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Abstract—Routing in large-scale computer networks today
is built on hop-by-hop routing: packet headers specify the
destination address and routers use internal forwarding tables
to map addresses to next-hop ports. In this paper we take a new
look at the scalability of this paradigm. We define a new model
that reduces forwarding tables to sequential strings, which then
lend themselves readily to an information-theoretical analysis.
Contrary to previous work, our analysis is not of worst-case
nature, but gives verifiable and realizable memory requirement
characterizations even when subjected to concrete topologies
and routing policies. We formulate the optimal address space
design problem as the task to set node addresses in order to
minimize certain network-wide entropy-related measures. We
derive tight space bounds for many well-known graph families
and we propose a simple heuristic to find optimal address spaces
for general graphs. Our evaluations suggest that in structured
graphs, including most practically important network topologies,
significant memory savings can be attained by forwarding table
compression over our optimized address spaces. According to
our knowledge, our work is the first to bridge the gap between
computer network scalability and information-theory.

I. INTRODUCTION

Throughout its several decades of history, the Internet
has evolved from an experimental academic network to a
global communications infrastructure. Most of the architec-
tural transitions that have taken place in the background, from
the ARPANET protocols to IP, from classful addressing to
classless, from IP version 4 to version 6, were (and are) largely
fueled by concerns regarding the ability of the network, and the
underlying design principles, to accommodate future growth.

Today, most computer networks are built on the distributed
hop-by-hop routing paradigm. Routers maintain forwarding
tables to associate incoming packets with next-hop routers
based on the destination address encoded in the packet headers,
and subsequent routers use the same mechanism to deliver
packets hop-by-hop to the intended target. Correspondingly,
routers must keep enough information in internal memory to
be able to forward any packet, with any destination address,
to the right next-hop. Unsurprisingly, it is precisely this point
where Internet scalability issues are manifesting themselves
most visibly [1], [2], [3], [4]: as the routed IP address space
grows so do the forwarding tables and when routers run out of
memory (or TCAM space) major outages spark throughout the
Internet, as it happened in August 2014, the infamous 512kday
[5].
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Fig. 1: Number of IPv4 prefixes and information-theoretical
entropy bound on rtr2.vh.hbone.hu during 18 months
in 2014 and 2015.

We created an Internet data plane measurement infrastruc-
ture to understand the long-term trends affecting Internet scala-
bility1. We have collected roughly two dozen IPv4 forwarding
tables every day during 2014 and 2015 from operational IP
routers located in the Default Free Zone. Throughout this
time, the number of entries in the forwarding tables has grown
more than 11 percent to well over half a million (see Fig. 1).
Strikingly, our statistics at the same time also indicate that the
effective information content stored in the forwarding tables,
in terms of the information-theoretic entropy bound defined in
[6], has remained relatively stable (increased by only 0.5%),
suggesting that the memory footprint of the compressed rep-
resentation of these forwarding tables was constantly around
70 Kbytes within this time frame2. If the entropy bound is
consistently and robustly invariant to the network size, as
our measurements seem to indicate, then this can potentially
mask the expansion of the Internet from operators and alleviate
rising scalability concerns for the time coming [2].

The systematic study of the memory implications of large-
scale routing was pioneered by Kleinrock and Kamoun in
their seminal paper [8]. They pointed out that scalability is

1We publish browsable daily statistics and downloadable data sets at the
Internet Routing Entropy Monitor website, see http://lendulet.tmit.bme.hu/fib_
comp.

2See [6], [7] on how to compress forwarding tables to entropy bounds
without sacrificing the performance of lookups and updates.



the central design requirement for very large networks and
concluded that some form of forwarding state compression is
inevitable. On the traces of McQuillan [9] they proposed a
hierarchical clustering scheme, whereas nodes keep detailed
forwarding information only about nearby nodes and apply
gradually more coarse-grained state aggregation as distance
increases. This way, they realized significant forwarding table
reduction at the price of only limited increase in path length3.
Underlying Kleinrock’s result is the observation that node
addresses can encode substantial knowledge about the network
topology and this knowledge can be readily leveraged to shrink
forwarding tables. Hierarchical routing still lives on in today’s
Internet routing architecture and it remains the only viable
option, with well-known scaling properties, to engineer large-
scale address spaces to our days (see e.g., RNR [12], GSE
[13], Nimrod [14], ISLAY [15]).

Hierarchical routing has some intrinsic limitations. First,
node addresses serve as “names” that encode the entire up-
stream cluster hierarchy, which causes problems with handling
topology changes, failure recovery, and renumbering [16]. A
flat address space for hierarchical routing, on the other hand,
would introduce an extra name-to-address mapping step in
all communication sessions [12]. Second, hierarchical routes
are decidedly sub-optimal (i.e., worse than the best available
path in the topology), while in most real-life scenarios optimal
routing is a must. In Internet inter-domain routing, mistaking
a customer route for a much more costly provider route
or a trusted third-party for an unreliable intermediary can
be detrimental, so much so that a suitable notion of path
length dilatation cannot even be defined in this setting [17].
Unfortunately, hierarchical addressing for optimal routing is
inefficient unless the underlying topology happens to be a tree.

The main goal of this paper is to (re)launch the systematic
study of the memory requirement of hop-by-hop routing over
flat addresses and optimal routing. We take a principled
approach: we introduce certain entropy-like measures to de-
scribe the compressed size of forwarding state and we provide
an information-theoretic analysis to uncover the fundamental
scaling properties of large-scale hop-by-hop routing.

First, we give a model that translates problems related
to routing scalability to the language of information-theory.
Forwarding tables are modeled as sequential strings, admitting
tight memory requirement characterizations using Shannon’s
entropy measures and standard data compression techniques.
As a main contribution, we formulate the problem of optimal
address space design as a combinatorial optimization problem,
with the objective to minimize the general memory require-
ment of routing tables in terms of the above entropy measure.

