructures is desired.
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Fig. 6. Maximum area triangles lying on ¢, formed by ¢, ¢/, and a third line from the tangent line set.

Theorem 4.3. Let H be an m-uniform hypergraph and k a positive integer. Assume that the hyperedges of H are colored in
such a way that no two vertices lie in k edges of the same color.
Then there exists a set of

Qk(n]/(mel))
vertices for which all the hyperedges have distinct colors.

We are ready to prove the main result of this section.

Proof of Theorem 1.8. Note that there cannot be six or more lines with the same slope, as otherwise a seventh line
would be a degenerate conic tangent to all of them at infinity. Therefore, the lines define at least g distinct slopes, and
taking at most one for each slope we may extract a subset L’ of size at least g so that no two lines of L’ are parallel.

Consider the complete 3-uniform hypergraph H whose vertex set is L’. Since no two lines of L’ are parallel, we may
provide a coloring of the 3-edges of H by assigning to each triple the area of the triangle it defines. By Corollary 4.2,
no pair of vertices belongs to 21 or more triples of the same color. Therefore, by Theorem 4.3 we obtain a set of
£2((n/5)13) = £2(n'/3) lines such that the triangles that they define have all distinct areas. O

5. Discussion and open problems

One could also raise here an analogue question to the well known problem due to Erdds, Purdy and Strauss, which is
formulated as

Problem 5.1 (Erdés, Purdy, Straus, [12]). Let S be a set of n points in RY not all in one hyperplane. What is the minimal
number of distinct volumes of non-degenerate simplices with vertices in S?

Concerning the case d = 2, we refer to e.g. [7] and its reference list. Note that to obtain reasonable results on the
cardinality of distinct areas, one has to prescribe certain restrictions to avoid huge classes of parallel lines hence obtaining
only few triangles. However, having assumed e.g. that no pair of parallel lines appear, the distribution of the areas can
change significantly. We conjecture that the number of unit area triangles drops to O(n?) in that case, and in fact we could
not even find evidence of that the order of magnitude is £2(n?).

The proof of the upper bound on the number of maximum area triangles was relying on an argument about maximum
area triangles sharing a common line ¢ that provides a linear upper bound. Although it is easy to see that a linear lower
bound is realizable by a set of n — 2 tangent and two asymptotes of a hyperbole branch (see Fig. 6), we conjecture that
this will not provide the right (quadratic) order of magnitude for M(n). Note that this phenomenon appeared concerning
the unit area triangles as well when we compared g(n) and f(n), see Section 2.

In fact, we believe that the following holds.

Conjecture 5.2. The order of magnitude of M(n), largest possible number of triangles with maximum area in arrangements of
n lines in the plane is O(n'*¢) for every & > 0.
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In general we have seen that in these types of combinatorial geometry problems, small (or minimum) distances (or
areas) may occur much more frequently than large (or maximum) distances (areas).

Supposing that this assertion holds, it raises yet another interesting inverse research problem from a statistical point
of view.

Problem 5.3. Suppose that for each n, a set of n lines is given in the Euclidean plane. Assume that the number of triangles
having unit area, determined by triples of lines, is ¢(n), where ¢(n)/n — oo. Prove a lower bound (in terms of ¢(n)) on
the number of triangles having area greater than 1.

The analogue of Problem 5.3 for the original Erdés-Purdy problem on distances in a planar point set seems also widely
open. Some results were obtained by Erdds, Lovasz and Vesztergombi [10].

We also note that the problem may be investigated in a finite field setting as well, similarly to [15].

In Theorem 1.8, we assume that no six lines are tangent to a common conic. This implies, in particular, that no six
lines are pairwise parallel. A more natural condition would be to simply require that no two lines are parallel. We were
not able to obtain any non-trivial bounds under this hypothesis.

Problem 5.4. What is the maximum number D'(n) such that in any arrangement of n lines on the plane, no two of them
parallel or three through a common point, there are D’(n) lines that form triangles of distinct areas?

The bound in Theorem 1.8 can be improved by a logarithmic factor, as mentioned in [6]. The problem could also be
generalized to higher dimensions as follows.

Problem 5.5. A set of n hyperplanes in general position are given in R?Y. What is the maximum number Dy(n) such that
we can always find a subset of these hyperplanes of this size for which all the simplices that they define have distinct
d-dimensional volumes?

We finish by mentioning that there are very few geometric problems with this combinatorial flavor in which the
bounds are asymptotically tight. A related question concerning circumradii is discussed in [16].
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