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ABSTRACT

Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic 

resonance (NMR) signal intensities, enabling unprecedented applications in life and material 

science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultra-high 

magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide 

(TN) biradicals have attracted significant interest in high-field DNP, but their application to 

complex (bio)molecules has so far been limited. Here we report a novel postmodification 

strategy for synthesis of hydrophilic TN biradicals in order to improve their biomolecular 

applications. Initially, three TN biradicals (referred as to NATriPols 1-3) with amino-acid linkers 

were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal 

modification site for these biradicals since their electron-electron magnetic interactions are 

marginally affected by the substituents at this position. Based on this finding, we synthesized 

NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 

via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a 

quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for 13C,15N-

proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. 

Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including 

a globular soluble protein and a membrane targeting peptide reveal significantly improved 

performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach 

for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus 

expediting optimization of new biradicals for biomolecular applications at ultra-high magnetic 

fields.
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Introduction

Dynamic nuclear polarization (DNP)  has evolved into a well-established and powerful 

technique to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy in the 

liquid1-2 and solid state3-5 by microwave-driven transfer of polarization from unpaired electrons 

(i.e., polarizing agents) to nuclei. Signal enhancements by several orders of magnitude when 

using DNP create entirely new application areas of solid-state NMR (ssNMR) in structural 

biology6-11 and material science.4, 12-16 In parallel, recent innovations in DNP instrumentation 

(including microwave sources and low-temperature NMR/DNP probeheads),17-18 have allowed to 

extend DNP-enhanced ssNMR to ultra-high magnetic fields (up to 21.1 T)19-23 and the potential 

to increase spectral resolution under such conditions has already been demonstrated.20, 24

At high field and low temperatures (typically 100 K), the cross effect (CE) has so far proven 

to be the most efficient mechanism, which requires a coupled three-spin system consisting of two 

electrons and one nucleus.3-4, 25 To fulfill the CE condition, biradicals are routinely used as 

polarizing agents. In the past decade, much effort has been devoted to improve nitroxide-based 

biradical polarizing agents by optimizing g tensor orientations, rigidity of the linker and electron 

spin relaxation times.26-31 These efforts have led to the development of efficient nitroxide 

biradicals such as AMUPol28 and TEKPol29 that possess DNP enhancement factors (εon/off) of up 

to ~ 250 at moderate magnetic fields (e.g., 9.4 T) under magic-angle spinning (MAS) conditions. 

In parallel, theoretical approaches and numerical studies have been employed to understand the 

factors determining the CE polarization efficiency and to guide the design of new polarizing 

agents.32-36
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Ideally, MAS-DNP experiments are carried out at high magnetic fields where the spectral 

resolution is maximized together with further improved sensitivity. Although nitroxide biradicals 

exhibit satisfying performance below 10 T, their DNP enhancements rapidly decrease as the 

magnetic field is increased. For instance, the 1H signal enhancements drop from 250 at 5 T to 

approximately 30 at 18.8 T for AMUPol (10 mM) in the conventional “DNP juice” (d8-

glycerol/D2O/H2O, 60/30/10, V/V/V).37 These values could be further attenuated after 

considering nuclear depolarization and quenching effects induced by the paramagnetic polarizing 

agents.32, 38-40 The unfavourable correlation of the DNP enhancements of the nitroxide biradicals 

with the external field is partially due to the linear broadening of their EPR linewidths with the 

field and the MAS-dependence of the underlying dipolar electron-electron interactions (D).33, 41 

Hence, very recently, efforts have been devoted towards the development of novel dinitroxide 

biradicals that show excellent DNP performances with the εon/off values of up to 90 for the 

TinyPols series at high fields and high spinning frequencies.22 However, these enhancement 

values were obtained using 1.3 mm MAS rotors where the microwave field distribution is more 

favorable than in 3.2 mm rotors used in our current study. Moreover, these dinitroxides still 

exhibit the unfavorable field dependence albeit attenuated when compared to AMUPol.

In collaboration with the Griffin group,37 we found that trityl-nitroxide (TN) mixed 

biradicals (also referred to as TEMTriPols), initially developed as electron paramagnetic 

resonance (EPR) probes for the redox status,42-43 exhibit remarkable DNP properties. In contrast 

to nitroxide biradicals, the DNP enhancements of TEMTriPols exhibit favorable magnetic-field 

dependence and the optimal value is displaced towards higher magnetic fields.37 For example, 

TEMTriPol-1 shows DNP enhancement factors for 13C-labeled urea of 50, 87 and 65 at 5.0, 14.1 

and 18.8T, respectively, without a significant depolarization effect at the chosen MAS settings.44 
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Thus, the signal enhancement obtained using TEMTriPol-1 in hydrophilic environments at 18.8 

T still represents the highest value among the currently available biradicals using 3.2 mm MAS 

rotors. The distinct DNP properties of TEMTriPols can be explained by their unique 

physicochemical properties including (i) the ideal EPR frequency separation between the 

nitroxide gyy component and the almost isotropic g value of trityl radical; (ii) their favourable 

relaxation times, which allow simultaneous microwave saturation and polarization turnover; (iii) 

moderate electron-electron exchange interactions (J) which are beneficial for their DNP 

performance at high fields.41, 45

Likewise, other hybrid biradicals (e.g., BDPA-nitroxide22, 46-47 and PTM-nitroxide 

biradicals48, and asymmetric nitroxide biradicals34) were developed for high-field DNP or fast 

dissolution DNP, although most of them are not compatible with biomolecular studies due to 

their high hydrophobicity. In these studies, the importance of the total size of dipolar and 

exchange interactions for high-field DNP properties of biradicals was also highlighted. Recently, 

we have confirmed the influence of the exchange interaction on the DNP enhancement using 

chiral TN biradicals that exhibit almost identical dipolar interactions but completely different 

exchange interactions.49 Certainly, optimal dipolar/exchange interactions for a biradical may 

exist. They should be large enough to maintain the polarization difference between two spins by 

efficient polarization transfer and, at the same time, sufficiently small to preserve the frequency 

matching required for DNP.49Moreover, a recent study suggested that the relative intensity of 

exchange to dipolar interactions (J/D) is a crucial factor for CE-DNP.50 Recent theoretical 

studies predicted that TEMTriPol-1 has approached the optimal dipolar/exchange interactions.34, 

44 Therefore, further optimization of other physicochemical properties of TEMTriPol-1 while 

maintaining its dipolar/exchange interactions may be an effective method to design new 
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powerful polarizing agents. High hydrophilicity is critical for biomolecular applications51which  

mostly involve the use of  AMUPol and TOTAPol52 because of their good water solubility. 