Second, we present asymptotically optimal solutions to
the address space design problem over well-known graph
families when forwarding paths are selected using shortest-
path routing. Using pure information-theoretic arguments, we
are able to reproduce most of the space bounds obtained in the

3Uncovering the path-length–memory trade-off later developed into a
separate research field, compact routing [10], [11].

compact routing literature using piecemeal addressing schemes
and analysis. For general graphs, where solving the problem
to optimality promises intractable, we present a fast heuristic
address space design algorithm that runs in polynomial time.

Finally, we empirically evaluate the routing table compres-
sion ratio achievable by our techniques. Given that our entropy
measure gives general, tight, and firm lower-bounds on the
memory footprint attainable by any forwarding table encoding
scheme (e.g., [18]), we are able to show that essentially no
forwarding table compression can be achieved on large-scale
structureless graphs (e.g., on Erdős-Rényi random graphs).
This finding is analogous to the well-known lower bound by
which no scheme can guarantee sublinear forwarding state
in general graphs [19] On the positive side, we find that
most practically relevant network topologies are structured and
admit significant routing table compression, even without a
specifically designed address space. If, furthermore, we are al-
lowed to pick node addresses then, using our heuristic address
space designs, the memory footprint of hop-by-hop routing can
be reduced even further: for highly structured graphs the space
reduction is in the orders-of-magnitude range, while on large-
scale Internet models [20] routing tables can be compressed
below 25% of the uncompressed size. We stress that the routes
in these evaluations are strictly shortest, whereas all previous
approaches producing similar space reduction diverged from
shortest paths and introduced significant path-dilation (stretch)
[20], [21], [22]. This result suggests strong potential for
practical forwarding table encoding schemes that can compress
to entropy (e.g., [6], [7], [23], [24]).

The rest of this paper is structured as follows. Section II
gives a hands-on introduction to data compression theory,
based on which Section III introduces three information-
theoretic models for routing scalability and formulates the
address space design problem. Section IV provides tight space
bounds for many important families of graphs (trees, grids,
torii, hypercubes) over min-hop routing and discusses optimal
address space design for general graphs. Section VI contains
applicability issues with respect to real world network models
and the Internet and Section VII concludes our work.

II. A PRIMER ON DATA COMPRESSION

Information theory is concerned with the storage, encoding,
and transmission of text messages and the quantification of the
information content thereof. A key measure in information the-
ory is empirical entropy, the average number of bits needed to
encode one symbol of a given text, which directly transforms
into bounds on the efficiency of any data compression scheme
[25], [26].

There are various approaches to represent the empirical
entropy for an input text, relative to a model for the source
that generates it. Throughout the paper, we assume that this
model is static, that is, the compression scheme can use only
information that is available from the source a priori and it
does not depend on the particular instance of data that is being
encoded. Of course, finding the best model for some problem
domain is the real difficult part in information theory.



A. No-information Model

Suppose that we do not possess any explicit knowledge on
the input string s apart from its length n and the alphabet
Σ = {c1, c2, . . . , cδ}, |Σ| = δ it is defined on. Then, encoding
s is equivalent to being able to distinguish between any two of
the possible δn strings we can get as input, which needs at least
I(s) = log(δn) = n log δ bits4. I(s) is called the information-
theoretical lower bound, referring to that we cannot hope for
any compression beyond I(s) unless the source discloses some
further knowledge on the strings it generates.

B. Zero-order Model

Suppose now that, beyond the alphabet Σ and length n,
we also know the number of occurrences nc of each symbol
c ∈ Σ in s, but we do not have any a priori knowledge on the
way symbols follow each other. In most cases we can use this
additional knowledge to compress s beyond the information-
theoretical lower bound. The best compression rate is bounded
by the zero-order empirical entropy of s, defined as

H0(s) =
∑
c∈Σ

nc
n

log
n

nc
. (1)

Trivially, we have H0(s) ≤ log δ with H0(s) = log δ if and
only if the empirical symbol distribution in s is uniform (i.e.,
nc1

n =
nc2

n = . . .).
On the one hand, the zero-order entropy bound nH0(s) is an

upper limit on the number of bits needed to encode s as there
are well-known compression schemes (e.g., Huffman coding,
arithmetic coding) that attain roughly this size (the real bound
is nH0(s) + o(n) bits). On the other hand, nH0(s) is also
a firm lower bound, in that no encoding scheme can attain
smaller compressed size under a static zero-order model.

As we do not have knowledge about the way symbols are
laid out in s, apart from the relative frequencies nc

n , we are
confined to conservatively believe that the symbols follow each
other randomly. Consequently, the zero-order storage bound
does not depend on the actual order in which symbols appear
in s (c.f., (1)). Thus, using a zero-order compressor the string
mississippi and the anagram miiiisssspp encode to
the same size, roughly 20 bits (H0 ∼ 1.823 in both cases).

C. Higher-order Models

In practice, subsequent symbols in a text often do not follow
each other haphazardly. Rather, certain symbols appear more
frequently in certain contexts and almost never in others, like
in normal English text the letter q is almost certain to be
succeeded by the letter u while basically never by the letter c
or h [27]. In general, for any k > 0 integer define the k-context
for the symbol s[i] appearing at some position i ∈ [k+1, n] in
s as the k-long string s[i−k] . . . s[i−1] immediately preceding
s[i] and for any k-context q ∈ Σk let nqc denote the number

4All logarithms in this paper are taken to the base 2 and we assume
0 log 0 = 0. For brevity, we do not differentiate between dlogne and logn
unless otherwise noted.

of times q is followed by symbol c in s. Then, the k-order
empirical entropy

Hk(s) =
∑
c∈Σ

nc
n

∑
q∈Σk

nqc
nc

log
nc
nqc

(2)

gives a lower bound to the output size of any text compressor
that encodes each symbol with a codeword that depends only
on the k-context preceding the symbol and the symbol itself
[28], [29]. Hk ≤ Hk−1 and it is generally held that Hk

converges to the “real” empirical entropy for large k. In
practice usually taking k = 4 or 5 is enough and Hk decreases
very slowly even after k = 1. Therefore, we shall use k = 1
henceforth.

As opposed to the zero-order model, in a higher-order
model the arrangement of the symbols in s does count: the
more organized the string the better the prediction of a symbol
from its k-context and so the smaller the k-order entropy and
the size of the compressed string. For instance, for the string
mississippi H1 ∼ 0.8 but for the visibly more regular
anagram miiiisssspp we get only H1 = 0.6. This suggests
that in a setting where we are to a certain extent free to choose
the arrangement of the symbols in some string (as will be the
case below) we should strive for more order, which would then
directly translate into better compressibility through the notion
of higher-order entropy. At the extreme, if we can reorder a
string into a few runs of identical symbols (like in the example
miiiisssspp) we realize maximum compression by simple
run-length encoding.

D. Compressed Data Structures

In the context of this paper we do not only want to squeeze
data into small memory but we also want to execute certain
operations in place, most importantly fast random access to
any position in the string and, possibly, arbitrary updates to
the content as well [6]. Traditional data compression schemes,
like Huffman coding or run-length encoding, do not support
such operations without first decompressing the data. Thanks
to recent advances on compressed data structures, however,
there are now a well-tested suite of compression schemes that
allow fast operations right on the compressed form.

Static compressed self-indexes implement fast random ac-
cess to the compressed string but no updates (without a com-
plete rebuild from scratch). When the size of the alphabet is
small, say, δ = O(log n), generalized wavelet trees [30] attain
nH0(s) + o(n) bits of space and O(1) random access, while
the schemes in [28] and [31] attain nHk(s) + o(n log log n)
bits space for any k = o(log n) with random access in
o(log log log n) time. Dynamic compressed indexes permit
updates to any position as well: the scheme in [32] attains
nH0(s) + o(n log log n) bits space and random access and
update in O(log n log logn) time. For precise definitions and
generic storage bounds, see the surveys [33], [34], [35], [36].

III. HOP-BY-HOP ROUTING MODEL

We adopt the model of static oblivious routing functions for
compact routing from [19].



Let G(V,E) be a simple connected undirected graph on
n nodes. We presume a flat address space on V : each node
v ∈ V is labeled with a globally unique integer id(v) ∈ [1, n].
Note that ids are the only “addresses” we use to identify nodes
and as such they are of global scope. (The question whether
we are allowed to change node ids will prove essential, we
shall return to this crucial question soon.) In addition, each
outgoing port (v, u) ∈ E of each node v ∈ V is also labeled
with a locally unique port id port(v, u) ∈ [1, δv], where δv
denotes the node degree of v. Port ids are local and hence can
be selected arbitrarily5 in the range [1, δv].

We further presume that some routing policy (e.g., shortest-
path, min-hop path, valley-free) for each node has been fixed
in advance and packet forwarding must strictly obey the paths
emerging from this policy. As far as our model is concerned,
however, we do not assume any particularity about the routing
policies themselves whatsoever, apart from that (i) the policy
is such that it lends itself to a distributed implementation (see
[38] for examples where this requirement does not hold) and
(ii) at each node it assigns a single, well-defined output port
to each other node that packets destined to that node must be
forwarded via.

Packets contain a header with the id of the destination node.
This is then fed to the local routing function sv of each node
v along the forwarding path that returns the output port to
pass the packet on. The routing function sv : [1, n] 7→ [1, δv]
maps a destination node id to the corresponding outgoing port.
We suppose that each node v ∈ V is aware of its own id
(this immediately imposes log(n) bits lower space bound for
storing sv that we shall omit from here onwards) and hence
can identify packets destined to itself, so we shall usually set
sv(id(v)) to an arbitrary port id.

It is convenient to think of sv as a string of length n on
the alphabet Σv = [1, δv], so that the symbol sv[i] at position
i ∈ [1, n] gives the output port to be used to forward packets
towards the node whose id is i. Consequently, a forwarding
decision in this setting reduces to a random access on sv
(which most compressed string self-indexes support out-of-
the-box, see Section II-D) and modifications are simple string
updates. See a sample network and routing function in Fig. 2.

IV. MEMORY REQUIREMENT FOR HOP-BY-HOP ROUTING

The main concern in this paper is to find lower and upper
bounds on the number of bits needed to encode the routing
function at each node. Since routing functions boil down
to simplistic strings in our model, we can exert the entire
toolset of information-theory to infer space bounds. As usual
in information theory, however, the answer depends on the
actual model we choose for designing the routing functions,
as discussed next.

5The compact routing literature distinguishes between the designer port
model where port ids are assigned by the designer, and the fixed-port model
where port ids are set by an adversary [37]. In our model these two cases
coincide.

A. Graph Independent Case

Suppose that the source does not reveal any further knowl-
edge on the graph and the selected forwarding paths other than
the number of nodes n. Then, all we know is that the routing
functions will comprise n symbols, each coming from the
alphabet Σv = [1, n−1]. We are bound to assume |Σv| = n−1,
since the only upper limit on the alphabet size that holds in
any simple graph is that the maximum degree is at most n−1.

It is then easy to see that the graph independent case
essentially maps to the no-information model of Section II-A,
and hence the information-theoretic lower bound of Iv =
I(sv) ∼ n log n bits is the best space bound we can hope
for in this setting. It turns out that this is also a very generic
lower bound, since Gavoille and Pérennès showed that any
routing scheme realizing shortest path routing on graphs of
size n necessarily stores Ω(n log n) bits of information at some
Ω(nε) nodes, for any 0 < ε < 1 [19]. This is bad news, as
superlinearly scaling memory for mere packet forwarding, in a
network growing as rapidly as the Internet, would put routers
under endless memory stress [2].

B. Name Independent Case

A way out of the above trap would be a model where the
source reveals further information to the designer. Could we
design more compact routing functions if we knew the input
graph, for instance? As mentioned previously, in the compact
routing literature it is common to distinguish between the cases
when node ids are fixed in advance and it is beyond our reach
to change them, and when we are free to assign node ids in
the design phase. The former, called the name independent
model [10], [37], [39], is discussed next.