Accordingly, there is a great need to develop new TN biradicals which exhibit nearly identical 

dipolar/exchange interactions as TEMTriPol-1 but with improved hydrophilicity. 

In this work, we report a novel postmodification approach to synthesize hydrophilic TN 

biradicals via thiol-click chemistry. Firstly, based on the molecular structure of TEMTriPol-1, 

we synthesized three TN biradicals (NATriPol 1-3, Chart 1) in which α-amino acids such as L-

alanine, L-phenylalanine and L-aspartic acid were used as linkers. EPR experiments confirm that 

these biradicals exhibit very similar electron-electron dipolar/exchange interactions. Based on 

these findings, the pyridine disulfide-appended NATriPol-4 was further synthesized from which 

NATriPol-5 was obtained through a “click” reaction with glutathione in a quantitative manner. 

We measured the DNP performance of these NATriPols using standard DNP preparations at 18.8 

T and investigated the relationship between DNP enhancement and hydrophobicity. Using the 

hydrophilic NATriPol-3 and -5 at 10 mM concentration, we observed strong absolute signal 

gains (εabs) of up to 60 for [13C-,15N]-proline, achieving a new maximum of the DNP 

enhancement at 18.8 T using 3.2 mm MAS rotor in hydrophilic environments. Furthermore, 

experiments employing [13C-,15N]-algal amino acid mixtures, [13C-,15N]-ubiquitin and a 

membrane-associated peptide confirm the excellent DNP performance of NATriPol-3 and -5 and 

reveal their potential for biomolecular applications.

Page 6 of 41

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

Chart 1. Molecular structure of NATriPols and TEMTriPol-1. Note: SPy, 2-pyridinylthio; SG, 

glutathionyl.

Methods

General Information 

All reactions were carried out under argon atmosphere. Dichloromethane (CH2Cl2) was 

redistilled with CaH2 and dimethylformamide (DMF) were passed through a column of 

molecular sieves. Boc-L-alanine, Boc-L-phenylalanine, 4-tert-butyl-N-Fmoc-L- aspartate, N-

Fmoc-S-trityl-L-cysteine, 1-hydroxybenzotriazole (HOBt), (benzotriazol-1-yloxy) 

tris(dimethylamino) phosphoniumhexafluoro-phosphate (BOP), N,N-diisopropylethyl-amine 

(DIPEA), 2,2,6,6-tetramethyl-4-amino-piperidine-1-oxyl free radical, trifluoroacetic acid 

(TFA), triethylsilane, piperidine, 2,2’-dithiodipyridine, cysteine (Cys), 4-mercaptobenzoic acid 

(4-MBA) and glutathione (GSH) were purchased and used without further purification. The 

[13C,15N] Algal amino-acid mixture was purchased from Cortecnet. CT-03 was prepared 

according to the previously reported method.53 Thin layer chromatography analysis was 

performed on glass 0.25 mm silica gel plates which were visualized by exposure to UV light. 

Flash column chromatography was employed using silica gel with 200-300 mesh. High-
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resolution mass spectrometry was carried out employing electrospray ionization methods (ESI) 

for the end products and LTQ Orbitrap discovery (ESI, Thermofisher scientific) for the reaction 

intermediates. EPR measurements were carried out on Bruker EMX-plus X-band spectrometer. 

Analytical HPLC was done on an Agilent 1100 instrument equipped with a G1315B DAD 

detector and G1311A pump, and data are shown in Fig. S1. Semipreparative HPLC was carried 

out on SSI 1500 equipped with a UV/Vis detector and versa-pump. The UV-Vis absorption 

spectra were recorded at room temperature on a U-3900 UV-Vis spectrophotometer equipped 

with a 1 cm quartz cell. 

Synthesis 

NAC-1, NAC-2, NAC-3 and NAC-4 

BOP (938 mg, 2.12 mmol) was added to a solution containing Fmoc-L-aspartic acid beta-tert-

butyl ester (435 mg, 1.06 mmol), HOBt (430 mg, 3.18 mmol) and DIPEA (0.9 mL, 5.30 mmol) 

in CH2Cl2 (5 mL). The resulting solution was stirred at ambient temperature for 0.5 h. Then, a 

solution of 2,2,6,6-tetramethyl-4-amino-piperidine-1-oxyl free radical (218 mg, 1.27 mmol) in 

CH2Cl2 (2 mL) was added and the reaction mixture was stirred at 25 °C for another 3 h. CH2Cl2 

(30 mL) was added and the organic layer washed successively with 6% citric acid (30 mL), 

saturated solution of NaHCO3 (30 mL) and brine (30 mL). The organic layer was dried over 

anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude residue was purified by 

flash column chromatography on silica gel using EtOAc/petroleum ether (1:2) as an eluent to 

give the precursor of NAC-3 (521 mg, 87% yield) as a red solid. The precursor was directly used 

in the next step without further characterization. A similar procedure was utilized for the 

synthesis of the precursors of NAC-1, NAC-2 and NAC-4, using Boc-L-alanine, Boc-L-
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phenylalanine and N-Fmoc-S-trityl-L- cysteine, respectively, as the starting materials instead of 

Fmoc-L-Aspartic acid beta-tert-butyl ester.

Then the precursor of NAC-1 (100 mg, 0.29 mmol) in CH2Cl2 (1 mL) was treated with 

trifluoroacetic acid (TFA, 1 mL) and the resulting solution was stirred at 25 ºC for 4 h. After 

removing the solvents under vacuo, the residue was redissolved in EtOAc (30 mL), and washed 

with saturated solution of NaHCO3 (30 mL) and brine (30 mL). The organic layer was dried over 

anhydrous sodium sulfate, filtered and concentrated in vacuo to afford NAC-1 (62 mg, 89 %) as 

a red solid. BOC-NAC-1, HRMS (ESI, m/z): calcd for C17H32N3O4
•+ ([M+Na]+), 365.2285; 

found, 365.2285. Using a similar procedure, NAC-2 (66 mg, 87 %) was obtained from the 

corresponding precursor. BOC-NAC-2, HRMS (ESI, m/z): calcd for C23H36N3O4
•+ ([M+Na]+), 

441.2598; found,  441.2599.

On the other hand, the precursor of NAC-3 (283 mg, 0.50 mmol) or NAC-4 (200 mg, 0.27 

mmol) in CH2Cl2 (4 mL) was treated with piperidine (1 mL). The resulting solution was stirred 

at 25 ºC for 4 h. Then, CH2Cl2 (30 mL) was added and the organic layer was washed 

successively with 6% citric acid (30 mL), saturated solution of NaHCO3 (30 mL) and brine (30 

mL). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in 

vacuo. The crude residue was purified by flash column chromatography on silica gel using 5% 

MeOH in CH2Cl2 as an eluent to give NAC-3 (155 mg, 91%) or NAC-4 (123 mg, 88%) as red 

solid. NAC-3, HRMS (ESI, m/z): calcd for C17H32N3O4
•+([M+H]+), 343.2466; found, 343.2471. 