In this model, we get the input graph G (along which comes
n and the routing function alphabet Σv = [1, δv] for each
v ∈ V ), the required next-hop ports for each node pair, and the
node ids id(v) : v ∈ V , but these ids do not communicate any
further information apart from that they uniquely identify the
nodes. We could as well view this as if node ids were chosen
by an adversary and so the memory at each node should be
large enough to store any possible routing function arising
over any permutation of ids. See Fig. 2a.

The name independent case in this setting maps naturally to
the zero-order model of information-theory (Section II-B): we
can compute the zero-order next-hop port distribution ni/n :
i ∈ [1, δv] for each port i of each v ∈ V but no higher-
order statistics, as these depend on the assignment of node
ids that is beyond our control. As shall be seen, in some cases
(like complete graphs or stars) this knowledge is not enough to
compress the routing functions below the information-theoretic
lower bound, but in many practically relevant cases significant
memory savings can be realized.

The following gives a tight bound on the attainable com-
pression in the name independent case.

Theorem 1. Given a graph G on n nodes with each node
assigned a unique id in [1, n] under the name independent
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Fig. 2: Sample graph from Kleinrock’s original paper [8] with port ids and routing function for the thick node over different
address spaces; (a) random node ids (average zero-order routing function entropy H̄0 = 1.1 bit); (b) optimal node ids found
by brute force search (H̄1 = 0.355 bit); and (c) hierarchical node addresses and forwarding table (omitting self-entries) as of
[8]. Observe that nearby nodes are mapped to close-to-each-other node ids in the optimal address space (b), which translates
into three-fold space reduction compared to a random address space of (a). Hierarchical routing (c) yields even smaller tables
but does not reproduce the optimal paths.

model, encoding the routing function sv : v ∈ V needs
nH0(v) + o(n) bits memory, where

H0(v) = H0(sv) =
∑

i∈[1,δv]

ni
n

log
n

ni
(3)

and ni denotes the number of times output port id i ∈ [1, δv]
appears as a next-hop port in sv .

Proof. Easily, nH0(v) + o(n) bits is enough to store sv , so
we only need to show that this is a lower bound as well. We
observe that, depending on how the adversary assigns node ids,
the next-hop port id 1 can appear at exactly

(
n
n1

)
positions in

sv , port id 2 can appear at
(
n−n1

n2

)
positions, etc., putting the

number of distinct routing functions we need to identify to(
n

n1

)(
n− n1

n2

)
. . .

(
n− . . .− nδv−1

nδ

)
=

n!∏δv
i=1 ni!

.

Using the Stirling formula lnn! ∼ n lnn − n + O(lnn), we
get that we need log n!∏

i ni!
= nH0(v) + o(n) bits to identify

each possible routing function.

C. Name Dependent Case

In the final model we discuss in this paper, we again require
the graph G to be fixed but we are now free to assign node ids.
This case is usually referred to as the name dependent model
in compact routing [10] and, as one easily checks, it maps to
the higher-order models of information-theory (Section II-C).

Indeed, the sequence of next-hop ports in the routing
functions is completely determined by the node id assignment,
which in this case may not be some arbitrary permutation like
in the zero-order model. Rather, the id space could be carefully
optimized in order to encode maximum information about the
underlying topology into the ids proper and so the (otherwise

flat) node id space can function as a full-fledged address space
for the network at hand. This in turn might make it possible to
compress routing functions more efficiently, by the fact that a
carefully chosen node id space would transform into smaller
higher-order entropy.

The corresponding space bounds are then as follows:

Theorem 2. Given a graph G on n nodes with each node
assigned a unique id in [1, n] under the name dependent
model, encoding the routing function sv : v ∈ V needs
nHk(v) + o(n) bits memory for any k > 0 integer, where

Hk(v) = Hk(sv) =
∑

q∈[1,δv]k

∑
i∈[1,δv]

nqi
n

log
ni
nqi

, (4)

ni is as previously and nqi is the number of times port i
succeeds the k-long port sequence q ∈ [1, δv]

k in sv .

The proof is similar to that of Theorem 1 and omitted here
for brevity.

The question arises then how to assign node ids to minimize
the above higher-order entropy bound, that is, how to design
the address space? A possible strategy would be to map
(topologically) adjacent nodes to consecutive node ids, based
on the intuitive idea that from a far-away point in the graph
such adjacent nodes would most probably be reached through
similar next-hop ports, which would then allow to use the
context of some node (i.e., the next-hop ports for the nodes
mapped to preceding node ids) to guess the next-hop port for
this node. Later, we show that this strategy yields significant
memory savings in many networks.

This discussion is formalized in the following problem
statement, the optimal address space design problem:



TABLE I: Entropy (H̄0, H̄1) and compression ratio (η0, η1) under the name independent and the name dependent model for
various well-known families of graphs, along with the node enumeration strategy that produces the optimal address space and
the corresponding bounds from compact routing. As the latter are usually given in terms of the whole routing function size,
we computed the average per node (i.e., divided the results by n). In graphs where multiple shortest paths exist between many
node pairs, for H̄0 we specify the lower and upper bound over an optimistic and a pessimistic choice for the next-hops and
for H̄1 we specify only the optimistic setting.

Name independent Name dependent

Graph class H̄0 η0 H̄1 η1 Optimal address space Compact routing

complete graph logn 1 0 0 arbitrary O
(
logn
n

)
[19]

star logn
n

1 0 0 arbitrary O
(
logn
n

)
[10]

d-grid log e
2
←→ log(2d) log e

2 log(2d)
←→ 1 d logn

n
o(1) coordinate-wise d logn

n
[40]

path graph log e
2
∼ 0.72 ∼ 0.72 2 logn

n
o(1) coordinate-wise 2 logn

n
[40]

d-torus 1 ←→ log(2d) 1
log(2d)

←→ 1 (d+ 1) logn
n

o(1) coordinate-wise d logn
n

[40]

ring 1 1 2 logn
n

o(1) coordinate-wise 2 logn
n

[40]

d-hypercube 2 ←→ log d 2
log d

←→ 1 d logn
n

o(1) lexicographical d logn
n

[40]

n-tree logn
n
←→ log e

2
NA 2 logn

n
NA post-order 3 logn

n
[41], O(1) [11]

Definition 1. Given routing functions sv : v ∈ V , |V | = n
and any k = o(log n), find the permutation π of node ids that
minimizes the mean k-order entropy of the forwarding tables:

min
π

1

n

∑
v∈V

Hk(π(sv)) . (5)

Alternatively, one might aim for minimizing the maximal
entropy instead: minπ maxvHk(π(sv)). Note that in both
cases the permutation π must be globally optimal, that is, we
must design a single node id allocation that reduces the entropy
at each node simultaneously. An optimal address space design,
as found by solving (5) by a brute-force search algorithm, is
given in Fig. 2b.

V. ANALYSIS AND ALGORITHMS

Next, we turn to analyze the memory requirement of hop-
by-hop routing. First, we present the results for some well-
known graph families and next we give a heuristic character-
ization for general graphs.

A. Asymptotically Optimal Results on Well-known Graphs

Computing the entropy for a routing function is already
difficult for the zero-order setting, let alone in a higher-order
model. Therefore, it seems hopeless to seek for exact general
characterizations. Rather, below we concentrate on instances
for which the problem can be solved: highly symmetric graphs
from some well-known graph families. Most of the results
below have already been known from the compact routing
literature, we still reproduce these here to demonstrate the
basic algorithmic techniques and to motivate our address space
optimization heuristics (see the next section).

Below, we stick to the simplest possible case: shortest-path
routing over unit cost graphs6. The analysis will be for the
average case: for each graph class we specify the average (over

6We briefly address weighted graphs in Section VI-A. For BGP-style valley-
free policies, the reader is referred to [23].

all nodes) empirical zero-order entropy H̄0 = 1/n
∑
vH0(v);

the average first-order entropy H̄1 = 1/n
∑
vH1(v) attainable

over an optimal address space; and the compression ratios
η0 = nH̄0/Ī and η1 = nH̄1/Ī where Ī denotes the average
information-theoretic lower bound and nH̄0 (nH̄1) is the mean
forwarding table size in bits. The results are in Table I.

Full-meshes (complete graphs) and hup-and-spoke networks
(stars) are amongst the most renowned topologies in telecom-
munications. In the name independent case (recall, we cannot
modify node ids in this setting) we get no compression at
all for these topologies. For complete graphs in particular, we
cannot even get below the theoretical lower bound of [19],
[42]. In the name dependent case however, when we are free
to assign node ids, entropy bounds fall to zero and we get
infinite compression. Note, however, that H̄1 = 0 is purely
theoretic, as for a node at least storing its own id requires
log n bits (see e.g., [19]).

A d-dimensional grid (or mesh) is a graph whose natural
embedding into the Euclidean space Rd forms a d-dimensional
tiling and a path-graph is a one-dimensional grid; torii are
“wrap-around” grids and a ring is a one-dimensional torus; and
the nodes of a hypercube in an Euclidean-embedding form the
corners of a d-cube. These graphs offer multiple min-hop paths
between most node pairs and, as it turns out, the way we select
from these greatly affects the entropy bounds. Consider, for
instance, hypercubes and suppose first that we control next-
hop selection. Then, any node can reach half of the nodes
on some shortest path via its first port, half of the remaining
nodes via its second port, etc., and choosing these shortest
paths H0 ∼ 2. If, however, next-hop selection is random, then
every port “covers” roughly the same number of nodes so
H0 = I = log d.

Accordingly, under the name independent model an opti-
mistic next-hop selection results very small constant zero-order
entropy and significant compression, while the pessimistic
choice yields no compression at all for these graphs. For



the name dependent model, we did the analysis only for an
optimal choice of forwarding paths (this is in line with the
compact routing literature), resulting asymptotically infinite
compression7. The optimal address space itself is a natural
coordinate-wise enlisting of the nodes for the grid and the
torii and a lexicographic enumeration on the coordinates for
the hypercube. Observe that both strategies tend to keep
topologically close nodes close to each other in the address
space. The corresponding bound from compact routing is
d logn

n , as the 1-interval routing scheme applies [19]. This
matches our bounds.

Trees are cycle-free graphs. The respective space bounds
depend on the actual tree topology, but the best bounds arise
on stars and the worst cases are path-graphs. Still, every tree
admits infinite compression over a post-order enumeration of
the nodes. The corresponding bounds from compact routing
are 5 log n+ 1 bits addresses and 3 log n+ log log n+ 4 bits
forwarding tables in [41] and (1 + o(1)) log n bits addresses
and O(1) bits forwarding tables in [11]. These, however, come
from specialized non-flat addressing techniques. Strikingly, we
get similar results here over flat addresses and without the
piecemeal analysis.

Finally, we note that, contrary to what is available in the
literature, the above characterizations are tight; the entropy
bound is not just a limit on the compressibility of forwarding
tables but it also betokens that no routing scheme can navigate
a graph in smaller space, even if that scheme does not
use forwarding tables at all. This shows the power of an
information-theoretic approach over a case-by-case analysis.

B. Heuristics on General Graphs

Next, we discuss optimal address space design for general
graphs under the name dependent model. As solving (5)
directly as a mathematical program seems daunting, we stick
to a heuristic approach.

Our heuristic is, by and large, based on hierarchical routing
[8]. State aggregation in hierarchical routing occurs using a
hierarchical partitioning of the nodes into increasingly smaller
groups (or clusters). The top-level cluster contains all nodes
and lower-level clusters iteratively partition the respective
upper-level cluster into smaller groups. A node’s address is
the top-down concatenation of cluster ids that contain it. This
allows each node to calculate the lowest common cluster
to any other node, which will then serve as an index into
the forwarding table for sending packets to that node. The
forwarding table itself contains one entry per node in the same
lowest-level cluster, one entry per each parent-level cluster,
etc., all the way to the top-level. In the example of Fig. 2c,
node 1.1.1 maintains a separate entry for each node in its
own cluster (i.e., all nodes with addresses 1.1.*), one entry
per each second-level cluster (addresses 1.*), and one for
each top level cluster.