NAC-4, HRMS (ESI, m/z): calcd for C31H38N3O2S•+ ([2M+H]+), 1033.5442; found, 1033.5447.

NATriPol-1 and NATriPol-2 

BOP (18 mg, 0.04 mmol) was added to a solution containing CT-03 (40 mg, 0.04 mmol), 

HOBt (16 mg, 0.12 mmol) and DIPEA (70 μL, 0.40 mmol) in DMF (3 mL). The resulting 
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solution was stirred at 25 ºC for 0.5 h and then mixed with NAC-1 (39 mg, 0.16 mmol) in DMF 

(2 mL). After stirring at 25 °C for 18 h, the reaction mixture was poured into EtOAc (30 mL) and 

1 M HCl (30 mL). The organic layer was separated, washed with brine (30 mL), dried over 

anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was 

dissolved in phosphate buffer (0.2 M, pH 7.4) and purified by column chromatography on 

reversed-phase C18 using water followed by 0-40% MeOH in H2O as eluents to give NATriPol-

1 (26 mg, 53%). HRMS (ESI, m/z): calcd for C52H61N3O7S12
••- ([M-H]-), 1222.1080; found, 

1222.1071. HPLC: 13.68 min. 

Similarly, using NAC-2 as a starting material, NATriPol-2 was obtained as a green solid (30 

mg, 58%). HRMS (ESI, m/z): calcd for C58H65N3O7S12
••- ([M-H]-), 1298.1393; found, 

1298.1378. HPLC: 14.81 min. 

NATriPol-3 

Using a procedure similar to the synthesis of NATriPol-1, PAP-1 (55 mg, 0.04 mmol) was 

obtained from NAC-3 (27 mg, 0.08 mmol). Then, PAP-1 was dissolved in CH2Cl2 (2 mL) and 

TFA (2 mL). The resulting solution was stirred at 25 ºC for 4 h and the solvents were removed 

under vacuo. The resulting residue was dissolved in phosphate buffer (0.2 M, pH 7.4), and 

purified by column chromatography on reversed-phase C18 using water followed by 0-40% 

MeOH in H2O as eluents to give NATriPol-3 (25 mg, 49%). HRMS (ESI, m/z): calcd for 

C53H61N3O9S12
••- ([M-H]-), 1266.0978; found, 1266.0997. HPLC: 11.29 min.

NATriPol-4

Using a procedure similar to the synthesis of NATriPol-1, PAP-2 (64 mg, 0.04 mmol) was 

obtained from NAC-4 (41 mg, 0.08 mmol). Then, PAP-2 in DMF (2 mL) was treated with TFA 

(2 mL) and triethylsilane (6 μL, 1 eq). The reaction mixture was stirred at 25 ºC for 18 h and 
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then dried under vacuo. The resulting residue was redissolved in MeOH and 2,2’-

dithiodipyridine was added. After stirring at 25 ºC for 2 h, the reaction mixture was dried under 

vacuo redissolved in phosphate buffer (0.2 M, pH 7.4), and then purified by column 

chromatography on reversed-phase C18 using water followed by 0-40% MeOH in H2O as 

eluents to give NATriPol-4 (25 mg, 45%). HRMS (ESI, m/z): calcd for C57H64N4O7S14
••- ([M-H]-

), 1365.0943; found, 1365.0768. HPLC: 14.92 min. 

NATriPol-5

The click reaction of NATriPol-4 with GSH (3 equiv.) was carried out in water to afford 

NATriPol-5 in a quantitative manner. NATriPol-5, HRMS (ESI, m/z): calcd for 

C62H76N6O13S14
••+ ([M+H]+), 1561.1638; found, 1561.1375. HPLC: 11.22 min.

Measurement of Water Solubility 

Excess of biradical (carboxylate sodium form) was added as a solid to water. The resulting 

suspension was centrifuged and the supernatant fraction was separated. Then, after appropriate 

dilution with water, the concentration of the supernatant (i.e., the water solubility of the 

biradical) was estimated by UV-Vis spectroscopy according to the pre-determined molar 

absorption coefficient (16.8 mM-1 cm-1) at 464 nm, assuming that this type of biradicals exhibit 

the same molar absorption coefficients.

Determination of LogP

The aqueous solution of the biradical (100 µL, 200 µM) was mixed with octanol (100 µL) and 

the resulting solution was gently shaken for 24 h. Then, the aqueous fraction was separated and 

the concentration of the biradical in this fraction was determined by EPR double integration. 

Accordingly, the concentration of the biradical in the octanol layer was calculated. Finally, the 
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12

octanol-water partition coefficient (LogP) of the biradical was estimated according to its 

concentrations in the two fractions. 

EPR Measurement 

EPR spectra were recorded in phosphate buffer (20 mM, pH 7.4) at room temperature or in 

glycerol/water (v/v, 60/40) at ~ 220K on a Bruker EMX-plus X-band spectrometer. General 

instrumental settings were as follows: modulation frequency, 100 kHz; microwave power, 10 

mW; modulation amplitude, 1 G (room temperature) and 2 G (low temperature). Measurements 

were performed in 50 μL capillary tubes. 

ESR Simulation:

The room- and low-temperature EPR spectra were simulated by ROKI/EPR program43 and 

ROKI/DNP program49, respectively, which were developed by professor Rockenbauer54. 

ROKI/EPR program could calculate a reliable exchange interaction of TN biradicals. As for the 

ROKI/DNP program, magnetic resonance parameters including the principal values of the two g- 

and hyperfine tensors, the Euler angles between the principal directions of tensors, the polar 

angles of linker, exchange and dipolar interactions can be optimized to achieve the best fit of the 

experimental spectra. The exchange, dipolar and hyperfine couplings given in Gauss units can be 

converted to cm-1 by multiplying with 4.6686×10-5×g, where g is the respective Zeeman factor.

Solution-State NMR Experiments 

The samples for the solution-state NMR titration experiments were prepared by dissolving 

1mg of lyophilized [13C,15N] ubiquitin in 90/10 H2O/D2O solvent, for a final concentration of 

0.1mM. Increasing amounts of biradical were then subsequently added to the sample, for final 

radical concentrations of 0, 0.01 and 0.1mM.
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15N-1H HSQC spectra55 were acquired at 298 K with a triple channel (1H, 13C, 15N) 

cryogenically cooled-probe, at a static magnetic field of 14 T, corresponding to a proton 

frequency of 600 MHz with 16 scans with a delay of 1s. Acquisition times were 66 ms and 26 for 

the 1H and 15N dimensions, respectively. The spectra were processed using a 0.5π sine squared 

window function in both dimensions.