Such aggressive state aggregation necessarily incurs path-
length increase though; in the example 1.1.1 maintains a

7f(n) = o(1) means f converges to zero as n→∞.

single entry for each node whose address matches 2.*.*,
even though optimally it would need to use separate ports to
reach 2.1.1 and, say, 2.2.3. Such deviations are exactly
why hierarchical routing breaks for optimal routing: the more
the underlying topology diverges from a hierarchy the more
forwarding rule “exceptions” we would need to store, balloon-
ing forwarding state. And it is precisely such exceptions in a
forwarding table what shape its compressibility: the worse the
prediction of a node’s next-hop from its context (i.e., from
the next-hop ports of the nodes mapped to preceding ids) the
larger the higher-order entropy and the corresponding space
bounds. Yet, we are still able to show that the general idea
of hierarchical routing works reasonably even for optimal
routing: below we define a heuristic clustering scheme and
an enumeration method for the nodes inside each cluster, so
that the resultant address space will yield significant space
reduction under the name independent model, in terms of
Theorem 1, in structured graphs.

Recall, the main goal of the partitioning scheme is to map
nodes close to one another into the same low-level cluster and
distant nodes to separate clusters. Then, a suitable enumer-
ation on the resultant hierarchy (say, a post-order traversal)
will readily supply the node ids. Using this observation, we
propose a hierarchical clustering to design heuristic address
spaces for general graphs. Hierarchical clustering is used in
machine learning and data mining to heuristically classify
nodes reflecting their similarity. Here, we treat nearby nodes
“similar” and distant nodes “dissimilar” as of the min-hop
distance metric; thus the hierarchical clustering scheme will
organize close nodes to the same cluster with high probability;
and the subsequent post-order enumeration of the resultant
dendogram will heuristically produce a “good” address space
for the graph.

The general HIERARCHICAL-CLUSTER scheme implements
a simple possible bottom-up classification scheme: it starts
with a set of single-node clusters C = ∪v{v}; in each
iteration finds the “closest” clusters, where cluster distance
is taken by the so called single linkage rule d(C1, C2) =
minv∈C1,u∈C2

d(v, u); unifies the two clusters into a single
cluster and puts it to the head of C; and goes on with the
recursion until C becomes a single super-cluster containing all
of V .

1: procedure HIERARCHICAL-CLUSTER(C)
2: if |C| = 1 then STOP
3: (C1, C2)← argmin

(X,Y )∈C×C
d(X,Y )

4: C ← (C1 ∪ C2)
⋃

(C \ C1, C2)

In the below, we use the “fast greedy” hierarchical clustering
scheme from [43]; this algorithm runs in O(n log n) time on
a graph of n nodes and, thusly, remains tractable even on very
large graphs.

C. Evaluation

Next, we evaluate our address space design heuristic. First,
we are interested in the efficiency of the partitioning schemes
for producing good address spaces that admit small entropy
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Fig. 3: Mean space bounds for various address spaces as the function of graph size n in hypercubes, 2-grids, and 2-torus
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1 (•), each result is in bits.

bounds. Thus, initially we study input graphs where the
ground-truth is known, namely, the well-known graph classes
of Section V-A for which we can solve (5) optimally. Then,
we turn to general topologies to see how address space
optimization affects forwarding table sizes in the wide.

First, we present the analysis over the well-known graphs.
The results for the evaluations for min-hop routing on hy-
percubes, 2-grids, and 2-torus graphs are given in Fig. 3. In
particular, Ī denotes the mean information-theoretical lower
bound, which is, recall, the best bound we can get in the
graph-independent model; H̄0 is the mean zero-order entropy
that gives a tight bound in the name independent model, H̄HC

1

is the first-order entropy over the address space calculated by
the HIERARCHICAL-CLUSTER heuristic, and finally H̄opt

1 is
the theoretical optimum from Table I. In the evaluations when
multiple shortest paths were available between two nodes we
let the implementation to pick the next-hop port randomly;
accordingly the results are conservative estimates (in reality,
we could pick the next-hop for each source-destination pair
that minimizes the entropy).

Our observations are as follows. First, in the examined
cases the zero-order entropy H̄0 was significantly smaller
than the information-theoretic limit, suggesting that substantial
forwarding table compression can be achieved even in the
name independent model, without any control over the node
addresses. In hypercubes, for instance, Ī grows without limit
but H̄0 ∼ 2 regardless of the size of the graph, meaning that
we pay only 2 bits for every added node. Similar observations
hold for grids and torii. Second, optimal address space design,
and the heuristics discussed in the previous section in partic-
ular, are highly effective in reducing the memory requirement
even below what is already available in the name independent
model. For instance, using the hierarchical clustering scheme
in an 55× 55 grid topology the entire compressed forwarding
table for a node takes only 42(!) bytes in average. The heuristic
results nicely approach the optimum; all results are in line with
the analytic bounds of Table I.

We posit that the positive results are due to that the exam-
ined graph topologies are highly symmetric and this allows
the address space to reflect the structure that is present in the

TABLE II: Mean space bounds for various address spaces over
different graph topologies: number of nodes n and edges m,
mean degree δ̄, and the space bounds Ī , H̄0, H̄ rnd

1 , and H̄HC
1

in bits.
Graph n m δ̄ Ī H̄0 H̄ rnd

1 H̄HC
1

Tree-2 2000 1999 1.99 0.99 0.0271 0.027 0.0079

Hyper-A 1500 6656 8.87 3.14 0.627 0.612 0.16

Hyper-B 2500 11840 9.472 3.24 0.445 0.4376 0.139

2-core 14056 48722 6.93 2.79 0.4976 0.494 0.421

3-core 7054 34827 9.87 3.30 0.7357 0.726 0.672

4-core 4127 26203 12.69 3.66 1.0041 0.985 0.922

5-core 2603 20240 15.55 3.95 1.291 1.253 1.175

6-core 1742 16024 18.39 4.20 1.5737 1.507 1.424

ER-3 2000 3060 3.06 1.61 1.373 1.369 0.875

ER-6 2000 5995 5.9 2.56 2.19 2.18 2.06

ER-8 2000 7841 7.8 2.96 2.613 2.583 2.5

topology (cf. Rekhter’s Law, [1]). To check this proposition,
we also ran the evaluations on general graphs that lack such
structure. In particular, Table II present the results for some
illustrative graph examples that contain varying degrees of
internal structure.

First, we picked random tree topologies as “maximally
structured” examples. Second, we use the hyperbolic large-
scale Internet models from [20] where a “hidden” hyper-
bolic metric space drives network formation and as such,
provides reasonable internal structure in the resultant graphs
(even though the graphs themselves are random). Third, we
examined the Internet inter-domain AS-level topology maps
from the CAIDA Autonomous-System-level dataset as of June,
2014 [44]. For this dataset, we took the k-core for different
settings of k to obtain a graph ensemble with vanishing
internal structure for growing ks. Finally, we studied Erdős-
Rényi random graphs, arising as provisioning an edge between
each node-pair by an independent Bernoulli-distribution of
(given) parameter p. These graphs stand for the “maximally
unstructured” case in our evaluations.



The results are for min-hop routing and forwarding tables
are sampled at every 50-th node. As far as we know, no ana-
lytic space bounds are available for any of these graphs [45].
For address space design, we again used the HIERARCHICAL-
CLUSTER heuristic (H̄HC

1 ), plus we also include the results for
a randomly chosen address space as an outlier (H̄ rnd

1 ).
Our results support the above proposition. For highly struc-

tured graphs (like general trees or hyperbolic random graphs)
we see substantial space improvement even in the name-
independent model, while using our engineered address spaces
the results for the name-dependent case are even better.
In general trees, in particular, the improvement is in the
order-of-magnitude range. As structure vanishes, like in the
Internet cores for increasing k, we see less and less routing
table compression under all models (name-dependent, name-
independent). At the extreme, on Erdős-Rényi graphs that
are completely homogeneous and so, intuitively, one would
hardly expect to find a representative hierarchy along which
to organize the address space, we see basically no difference in
the space bounds obtained with random and optimized address
spaces. For large graphs of this family, results gradually
approach the worst-case bound from the literature [19], [42].

VI. APPLICABILITY

In the next section we show that our results, although stated
under stringent initial modeling assumptions, are applicable in
a realistic setting as well, even for real-life networks.

First, we show how the results from our flat addressing
scheme can be applied to structured address spaces, like the
addressing regime the current Internet is based upon. Then, we
show that the results are applicable even in realistic weighted
networks (most of our evaluations are for the min-hop distance
metric). Finally, the static nature of the model is relaxed, by
introducing moderate variation in the network structure and
examining the effects of adaptive routing.

A. Structured Address Spaces

The most prominent large-scale network of our days is the
Internet. Similarly to Kleinrock’s hierarchical routing scheme,
Internet addressing is also structured: host addresses are aggre-
gated into varying sized subnets based common address pre-
fixes and forwarding tables specify routes with respect to those
prefixes using the longest-prefix match semantics. Lookup
can be implemented with a simple binary trie data structure.
The information-theoretic model of this paper, however, is for
structureless flat addresses and sequential forwarding tables,
which may suggest that our results do not apply to Internet
routing. Below, we argue that this is not the case, in that
our information-theoretic model gives meaningful memory
characterizations even for the structured address space used
in IP routing.

Let T be the binary trie representation of some IP for-
warding table in prefix-free form (i.e., after eliminating less
specifics [6]), let W be the depth and let n be the number
of leaves in T , and let MT be the minimum space bound

Addr/plen label
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000/3 3
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s = 32112222
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3 2
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Fig. 4: Representations of an IP forwarding table: (a) tabular
form, (b) binary trie for the prefix-free form, (c) equivalent
string representation.

for storing T . Furthermore, let S be an equivalent string-
representation for T , obtained as concatenating for each in-
dividual W -bit address the corresponding next-hop port into a
string of 2W entries (see Fig. 4). Let MS be the compressed
size of S.

Lemma 1. MT ≤ MS ≤ KMT for some 1 ≤ K ≤ 1 +
1
2 log 2W

n .

See the proof in the Appendix. For a typical IPv4 forwarding
table we get K ∼ 3 and for IPv6 K ∼ 7. Consequently,
the size of T is intimately connected to the size of S and
so our compressed string-representation very closely models
trie-based IP forwarding tables. The corresponding memory
sizes, obtained on real-life IPv4 forwarding tables from [6]
with W = 24, indicate that the real value of K might be
closer to 1.1–1.5.

MT [Kbytes] MS [Kbytes] K
taz 56 85 1.52
hbone 142 186 1.3
access(d) 90 118 1.31
as1221 115 162 1.4
as4637 41 66 1.6
as6447 277 294 1.06
as6730 209 253 1.21
fib_600k 157 168 1.07

B. Weighted Graphs

Next, we argue that the above memory requirement charac-
terizations above are conservative in a very strong sense.

Consider the name independent model. We have seen that
on a complete graph Kn no forwarding table compression can
be achieved: H0 = log n. The reason is that such a graph is
totally homogeneous: each next-hop port appears exactly once
in the routing function. We observe, nevertheless, that if the
network exhibits some form of heterogeneity then the port id
distribution becomes skewed, which tends to reduce entropy.
Let us break the symmetry by introducing a slight random
edge weight variation and switch to shortest path routing.

Lemma 2. Let Kn be the complete graph on n nodes and
let the weight on each edge be an i.i.d. random variable
chosen from Exp(1). Then, for a randomly picked node v:
E(H0(v)) = log e as n grows to infinity.

The proof is based on that the size of the branches of the
shortest path tree can be described by the Chinese restaurant



TABLE III: Results for the dynamic setting: the effects of
randomly removing edges from the graph instance Hyper-B.

Removed edges % H̄0 H̄HC
1

0 0.360 0.137

1 0.360 0.139

2 0.365 0.145

5 0.362 0.163

10 0.389 0.188

20 0.517 0.261

model [46]. Note that the result remains true for a wide variety
of i.i.d. weight distributions. What is remarkable in this finding
is that just the slight diversity introduced by random weights is
enough to reduce the entropy from log n to log e ≈ 1.44 bits.
This is not even dependent on the network size, even though
the number of ports grows without limit.