DNP-ssNMR spectroscopy of NATriPols 1-5

DNP experiments were performed on frozen solutions of 5 mM, 10 mM or 15 mM biradical in 

d8-glycerol:D2O:H2O 60:30:10 v:v:v with 0.25 M U-13C-15N proline. Samples were packed into 

3.2 mm sapphire rotors with a sample volume of 25 μL. DNP experiments at 800 MHz were 

performed on a Bruker BioSpin 527 GHz solid-state NMR DNP spectrometer.20 This 

spectrometer is equipped with a Bruker 800 WB/RS Plus magnet with a sweep coil, an Avance 

III NMR console, and a low-temperature 3.2 mm double-resonance DNP MAS NMR probehead. 

A gyrotron microwave source emits microwaves at a frequency of 527.043 GHz. The nuclear 

polarization was measured through the spectrum of 13C-15N proline, which is observed via 1H-

13C cross-polarization (CP) experiments. A CP spin-locking field of 48 kHz was applied on 13C, 

while a ramped (80-100%) power was employed during a 50 kHz spin-locking field on 1H. The 

contact time was set to 2 ms. During acquisition, SPINAL-6456 decoupling was applied at 83 

kHz and a delay of 1.26*TB was employed for optimal sensitivity. Each spectrum was acquired 

with a 4-step phase cycle and repeated three times to confirm stability and reproducibility. The 

MAS frequency was set to 8 kHz and the sample temperature was kept at 103 K. The time 

constant TB, which describes the buildup of 1H polarization, was measured via a 1H saturation 

recovery experiment and determined indirectly by detecting the 13C CP signal. The polarization 
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build up curves were fitted with monoexponential curves and the largest error of the fit was 

found to be ±5% in the microwaves- off case.

To find the optimal CE DNP enhancement for each radical, the magnetic field was swept and 

at each field position the nuclear polarization was measured via the cross-polarization 

experiment as described above.

To perform the DNP experiments on the labeled ubiquitin, 1mg of lyophilized [13C,15N] 

ubiquitin was dissolved in  d8-glycerol:D2O:H2O 60:30:10 v:v:v, for a final protein 

concentration of 4mM.In the same way, 1mg of the13C- 15N- enriched (≥98%) algal amino acid 

mixture (Cortecnet, CCN070P1) was dissolved in 30ul of standard DNP juice (d8-

glycerol:D2O:H2O 60:30:10 v:v:v).

For the 2D PDSD experiments, a mixing time of 30 ms and a 1H-13C CP contact time of 0.7 

ms were used. A cumulative number of scans of 32 were applied and acquisition times were set 

to 17 ms and 10 ms for the direct and indirect dimensions, respectively. The experiments were 

recorded at a MAS rate of 8 kHz, using a 84 kHz SPINAL-64 proton decoupling and a recycle 

delay of 2 s. The 2D spectra were processed using a 0.5 π shifted sine squared window function 

on both dimensions (Bruker software Topspin 4.0).

Results and Discussion

Synthesis of NATriPols 1-3

We synthesized amino acid-linked TN biradicals (in the following referred to as NATriPols) 

from the protected L-amino acids using our previous method with some modifications.43 4-

Amino-TEMPO (2,2,6,6-tetramethyl-4-amino-piperidine-1-oxyl) was initially coupled with Boc-

L-alanine, Boc-L-phenylalanine or Fmoc-L-aspartic acid beta-tert-butyl ester in the presence of 

BOP and DIPEA to afford the amino acid-conjugated nitroxides (Fig. 1A). After deprotection 
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using TFA (for the Boc- group) or piperidine (for the Fmoc- group), the resulting nitroxides 

NACs 1-3 were subsequently linked with the trityl radical CT-03 to generate NATriPol-1, 

NATriPol-2 and the precursor PAP-1 which was further treated with TFA to giveNATriPol-3. 

These three NATriPols were purified by column chromatography on reversed-phase C18 and 

thoroughly characterized by HRMS and EPR (See also SI, Figures S1, S2 and S16).

Room-temperature and low-temperature EPR studies of NATriPols 1-3 

Fig. 2A and Fig. S2A show EPR spectra of NATriPols 1-3 in phosphate buffer at room 

temperature. The spectra are very similar and asymmetric with two partially overlapping and 

weak peaks at low field, one intense peak at medium field and one moderate peak at high field. 

Our previous study showed that the separation between the low-field two peaks is inversely 

proportional to the magnitude of the exchange interaction (J) in TN biradicals.43 The almost 

identical separations (4.0–4.6 G) between the two low-field peaks for NATriPol biradicals 

indicate that they exhibit similar J values. EPR spectral simulations showed that both NATriPol-

1 and NATriPol-3 have similar mean J values with TEMTriPol-1 (~ 60 G, Table 1) which are 

slightly larger than that of NATriPol-2 (48 G). These results indicate that the J values of 

NATriPols and TEMTriPol-1 at room temperature are marginally affected by the substituents at 

the α-position of amino acid linkers. Recent studies have shown that both the exchange and 

dipolar interactions of biradicals are crucial for their DNP properties.34, 37, 41, 44, 49 For this reason, 

we recorded EPR spectra of NATriPols 1-3 in 6/4 (v/v) glycerol/H2O glass-forming solutions at 

low temperature (~ 220K) (Fig.2A and S2B).
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Figure1. (A) Synthesis of NATriPols 1-4. (B) Synthesis of NATriPol-5 through efficient thiol-

click reaction of NATriPol-4 with glutathione (GSH). 
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Figure 2. (A) Experimental (black solid line) and simulated (red dotted line) EPR spectra of 300 

μM NATriPols in phosphate buffer (20 mM, pH 7.4) at room temperature (Top) or in 

glycerol/water (v/v, 60/40) at ~ 220 K (Bottom).(B) Comparison between experimentally 

determined DNP values (εabs,10mM and the ratio εabs,5mM/εabs,10mM) for the NATriPols indicated. 

εabs,5mM andεabs,10mM represent the absolute DNP enhancements at biradical concentrations of 5 

mM and 10 mM, respectively. (C) EPR spectra of 300 μM (black solid line) and 10 mM (red 

solid line) NATriPol 2-5 in glycerol/water (v/v, 60/40) at ~ 220K; EPR signals of each biradical 

at 300 μM and 10 mM were normalized. (D) Plots correlating octanol-water partition coefficient 

(LogP, black diamonds) and the retention times (RT, blue squares) with the ratio 

εabs,5mM/εabs,10mM. (A,C) “*” indicates signals from the trityl monoradical impurities whose 

fractions were determined by EPR simulation to be <1.3%, except for NATriPol-5 (2.5%) at 10 

mM concentration.
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Table 1. Exchange (J) and dipolar (D) interactions at ambient temperature (AT) and low 

temperature (LT), octanol−water partition coefficient (LogP), HPLC retention time (RT, min) 

and water solubility (WS, mM) of NATriPols and TEMTriPol-1 as well as experimental DNP 

parameters of NATriPols and other biradicals in the DNP juice (d8-glycerol/D2O/H2O, 60/30/10, 

V/V/V) containing 0.25 M 13C-15N proline (unless indicated otherwise) at 18.8 T and 103 K.

Biradicals J 
(AT)/G

J 
(LT)/G D/G LogP RT WS εon/off εabs TB

Σ = εabs /√(TB / Toff)

TEMTriPol-1 61 17 6 -0.55 13.4 75 50 (55) 43 (50) 3.7 (8) 198
NATriPol-1 64 18 6 0.19 13.7 174 60 (80) 51 (72) 3.5 (6) 244
NATriPol-2 48 17 5 0.72 14.8 101 40 (60) 36 (54) 7 (21) 122
NATriPol-3 64 18 6 -1.70 11.3 161 70 (65, 58[a]) 60 (59, 48[a]) 4.8 (8.5, 4[a]) 243
NATriPol-4 64 18 6 0.85 14.9 N.D. 10 (20) 9 (18) 2 (4.7) 57
NATriPol-5 61 18 6 -1.85 11.2 190 56 (55, 43[a]) 48 (50, 36[a]) 4.5 (6, 2.2[a]) 213

AMUPol  35[b]  19[c]  5[b] 76
AsymPolPOK[d] 24 5.8

Experimental details and definition of εon/off, εabs, and TBare given in the supporting information, 

together with CE 1H DNP enhancement field profiles for the radicals TEMTriPol-1, NATriPol-1 

and -5. The experimental parameters were obtained using 10 mM, 5 mM (in parenthesis) or [a] 

15 mM biradical (in parenthesis). The same bleaching factor was calculated for NATriPol-1 and 

NATriPol-3 and the same value was applied to the other biradicals. Note that the bleaching effect 

could potentially be stronger for NATriPol-2 and NATriPol-4, due to their higher aggregation 

tendency (vide infra). The overall sensitivity gain Σ is calculated for a 10mM radical 

concentration. The mean values of J couplings were used in this study. [b] measured in this work 

under the same experimental conditions; [c]εabswas estimated based on the reported value of 

χbleach∙ χdepo (0.54), see the reference44. [d] see the reference34. N.D. stands for “not detected”.

It is evident that these biradicals are characterized by similar EPR spectra with almost 

identical overall separations (71 G) between the two outermost lines that are slightly larger than 

2AZZ (~ 70 G), indicative of their similar but weak exchange interactions. Moreover, dipolar 

interactions that are averaged out at room temperature are now detectable, due to restricted 

molecular tumbling in the frozen state. Spectral simulation using our recently developed EPR 

program43 showedthat NATriPols 1-3 and TEMTriPol-1 have almost the same dipolar (D = 5-6 

G) and exchange (J = 17-19 G) interactions between the two spins (Table 1). The J values of 
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NATriPols in the frozen state are much smaller than those at room temperature possibly due to a 

change in the conformation equilibrium.57 Collectively, these observations demonstrate that the 

α-position of amino acid linkers is a suitable choice for the structural modification site of TN 

biradicals whereby preserving the optimal electron-electron interactions. 

Postmodification of 2-pyridine disulfide-appended NATriPol-4 with various thiols and EPR 

Studies 

Having shown that the electron-electron interactions of TN biradicals remain nearly constant 

upon substitution at the α-position of the amino acid linkers, we subsequently aimed at 

synthesizing NATriPol-4 which contains a thiol-reactive 2-pyridyl disulfide at the α-position. As 

shown in Fig. 1A, the biradical precursor PAP-2 was obtained through two steps from 4-amino-

TEMPO, N-Fmoc-S-trityl-L-cysteine and CT-03. NATriPol-4 was then obtained by TFA-

induced deprotection of the thioether group in the presence of triethylsilane, followed by reaction 

with 2,2'-dithiodipyridine. Through a “click” reaction between 2-pyridyl disulfide moiety and 

thiols58 new biradical polarizing agents can be readily prepared from NATriPol-4. Importantly, 

depending on the thiols used, these polarizing agents may exhibit tunable physicochemical 

properties but with the same electron-electron interactions. To prove this concept, we tested the 

reactivity of NATriPol-4 with various thiols including glutathione (GSH), cysteine (Cys) and 4-

mercaptobenzoic acid (4-MBA) (Fig. 1B and Fig. S4). The thiol-click reaction was monitored by 

the formation of 2-mercaptopyridine which has a maximal UV-vis absorbance at 343 nm.58 As 

shown in Fig. S4, the reaction of NATriPol-4 with 4-MBA was very fast and completed in less 

than 1 minute, while the reactions with Cys and GSH were completed in 4 and 5 minutes, 

respectively. The distinct reactivities between NATriPol-4 and thiols can be connected to 
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different pKa’s of the thiols, with high reactivity for the thiol with low pKa. The highly efficient 

formation of the disulfide conjugates was further confirmed by HPLC experiments (Fig. S4D).

To check if the linkage of the thiol groups affects the electron-electron interactions of the 

disulfide conjugates, the room- and low-temperature EPR spectra of NATriPol-4 and NATriPol-

5 (the disulfide conjugate with GSH) were recorded and simulated (Fig. S2). Once again, both of 

them have very similar J values of 56–64 G at room temperature and 16–18 G at ~ 220 K as well 

as similar dipolar interactions of 5–6 G at ~ 220 K (Table 1). These values are fully consistent 

with those from NATriPols 1-3 and TEMTriPol-1. Thus, we could conclude that the “click” 

reaction of NATriPol-4 with thiols is an efficient postmodification approach to synthesize new 

TN biradicals with tunable physicochemical properties. 

Dynamic nuclear polarization studies on 13C-15N proline 

The DNP performance of NATriPols in 3.2mm sapphire rotors was examined using a high-

field DNP setup (800 MHz/527 GHz). Firstly, 1H-13C cross polarization experiments were 

carried out on frozen solutions of NATriPols in DNP juice (d8-glycerol/D2O/H2O, 60/30/10, 

V/V/V) containing 0.25 M 13C-15N proline at 103 K. The MAS frequency was set to 8 kHz 

which was shown to be optimal for TN biradicals (e.g., TEMTriPol-1).44 To assess the DNP 

performance of the NATriPol biradical polarizing agents, we computed absolute signal gains 

(εabs = εon/off ∙ χbleach∙ χdepo), which take into account depolarization and bleaching effects, and the 

sensitivity gain (Σ  = εabs /√ (TB / Toff)). The latter parameter represents the sensitivity gain 

observed when performing DNP as compared to a MAS NMR experiment performed at the same 

(cryogenic) temperature without DNP, as reported previously.39, 59 At the 10 mM biradical 

concentration, we observed paramagnetic bleaching factors (χbleach) of 0.85 for NATriPol-1 and 
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NATRiPol-3 (Table S8) in good agreement with reported values for TEMTriPol-1.44 Similar to 

TEMTriPol-1, no depolarization was observed for these biradicals. When comparing absolute 

DNP enhancement factors (εabs) of NATriPols (Table 1), we observed strong variations with 

values ranging from 9 to 60 for 13C-15N proline at a 10 mM biradical concentration. The absolute 

signal gains of NATriPol-1 (εabs = 51), NATriPol-3 (εabs = 60) and NATriPol-5 (εabs = 48) were 

higher than the value found for TEMTriPol-1 (εabs = 43). It should be noted that under similar 

conditions, the εabs values of the widely used water-soluble AMUPol and the newly synthesized 

AsymPolPOK were reported to be 19 and 2434, respectively. 

Since both dipolar and exchange interactions are almost identical for the NATriPols under 

investigation, factors other than magnetic interactions are responsible for the strong variation in 

their experimentally observed DNP performance. Indeed, previous studies suggested that the 

formation of high local concentration zones of polarizing agents induced by inhomogeneous 

dispersion in the matrix is detrimental to their DNP properties.29, 60 The aggregation of the trityl 

radical CT-03 which was used to synthesize NATriPols in this work was observed in 

glycerol/water mixture at low temperature.61-62 Thus, it can be deduced that the self-aggregation 

of NATriPols driven by their hydrophobicity in the DNP matrix is mainly responsible for the 

difference in their DNP performances. Assuming that the self-aggregation occurs for NATriPols 

in the matrix, their DNP enhancements should increase when using lower radical concentrations. 

Hence, we measured absolute DNP enhancements of NATriPols at 5 mM biradical concentration 

(εabs, 5mM) and correlated the ratio of εabs, 5mM/εabs, 10mM with the absolute enhancements observed 

at 10 mM concentration. As visible in Fig. 2B, the NATriPol variants that exhibit lower absolute 

enhancements at the 10 mM concentrations have significantly larger values of εabs, 5mM/εabs, 10mM, 

which we tentatively ascribe to their self-aggregation tendency.
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Fig. 2B suggests that with the exception of NATriPol-1, the εabs, 10mM values of the biradicals 

are inversely correlated with the ratios of εabs, 5mM/εabs, 10mM, indicating that the self-aggregation is 

a critical factor for the DNP efficiency of NATriPols. Note that, although NATriPol-1 exhibits a 

similar and moderate self-aggregation tendency as TEMTriPol-1, it shows a relatively higher εabs, 

10mM value than the latter. We attribute this effect to the relatively rigid linker of NATriPol-1 

which leads to the improved and narrow distribution of the dipolar/exchange interactions. 

Generally, the distribution of the dipolar/exchange interactions originates from the flexibility of 

the linker which results in coexistence of many conformations in solution. As such, the biradical 

with a flexible linker has a broader distribution for its dipolar/exchange interactions compared to 

a compound with a rigid linker. Moreover, the interactions of the former exhibit a stronger 

dependence on temperature.43, 57 Our variable-temperature EPR results showed that J values of 

TEMTriPol-1 increase by ~ 50% as compared to ~30% for NATriPol-1 as temperature increases 

from 300 K to 360 K (Figure S3 and Table S9). Moreover, the J distribution (∆J = 6.5 G, Table 

S1) of TEMTriPol-1 at room temperature is slightly larger than that of NATriPol-1 (6.0 G). 

These results consistently demonstrate that NATriPol-1 has a more rigid linker than TEMTriPol-

1, accounting for the high DNP enhancement of the former.

To further verify the influence of self-aggregation of NATriPols, we recorded EPR spectra 

of NATriPols and TEMTriPol-1 at a high concentration (10 mM) and low temperature (~ 220K) 

in DNP buffer (Figure 2C). Interestingly, broad EPR single line signals were observed for 

NATriPol-4 and NATriPol-2 that exhibit the strongest self-aggregation tendency. 

Comparatively, NATriPol-1 and TEMTriPol-1 with moderate self-aggregation tendency 

exhibited narrower EPR lines. EPR spectral profiles of NATriPol-3 and NATriPol-5 with weak 

or no self-aggregation showed well resolved hyperfine splittings, similar to the corresponding 
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spectra obtained at 300 µM. We attribute the broad EPR single lines of NATriPol-4 and 

NATriPol-2 to significant exchange couplings among neighboring biradicals that result from 

self-aggregation and lead to a featureless EPR spectrum, as expected for multi-spin arrays where 

all spins are coupled.  

Finally, we investigated factors that induce the self-aggregation of the NATriPols in 

aqueous solutions. For this purpose, we measured the octanol-water partition coefficients (LogP) 

and retention times (RTs) of NATriPols together with TEMTriPol-1 on a reversed-phase HPLC, 

both of which can be used to quantitatively describe the hydrophobicity of the biradicals. Again, 

the ratio εabs, 5mM/εabs, 10mM seems to correlate with both LogP and RT, indicating that the 

hydrophobicity is mainly responsible for their self-aggregation (Fig. 2D). It is worth noting that 

the self-aggregation tendency of NATriPols and TEMTriPol-1 has no direct relationship with 

their water solubility. For example, the water solubility (174 mM, Table 1) of NATriPol-1 is 

much higher than that of TEMTriPol-1 (75 mM), although they have similar self-aggregation 

tendency. Indeed, the water solubility of NATriPol-1 is slightly higher than that of the 

hydrophilic NATriPol-3 (161 mM). Thus, good water solubility of polarizing agents, especially 

when the solubility is higher than the concentration used in DNP experiments, could not be the 

only indicator of their self-aggregation tendency in solutions.

Dynamic nuclear polarization studies on biomolecules 

Since some of the newly synthesized NATriPols exhibit excellent DNP enhancements for 

13C-15N proline due to their high hydrophilicity, we examined their potential for applications to 

complex biomolecules. First, we investigated whether the DNP enhancement seen for proline 

significantly differs for other amino acids. For this purpose, we tested the DNP performance of 
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the hydrophilic NATriPol-3 and NATriPol-5 on a [13C,15N] labeled Algal amino-acid mixture 

containing 16 amino acids and compared our results to DNP experiments using AMUPol. In 1D 

13C CP MAS experiments (Table S10), we observed a DNP enhancement εon/off = 48 for a sample 

prepared with 10 mM NATriPol-3. Notably, we measured a weaker enhancement (εon/off = 35) 

for NATriPol-5, confirming the higher efficiency of NATriPol-3. Even though a decrease in 

enhancement (εon/off = 48) is observed in comparison to standard proline (εon/off = 70), the 

enhancements using NATriPol-3 were about 1.6-2 times higher than those seen for AMUPol 

(εon/off = 30 for the labeled Algal mixture and εon/off = 35 for proline, see Table S10). Moreover, 

considering the depolarization and bleaching effects, NATriPol-3 outperforms AMUPol by a 

factor 2.5 in terms of the absolute DNP enhancement34, 44. To probe amino-acid specific DNP 

enhancements, we conducted 2D proton-driven spin diffusion (PDSD) experiments with and 

without microwave irradiation using a 10 mM NATriPol-3 concentration (Fig. 3 and Fig. S6). 

These data allowed us to separate signal intensities of different types of amino acids including 

threonine, serine and aspartic acid (Fig. 3, left). When comparing 1D slices, we however only 

observed minor variations in the DNP performance of the different amino acids. 
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Figure 3. Right panel: aliphatic region of a 2D DNP-enhanced 13C, 13C PDSD spectrum of the 

Algal amino acid mixture in d8-glycerol:D2O:H2O (60:30:10 v:v:v) and 10 mM NATriPol-3. 

Crosses represent chemical-shift predictions for the different amino acids, based on the 

respective BMRB average shift. The arrows (left) refer to 1D slices of isolated peaks (right) of 

specific amino acids that were used to calculate the relative enhancement factors.

The results shown in Fig. 3 suggest that our new NATriPol preparations can provide a 

significantly improved DNP enhancement compared to the current standard AMUPol.  

Therefore, we next examined their potential for applications to soluble proteins by testing their 

performance on ubiquitin, a regulatory protein that was already examined in DNP studies.63 It is 

well known that enhancements measured on biomacromolecules are often reduced when 

compared to model substances,5 possibly due to the complexity and internal dynamics of 

biological samples that affect their relaxation behavior. Unlike free amino-acid mixtures, 

proteins can exhibit local hydrophobic pockets that often engage in protein-protein or protein-

lipid interactions. For example, the surface of ubiquitin contains a hydrophobic patch 

(comprising residues L8, I44, and V70) that form a prominent site of molecular recognition64. 

Thus, the biradicals may exhibit hydrophobic interactions with both the target protein and with 

other biradical molecules (i.e., self-aggregation). Both interactions are driven by the 

hydrophobicity of the biradicals and are detrimental to their DNP enhancements. To investigate 

any local interactions between NATriPols and ubiquitin we performed solution-state NMR 

titration experiments in which we added increasing amounts (0, 0.01 and 0.1 mM) of biradical 

into a 0.1 mM solution of [13C,15N] ubiquitin. 

As a control, we prepared samples using TOTAPOL (Fig. S7). This allowed us to 

investigate potential local interactions between the protein and biradical, which could give rise to 

both chemical-shift perturbations as well as paramagnetic relaxation effects.20 For all four cases, 
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we examined residue-specific chemical-shift perturbations (CSPs) and NMR signal intensities 

(Fig. S8-S11). In Fig. 4, zoom-ins of 15N-HSQC spectra of ubiquitin are shown using 

TEMTriPol-1, ATriPol-5 and NATriPol-3 at increasing biradical concentrations. For 

TEMTriPol-1, we observed significant chemical-shift changes as well as reduced signal 

intensities (Fig. 4 & S9) that suggest a clear interaction between the biradical and the protein. 

Residues affected by the biradical included residues around Ile44 and Val70 that are part of the 

aforementioned hydrophobic patch of ubiquitin. These findings are in line with earlier results,59, 

65 indicating that the trityl radical CT-03 is prone to bind to proteins, driven by the hydrophobic 

interaction. For the more hydrophilic NATriPol-5, the CSPs were reduced but the signal intensity 

loss was still apparent for the mobile residues K48-Q49 and the C-terminal tail residue Arg72 

when compared to pure ubiquitin (Fig. 4 and S10). Ultimately, the biradical NATriPol-3 left a 

large part of the spectrum unaffected, with no noticeable chemical shift changes (Fig. 4, right 

column), similar to results obtained using TOTAPOL (Fig. S8). Interestingly and unlike 

TOTAPOL, we still observed some signal loss in the case of NATriPol-3 for residues in the 

aforementioned protein regions which may be explained by the enhanced paramagnetic 

quenching of trityl vs. nitroxide radicals.59
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Figure 4. Upper panel: zoom-in on the 15N-HSQC spectra of ubiquitin (0.1 mM, blue) in 90/10 

H2O/D2O and after a titration with 0.01 mM (purple) and 0.1 mM (orange) biradical 

concentrations for TEMTriPol-1 (left), NATriPol-5 (middle) and NATriPol-3 (right). The 

regions exhibiting the biggest chemical shift perturbations (CSPs) are highlighted in dashed 

boxes. Lower panel: ubiquitin residues are highlighted which showed the strongest chemical-

shift perturbations Δcs calculated using .∆𝒄𝒔 = 𝜹𝟐
𝑯 +  (𝜹𝑵/𝟔.𝟓𝟏)𝟐
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Figure 5. Left: 1D DNP-enhanced 1H-13C CP spectra of ubiquitin (4 mM) in d8-

glycerol:D2O:H2O (60:30:10 v:v:v) and 10 mM biradical concentration. Three different 

biradicals were tested: TEMTriPol-1 (red), NATriPol-5 (in blue) and NATriPol-3 (purple). 

Right: the aliphatic region of the 2D 13C, 13C correlated PDSD experiment measuring ubiquitin 

with 10 mM NATriPol-3. Black crosses indicate NMR assignments (BMRB IDs 7111 & 15410).

Having established on an atomic level that NATriPol-3 and NATriPol-5 reveal reduced 

hydrophobic interactions with [13C,15N] ubiquitin in solution, in comparison to TEMTriPol-1, we 

conducted DNP experiments on both compounds. We compared our results to those of 

TEMTriPol-1 and AMUPol (see Table S10). Surprisingly, TEMTriPol-1 performs very poorly 

when measured on the 13C-15N labeled protein, with an enhancement (εon/off) of only 3 and a 

relatively short DNP build-up time (TB = 800 ms) at a 10 mM biradical concentration (Fig. 5). 

The short DNP build-up time suggests close proximity between the biradical and the protein,33 

further confirming our NMR titration experiments. On the other hand, NATriPol-5 showed a 

superior DNP enhancement (εon/off = 15, TB = 1.6 s) for ubiquitin. The DNP signal increase 

achieved by NATriPol-3 was even higher, with an enhancement of 30 (TB = 2.5s) (Fig. 5), which 
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is 10 times larger than TEMTriPol-1 and comparable to what we observed using AMUPol (εon/off 

= 30, Table S10). Moreover, a two-dimensional PDSD spectrum (Fig. 5 right, and Fig. S12) 

confirmed our earlier observations20, 24 that conducting ssNMR experiments at 800 MHz can 

improve spectral resolution compared to data obtained at 400 MHz63 (see Fig. S13). In addition, 

the observed 2D correlation pattern was in good agreement with the NMR assignments 

(indicated black crosses in Fig. 5), indicating that our preparations contained properly folded 

ubiquitin. Taken together, both self-aggregation behavior and the tendency of TEMTriPol-1 to 

localize to hydrophobic protein residues contribute to its markedly low DNP efficiency. Both 

effects are reduced for the more hydrophilic NATriPol-3 and NATriPol-5, resulting in 

significantly higher DNP enhancements in a biomolecular context. Therefore, these findings 

suggest a direct relationship between hydrophilicity and DNP enhancement when using 

NATriPols for biological applications.

Finally, we tested our new biradical NATriPol-3 on the pore-forming membrane peptide 

Nisin66. DNP is particularly crucial for the study of membrane proteins and membrane embedded 

peptides (see the representative references6, 10-11).
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Figure 6. (A): 1D DNP-enhanced 1H-13C CP spectra of the lipid II-bound state of 13C labelled-

nisin in DOPC liposomes, with 15 mM AMUPol. (B): 1D DNP-enhanced 1H-13C CP spectra of 

the lipid II-bound state of 13C labelled-Nisin in DOPC liposomes, with 10 mM NATriPol-3. 

Yellow and orange boxes indicate NMR frequencies in which the observed signal is dominated 

by lipid and peptide contributions, respectively. (See Fig. S14 in the SI for corresponding 1D 13C 

double-quantum spectra.)

As reported by Hong et al.67, the structural and magnetic properties of the polarizing agents 

and their distribution in the membranes strongly influence the DNP enhancement in a lipid 

environment. To better rationalize the performance of our new biradicals, we determined the 

DNP enhancement for the 13C signals of lipids and the (isotope-labeled) Nisin peptide alongside 

with the respective build-up times.
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In Figure 6, we compare spectra of the lipid II-bound state of 13C labelled-Nisin in DOPC 

liposomes prepared using published procedures66 and employing a 15mM AMUPol 

concentration (Fig. 6A) as well as a 10mM NATriPol-3 concentration (Fig. 6B), respectively. In 

line with previous work66, we found a moderate and uniform enhancement (εon/off, AMU≈ 8) using 

AMUPol. Instead, we observed a higher enhancement of the lipid signals (εon/off, NAT-3≈ 22), as 

well as for peptide signals (εon/off, NAT-3≈  11) in the case of NATriPol-3.  When taking into 

account the faster build-up time and the lower depolarisation factor, NATriPol-3 provides an 

improvement of a factor 2.4 on the peptide signal compared to AMUPol. The short build-up 

times measured in both samples suggest proper mixing of the polarizing agents in this system. 

Remarkably, lipid signals are further enhanced in Figure 6B, which may be related to the 

slightly higher hydrophobicity of the TN biradical in comparison to the bisnitroxide, that favors 

interactions between the TN biradical and the lipid bilayer. Previous studies on nitroxide radicals 

in the presence of phospholipid membranes suggest that the physical location of the radical and 

especially the g-tensors alignment are critical factors for the DNP enhancement.67 On one hand 

these studies demonstrate that introducing polarizing agents in the hydrophobic core of the lipid 

bilayer can diminish the enhancement gradient typically observed across the membrane.68 On the 

other hand, the localisation of the radicals within the membrane can also be deleterious to the 

DNP enhancement.69 Hence, a more systematic study of the performance of TN biradicals for the 

investigation of membrane proteins and polypeptides will be required in the future. However, the 

current results already suggest the beneficial use of the new class of biradicals together with the 

improved resolution achieved at high fields for ssNMR studies on complex biomolecules 

including membrane proteins. 
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Conclusions

In this work,  we found that the α-position of the amino acid linkers in TN (aka 

TEMTriPols) biradicals is an ideal structural modification site since their dipolar and exchange 

interactions that are crucial for CE-DNP are marginally affected by the substituents at this 

position. Based on this result, we have developed an efficient post-modification strategy using 

the novel pyridine disulfide-containing NATriPol-4 to conveniently synthesize TN biradical-

based polarizing agents with desirable physicochemical properties (e.g., high hydophilicity). 

Importantly, this universal postmodification strategy is also suitable for synthesis of other 

polarizing agents using the well established bioorthgonal reactions such as thiol-maleimide and 

yne-azide reactions. In addition, NATriPol-4 can also be covalently attached to the protein of 

interest or lipid by thiol-specific labelling, providing several potential advantages over 

exogenously added polarizing agents68, 70-71.

Because of their favorable magnetic-field dependence, TN biradicals are ideal candidates for 

ultra high-field DNP studies but theirpractical application to biomolecules was thus far limited. 

We found that self-aggregation of TEMTriPol-1, so far the best TN biradical, and its 

hydrophobic interaction with biomolecules are the main reasons limiting its biomolecular 

applications, in spite of its good water solubility. Owing to the high hydrophilicity, the newly 

synthesized NATriPol-5 and NATriPol-3 exhibit 5- and 10-fold DNP improvements, 

respectively, compared to TEMTriPol-1 when applied to the globular protein ubiquitin. Excellent 

DNP performance of NATriPol-3 has been also confirmed by its application to a membrane 

peptide. Therefore, our present work represents the first step towards a better understanding of 

TN biradical-based polarizing agents and provides new routes for optimization of high-field 

polarizing agents for biomolecular applications. Considering that NATriPols still exhibit 
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hydrophobic interactions to a certain extent with proteins and membrane lipids, new polarizing 

agents based on the more hydrophilic trityl radicals such as TFO72 and OX06373 are expected to 

further enhance their biomolecular applications in future.
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