C. Dynamic Networks and Adaptive Routing

Finally, we argue that our models and address space design
methods are applicable even in a dynamic setting.

The above analytical and empirical results are strictly for the
case when routing tables remain static. However, real world
networks tend to change over time. When the graph topology
changes, e.g., a link is removed from the graph due to a link
failure, some next-hop entries at some nodes also change and,
consequently, the routing tables, and the underlying address
space that was designed for the original graph, may shift
out of alignment. This may result in substantial increase of
compressed routing table size due to dynamic routing.

Below, we argue that this is not the case. First, we take
the same hyperbolic graph instance of 2500 nodes (Hyper-B)
we examined previously (see Table II, [20]) and we design
an initial address space using the HIERARCHICAL-CLUSTER
heuristic. Then, we randomly remove edges from the graph
and we observe whether, and to what extent, routing table
entropy H̄HC

1 changes, when the entropy is taken over the
initial address space that was designed for the original graph
(ideally, the address space should be re-designed after every
graph alteration). This will allow us to assess whether a
heuristic address space is robust to dynamism.

The results are presented in Table III. We observe that
randomly removing 1–2% of the edges has negligible effect on
the first-order routing table entropy H̄HC

1 . This suggests that
optimal address spaces are oblivious to slow-pace changes to
the graph topology. Even if 10% of the edges is randomly
removed we see only roughly 10% increase in the entropy.
(Recall, this is without re-designing the address space for the
altered graphs.) However, removing every fifth edge ultimately
doubles the entropy, but even in that case the entropy for the
initial address space (H̄HC

1 ) remains significantly smaller than
that for the unoptimized case (H̄0).

VII. CONCLUSIONS

The size and the rate of growth of Internet forwarding
routing tables has raised considerable interest recently [1], [5].

Even though growth in itself does not necessarily indicate
a grave scaling problem [4], the continuing expansion of
the memory footprint of Internet packet forwarding has put
ample stress on the operational network infrastructure and to a
large extent questioned the soundness of the underlying design
principles [2], [3].

Curiously, we found that the effective information content
Internet forwarding tables actually store has not increased that
dramatically. Just the contrary, forwarding table entropy has
remained remarkably low and relatively stable over the last
18 months. Motivated by the demand to uncover the system-
atic reasons behind this finding, in this paper we presented
a principled, information-theoretic analysis of the memory
requirement of packet routing in growing networks.

We described forwarding tables as simple sequential strings
and we used the conventional notion of Shannon-entropy to
characterize the respective memory requirements. This simple
model seems just sufficiently and necessarily rich, omitting
the uninteresting subtleties while still delivering meaningful
answers. We could subject the model to large-scale numeric
evaluations as well as to mathematical analysis, and the
emergent space bounds match perfectly the corresponding
results available in the compact routing literature, without the
piecemeal analysis. The model could even be implemented in
routers, see e.g. [6], [28], [30], [31] on how to realize fast
lookups on compressed sequential forwarding tables.

Still, the most important virtue of the model in our view
is that it allowed us to give a completely new interpretation
of “address spaces”, a central concept in networking. Namely,
using the notion of higher-order entropies we could for the first
time reason quantitatively and qualitatively on the extent of
correlation between node addresses and the underlying topol-
ogy. So far, such argumentation has been largely intuitive. We
used this observation to formulate the optimal address space
design problem as the task to set node ids to minimize the
mean k-order routing entropy and we gave precise solutions on
highly symmetric graphs and heuristic characterizations for the
general case. Strikingly, our results consistently indicate space
reductions even on random node addresses, over which our
address space designs normally improve further considerably.

Of course, this paper means just the first step to understand
the intricate connections between network structure, address
spaces, and forwarding state entropy. Yet, even in this early
phase of the research we can safely say that the Internet
may not be an isolated example of a network with low and
stable routing entropy. Contrarily, basically all but the most
artificial examples (e.g., Erdős-Rényi random graphs) exhibit
similar phenomena. This finding seems to substantiate our
belief that address space optimization coupled with forwarding
table compression can be a potentially useful tool in scaling
the hop-by-hop routing paradigm into the future.
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VIII. APPENDIX

Proof of Lemma 1: Ref.[6] shows that MT = n(2 + HT
0 ),

where HT
0 is the zero-order entropy of the empirical next-hop

port distribution on the leaves of T . Since MT is minimal
MT ≤MS . Next, we show MS ≤ KMT for proper K.

Let ni

n : i ∈ [1, δ] and nij

n : i, j ∈ [1, δ] be the zero- and
first-order statistics of the empirical port distribution on the
leaves of T and let li

2W : i ∈ [1, δ] and lij
2W : i, j ∈ [1, δ]

be the zero- and first-order statistics of the empirical symbol
distribution in S. Denote by HS

1 the first-order empirical
entropy of S. Since 1

x log x is concave:

HS
1 =

∑
i

li
2W

∑
j

lij
li

log
li
lij

≤
∑ li

2W

(
l∗i
li

log
li
li∗

+
∑ lij

li
log

li
lij

)
,

where l∗i is the number of times port i is followed by port i
mapped from the same leaf of T and lii is when the second
i comes from another leaf. Then, lij = nij and l∗i = li − ni
and hence

2WHS
1 ≤

∑
i

(li − ni) log
li

li − ni
+
∑
i

ni
∑
j

nij
ni

log
ni
nij

≤ n log e+ n
∑
i

ni
n

log
li
ni

+ nHT
1 ,

where HT
1 ≤ HT

0 is the first-order entropy of the leaf-string
in T . We get that MS = 2WHS

1 ≤ n(log e + (W − log n) +
HT

0 ) and hence K = MS

MT
≤ H0+log e+W−logn

H0+2 . For IPv4 in
particular, H0 = O(1) and n ∼ 150, 000 [6] and so taking
W = 24 we get K ∼ 3. Similar argumentation for IPv6 yields
K ∼ 7. �


