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Brownian dynamics (BD) simulations based on a novel Langevin integrator algorithm are used to simulate the dynamics
of chain formation in electrorheological (ER) fluids that are non-conducting solid particles suspended in a liquid that
has a dielectric constant different from that of the ER particles. An external electric field induces polarization charge
distributions on the spheres’ surfaces that can be modeled as point dipoles in the centers of the spheres. The interaction
of these aligned dipoles leads to formation of chains and other aggregates in the ER fluid. In this work, we introduce
our methodology and report results for various quantities characterizing the structure of the ER system as obtained with
BD simulations. These quantities include the potential energy, diffusion constant, average chain length, chain length
distributions, and pair correlation functions. Their behavior as a function of time is presented as the electric field is
switched on. The properties of the ER fluid change considerably making this system a potential basic material of many
applications.
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1. Introduction

Electrorheological (ER) fluids are [1] suspensions of fine
non-conducting solid particles in an electrically insulat-
ing liquid. If the particles, imagined as closely spherical,
have a dielectric constant that is different from that of the
solvent, the arising dielectric boundaries respond to an
applied electric field. This dielectric response is the po-
larization of the spheres resulting in a polarization charge
distribution whose dominant component in the multipole
expansion is the dipole moment.

The interactions of these dipoles then lead to a struc-
tural change in the ER fluid known as the ER response.
This structural change is basically a formation of chains
and other forms of clusters as the polarized spheres are
linked together into head-to-tail positions. This structural
phase transition is reversible and relatively fast.

This structural change results in a dramatic change
in the physical properties of the ER fluid of which the
most important is viscosity. This externally controllable,
fast and reversible change in viscosity makes ER fluids a
kind of a smart material, a central component of devices,
such as brakes, clutches, dampers, and valves [2,3]. Such
devices have crucial importance in the industry of various
fields.

*Correspondence: fertig.david92@gmail.com

The continuously shrinking size of devices resulted in
the development of nanotechnology. Understanding the
molecular mechanisms behind the workings of nanode-
vices is especially important because better understand-
ing of microscopic mechanisms can lead to novel designs.

ER devices are also based on microscopic mecha-
nisms leading to an emergent macroscopic pattern. No
wonder that many modeling studies [4–22] aimed at in-
vestigating the microscopic processes behind chain for-
mation and corresponding changes in measurable physi-
cal properties.

The properties of the ER fluid in the absence of an ap-
plied electric field have been investigated by Heyes and
Melrose [23]. This means the investigation of the core
potential that is either the Lennard-Jones (LJ) fluid or its
cut-and-shifted version that is a purely repulsive poten-
tial. It has been demonstrated that the repulsive version
reproduces experimental behavior better [4].

Cluster formation has been investigated via cluster
size distribution [4, 9, 11, 12, 20, 22], order parameters
[12–15,19], mean square displacement and diffusion con-
stant [4, 6, 12], pair distribution functions [6, 12], and
relaxation times [5, 11, 12, 21]. In particular, Cao et al.
[21] identified relaxation times corresponding to various
subprocesses such as initial aggregation, chain formation,
and column formation. Identifying these subprocesses is
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Figure 1: Sketch of an ER particle in an external electric
field, E0. The dielectric constant inside the sphere is εin,
while outside the sphere is εout. The surface charge dis-
tribution, σ(r), induced on the dielectric boundary (Eq. 1)
can be approximated by a point dipole, p, in the center of
the sphere (Eq. 2).

also our long-term goal. It is also our intention to sim-
ulate the ER system in the presence of shear as several
authors did [5, 6, 10, 15, 21]. These authors investigated
shear stress, various terms of viscosity, oscillatory strain,
and dependence on strain rate.

In this paper, we do not apply stress, because our
main interest is to study the dynamics of the formation of
chains with a newly developed simulation package based
on a novel Langevin integrator [24–26] as opposed to
most studies from the 1990s that used the overdamped
limit. We intend to test the program on the ER fluid in
the absence and presence of an applied electric field and
to follow the dynamics of chain formation when the field
is switched on. We characterize this dynamics by plotting
energy, mean square displacement, diffusion constant, av-
erage chain length, chain length distributions, and radial
distribution functions as functions of time.

We use reduced units in this study (see Section 4) that
are closely related to various parameters used in the liter-
ature. These parameters characterize the relations of vari-
ous effects in the ER fluid. These effects are the polariza-
tion (dipole-dipole), thermal, and viscous forces.

The relation of the polarization and thermal forces is
often denoted by λ and it practically corresponds to the
square of the reduced dipole moment used in this study.
It expresses the relation of the ordering effect of electro-
static forces and the disordering effect of thermal motion.
The relation of the viscous force to the electrostatic force
is called the Mason number (Ma). Many authors plot the
characteristic physical quantities as functions of the Ma-
son number [5,10,15]. The relation of the viscous and the
electrostatic forces is called the Péclet number.

.

2. Model: the polarizable dielectric sphere

We model the ER fluid as dielectric spheres of dielectric
constant εin inside the sphere immersed in a fluid of di-
electric constant εout (Fig. 1). The radius of the spheres is
R, while their diameter is d = 2R. When a constant elec-
tric field, E0 is applied to this system (in the z direction),
the dielectric boundary on the sphere’s surface becomes
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Figure 2: Interaction potential (arbitrary unit) between
two dipoles at r = 1.25d distance from each other at dif-
ferent mutual positions characterized by angle θ that is
the angle between E0 and rij . The potential is computed
from the interaction of the charge distributions in Eq. 1
using the ICC method (symbols), from the interactions of
the permanent point dipoles induced only by E0 (Eq. 2)
(dashed line), and from the interaction of the polarizable
dipoles when the sphere can be polarized by the electric
field of other dipoles too (solid line).

polarized. The polarization charge density is

σ(θ) = 3ε0

(
εin − εout

εin + 2εout

)
E0 cos θ, (1)

where E0 = |E0|, θ is the angle between the point of
on the surface and the z-axis, and ε0 is the permittivity
of vacuum. As it was discussed in our previous publica-
tion [30], the effect of this surface charge distribution can
be approximated with an ideal point dipole placed in the
center of the sphere computed as [31]

p = 4πε0

(
εin − εout

εin + 2εout

)
R3E0. (2)

In that paper, we showed that the point dipole model is a
good approximation to the exact solution obtained from
the polarization charge using the Induced Charge Compu-
tation method [32]. The agreement is better if the spheres
are assumed to be polarizable by the electric fields of all
the other particles, but even if it is assumed that an ER
particle is polarized only by E0, the agreement is rea-
sonable (Fig 2). The latter assumption means that the ER
particles carry only the permanent dipoles of Eq. 2 that
always point into the z-direction.

We further assume that the characteristic time of the
rearrangement of the surface charge as the particles move
is much smaller than the characteristic time of the rota-
tion of the particles. This means that the p dipole always
points into the z direction even if the sphere rotates, be-
cause the induced charges (that chiefly correspond to po-
larization of solvent molecules around the sphere) always
have enough time to rearrange themselves according to
the applied field, E0.

The potential produced by a dipole pj (that is at rj)
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at the position ri of another dipole pi is

Φj(ri) =
1

4πε0

pj · rij
r3
ij

, (3)

where rij = ri − rj and rij = |rij |. The electric field is

Ej(ri) =
1

4πε0

3nij(nij · pj)− pj

r3
ij

, (4)

where nij = rij/rij . The interaction potential between
the two dipoles is

uDD
ij (rij ,pi,pj) = −pi ·Ej(ri) =

= − 1

4πε0

3(nij · pi)(nij · pj)− pi · pj

r3
ij

, (5)

while the force exerted on dipole pi by dipole pj is

fDD
ij (rij ,pi,pj) = −(pi · ∇i)Ej(ri) =

=
1

4πε0

1

r4
ij

{3 [pi(nij · pj) + pj(nij · pi)+

+ nij(pi · pj)]− 15nij(nij · pi)(nij · pj)} . (6)

Note that the forms of these equations are simplified
when all the dipoles of magnitude p are aligned in the
z direction:

uDD
ij (rij , θ) = − p2

4πε0

3 cos2 θ − 1

r3
ij

, (7)

and

fDD(rij , θ) =
3p2

4πε0

(2 cos θ)k + (1− 5 cos2 θ)nij

r4
ij

,

(8)
where k is the unit vector in the direction of the z-axis
and θ is the angle between k and nij . There is also a
torque acting on the dipole, but because the characteris-
tic time of polarization charge formation is much smaller
than the characteristic time of the rotation of the sphere,
the rearrangement of surface charges is considered in-
stantaneous without inertia. The torque, therefore, has
been neglected.

The full interaction potential between two ER parti-
cles consists of this dipole-dipole (DD) term and a short-
range core potential that defines the finite size of the par-
ticles:

uij = uDD
ij + uWCA

ij . (9)

For the core potential, we use the cut & shifted LJ poten-
tial also known as the Weeks-Chandler-Anderson (WCA)
potential that is

uWCA
ij (rij) =

{
uLJ
ij (rij) + uLJ

ij (rc) if rij < rc

0 if rij > rc
,

(10)
where

uLJ
ij (rij) = 4εLJ

[(
d

rij

)12

−
(
d

rij

)6
]

(11)

is the LJ potential. The WCA force is

fWCA
ij (rij) =

{
fLJ
ij (rij) if rij < rc

0 if rij > rc
, (12)

where

fLJ
ij (rij) = 24εLJ

[
2

(
d

rij

)12

−
(
d

rij

)6
]
rij
r2
ij

(13)

is the LJ force. In these equations the cutoff distance is
rc = 21/6d that is at the minimum of the LJ potential,
so this potential is a smooth repulsive core potential used
widely in dynamical simulations of large spherical parti-
cles.

3. Method: Brownian Dynamics simulation

When it comes to simulating the trajectories of particles
in the phase space interacting with each other via a sys-
tematic force, fij (like those given in Eqs. 6 and 12), we
use Newton’s equation of motion in an MD simulation.
In this case, the particles move in vacuum and the only
forces that we take into account are those exerted by the
particles themselves (plus, possibly, external forces).

When it comes to simulating the trajectories of parti-
cles immersed in a solvent, we use Langevin’s equations
of motion [33]

m
dvi(t)

dt
= Fi (ri(t))−mγvi(t) + Ri(t), (14)

where ri, vi, m, and γ are the position, the velocity, the
mass, and the friction coefficient of particle i, respec-
tively. The mass and the friction coefficient are assumed
to be the same for every particle, but, in general, they can
depend on i.

The force has three components. In addition to the
systematic force, Fi (ri(t)) =

∑
j 6=i fij , there are the

frictional force,−mγvi(t), and the random force, Ri(t).
The former describes friction, while the latter describes
random collisions with surrounding solvent molecules.

The two additional forces represent the interactions
with the heat bath and are coupled through the friction
coefficient:

〈R(t)〉 = 0 (15)

〈R(t) ·R(t′)〉 = 2kTmγδ(t− t′) (16)

This is also known as the fluctuation–dissipation theo-
rem.

The Langevin equation is a stochastic differential
equation that is solved numerically and, therefore, ap-
proximately. Several algorithms exist in the literature for
its integration [34–37].

Here, we employ the simple and effective algorithm
of Grønbech-Jensen and Farago (GJF). The original ver-
sion [24] had a Verlet-type formalism. Recent modifica-
tions by Farago (GJF-F) [25] and Grønbech Jensen and
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Table 1: Reduced quantities

Quantity Symbol Unit quantity Reduced quantity

Time t t0 = d

√
m

kT
t∗ =

t

d

√
kT

m

Distance r r0 = d r∗ =
r

d

Density ρ ρ0 =
1

d3
ρ∗ = ρd3

Velocity v v0 =
d

t0
=

√
kT

m
v∗ = v

√
m

kT

Energy u u0 = kT u∗ =
u

kT

Force F F0 =
kT

d
F ∗ =

Fd

kT

Dipole moment p p0 =
√

4πε0kTd3 p∗ =
p√

4πε0kTd3

Friction coefficient γ γ0 =
1

t0
=

1

d

√
kT

m
γ∗ = γt0 = γd

√
m

kT
.

Grønbech-Jensen (GJF-2GJ) [26] have a leap-frog for-
malism using velocities in the half time steps. These mod-
ifications have the advantage that they accurately sample
both kinetic and configurational properties even for large
time steps within the stability limit. The authors demon-
strated the efficiency of their algorithms for systems un-
der linear and harmonic potentials. We use the GJF-2GJ
version in this work that reads as

vn+ 1
2 = avn−

1
2 +

√
b∆t

m
fn +

√
b

2m

(
Rn −Rn+1

)
(17)

rn+1 = rn +
√
bvn+ 1

2 ∆t, (18)

where rn = r(tn) is any position coordinate of any parti-
cle, vn = v(tn) is any velocity coordinate of any particle,

a =
1− γ∆t/2

1 + γ∆t/2
, (19)

b =
1

1 + γ∆t/2
, (20)

∆t is the time step, tn+ 1
2

= tn+ ∆t
2 , and tn− 1

2
= tn−∆t

2 .
The discrete time noise

Rn+1 =

∫ tn+1

tn

R(t′)dt′ (21)

is a random Gaussian number with properties

〈Rn〉 = 0 (22)

and
〈RmRn〉 = 2kTγm∆tδmn (23)

with δmn being the Kronecker-delta.

4. Scaling and reduced units

Competing effects exist in an ER system. The DD inter-
actions have an ordering effect. The head-to-tail position,
in which the dipoles are aligned along nij (θ = 0) at
contact (rij = d), has a minimum energy with the value

u0 = − 1

4πε0

2p2

d3
. (24)

The magnitude of the force in this position is

f0 =
3p2

4πε0d4
. (25)

The Brownian motion has a disordering effect that ex-
presses the coupling to a thermostat of temperature T and
friction with the surrounding solvent with viscosity η. It
is usual to characterize the disordering effect of the ther-
mal motion energetically by kT . It is also usual to use
reduced units in calculations. In reduced units our quanti-
ties are expressed as dimensionless numbers obtained by
dividing a quantity in a physical unit by a unit quantity in
the same unit, t∗ = t/t0, for example. Reduced quanti-
ties are useful not only because their values are close to
1, so it is easier to work with them, but also because they
express relations between quantities in the numerator and
the denominator, a kind of scaling [5].

There are different ways of defining reduced units. We
use the convention of building the unit quantities from
the mass, m, the particle diameter, d, and kT . Thus, the
reduced units collected in Table 1 can be defined.

When we perform simulations in reduced units, these
quantities can be chosen freely to see how the system be-
haves at the different combinations of the reduced param-
eters. How the reduced parameters are related to real-life
physical parameters can be computed independently (see
Section 5).

Hungarian Journal of Industry and Chemistry
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Table 2: Experimental parameters [38, 39].

εin 4

εout 2.7

η (Pa s) 0.5

E0 (V/m) 106

T (K) 300

ρout (kg/m3) 2650

The reduced quantities collected in Table 1 are deter-
mined by the real physical parameters of the system: the
temperature, T , the mass density of the material of the
ER particle, ρin, the diameter of the ER particle, d, the
dielectric constant of the ER particle, εin, the dielectric
constant of the solvent, εout, the viscosity of the solvent,
η, and the strength of the applied electric field, E0. For
a specific ER fluid, these variables are tabulated in Ta-
ble 2. This specific example is used because one of the
coauthors (I.SZ.) published experimental results for this
system [38, 39]. A wide variety of ER fluids exists, how-
ever.

The mass of a particle is computed asm = ρinπd
3/6,

so it scales with d3. The dipole moment of a particle is
given by Eq. 2 that shows that p scales with d3.

An important parameter is the ratio of the dipolar
energy and the thermal energy that is expressed by the
square of the reduced dipole moment:

(p∗)2 =
πε0E

2
0

4kT

(
εin − εout

εin + 2εout

)2

d3 = Kd3 (26)

that scales with d3. If p∗ is large, the dipolar interac-
tions are strong enough to induce chain formation. If p∗ is
too large, the chains freeze, and the ER particles solidify
(note that the fluid itself does not solidify). If p∗ is small,
thermal motion prevents chain formation and/or breaks
the chains.

The friction coefficient can be computed from Stokes’
law as

γ =
3πηd

m
=

18η

ρin
d−2. (27)

so it scales with d−2. The value of γ∗ describes the
strength of the coupling with the solvent and it scales with
d1/2. If γ∗ is large, friction and the disordering effect of
the random force are strong. The diffusivity of the parti-
cles in the fluid, therefore, will be smaller. The diffusion
constant in the high coupling limit can be expressed by
Einstein’s relation:

D =
kT

mγ
, (28)

or, in reduced units,D∗ = 1/γ∗. If γ∗ → 0, the frictional
and the random forces vanish, and the Langevin equa-
tion goes into the Newton equation. The particles move
in vacuum without a thermostat; this practically corre-
sponds to an MD simulation in the microcanonical en-
semble. If γ∗ is small, we talk about an MD simulation
with a Langevin thermostat.

In the case of the ER fluids, we are in the regime of
large γ∗. As we will see, γ∗ is in the order of 104 − 106.
In this case, our concern is how to make the simulation
efficient in order to collect enough information about the
dynamics of the system in a reasonable amount of com-
puter time.

The parameter with which we can tune the speed of
sampling is the time step, ∆t∗. This parameter is also
subject of optimization. If ∆t∗ is too small, the simula-
tion will evolve slowly at the price of expensive compu-
tation time. If ∆t∗ is too large, the spheres might over-
lap and the repulsive core force (Eq. 12) becomes so
large that the particles shoot apart resulting in unphysi-
cal movements. This leads to instabilities in solving the
Langevin equation.

Various solutions have been proposed in the literature
to cope with this problem. If the Langevin integration al-
gorithm allows changing the time step during the sim-
ulation, it is a reasonable suggestion to reduce the time
step if we observe problems (generally, big jumps) in the
movements of particles [6,13]. Displacements, velocities,
or forces can be monitored for unusual events.

Berti et al. [40] used a uniform time step, while their
solution for the jump-problem was that they went back
the necessary number of time steps and started again with
a different random number seed for the random force.
If such a problem is rare, this can be a good solution,
because the computational cost of going back a couple
of times is balanced by the large time step used in the
simulation. They used their simulations for ion chan-
nels whose selectivity filter is a high-density region, so
overlaps can occur. Chain formation in the ER fluid also
brings particles close to each other, so we need to be care-
ful with large time steps.

We can estimate in advance the danger of overlap and
judge the optimization between slow simulations (small
∆t) and jumping particles (large ∆t). We can introduce
the average distance that a particle moves in a time step
with the average thermal velocity, v̄ =

√
3kT/m. Let us

introduce
∆s∗ =

v̄∆t

d
=
√

3∆t∗, (29)

that characterizes the average distance with respect to the
particle size. This is proportional to ∆t∗. This reduced
distance, and, consequently, the reduced time step should
be smaller than 1. This imposes a strict limit to the time
step.

The product γ∆t = γ∗∆t∗ characterizes how close
we are to the overdamped limit. Basically, at a fixed γ∗,
we can increase ∆t∗ up to the threshold limit to save
computer time at the price of losing information about
dynamics due to coarser time resolution.

The last parameter that we can choose relatively
freely is the energy parameter of the LJ potential, εLJ, see
Eqs. 10–12. Changing this parameter practically changes
the effective diameter of the particles. Fig. 3 shows the
curves of the core potential (Eq. 10) for varying values
of εLJ. Smaller values of εLJ allows for the particles to
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Figure 3: The core potential, uWCA(r), for varying en-
ergy parameters, εLJ.

approach each other closer: the r/d values at which the
core potential reaches large values in kT are smaller for
smaller εLJ values. The effective diameter, deff , therefore
decreases with decreasing εLJ.

This results in larger dipole-dipole interactions at con-
tact positions that, in turn, increases the weight of the
dipolar interactions with respect to the thermal noise. Us-
ing smaller εLJ, and, consequently, smaller deff , however,
makes our parameter dwith which we reduced every vari-
able meaningless. We would like the diameter used in the
reduced quantities to be the real diameter of the spheres.
For this reason, we do not change εLJ and fix it at the
value of kT .

5. Relating reduced units to real ER fluids

To connect to a real system, we consider the ER fluid
studied by Horváth and Szalai [38, 39] experimentally.
The experimental parameters are collected in Table 2.
Note that the diameters used in these studies were quite
small in order to prevent sedimentation. Diameters used
in other ER fluids are larger reaching 1 µm.

We change two parameters in this analysis, the par-
ticle diameter, d, and the reduced time step, ∆t∗. Ac-
cording to Eq. 2, the dipole moment can be written as
p = Kd3, where K = 1.922 × 10−6 Cm−2 for the pa-
rameters in Table 2. Table 3 contains various quantities
computed for different values of d.

It is seen that p∗ falls into the regime simulated in this
study around d = 1 µm. For diameters below 100 nm, at
least, at the present value of K, the reduced dipole mo-
ment is too weak to counterbalance the thermal motion
and to produce considerable chain formation.

The reduced friction coefficient also depends on d; it
increases with d1/2. It is in the regime of γ∗ ≈ 105−106.
This looks simulatable, though it will require consider-
able computer time, because ∆t∗ is limited. The param-
eter ∆s∗ is the same for every diameter; it practically
equivalent to ∆t∗. To look at the effect of ∆t∗, we show
the same data for varying ∆t∗ at a fixed d (100 nm) in
Table 4.

Table 3: Change of various variables as the diameter of
spheres is changed from 10 to 10,000 nm for time step
∆t∗ = 0.001.

d (nm) 10 100 1,000 10,000
∆t∗ 0.001
m (kg) 1.387E-21 1.387E-18 1.387E-15 1.387E-12
t0 (s) 5.788E-09 1.830E-06 5.788E-04 1.830E-01
v̄ (m/s) 2.993E+00 9.463E-02 2.993E-03 9.463E-05
p (Cm) 1.922E-30 1.922E-27 1.922E-24 1.922E-21
p∗ 0.00283 0.0896 2.833 89.60
∆t (s) 5.788E-12 1.830E-09 5.788E-07 1.830E-04
∆s∗ 0.00173 0.00173 0.00173 0.00173
γ (1/s) 3.396E+13 3.396E+11 3.396E+09 3.396E+07
γ∗ 1.966E+05 6.216E+05 1.966E+06 6.216E+06
γ∆t 1.966E+02 6.216E+02 1.966E+03 6.216E+04

Table 4: Change of various variables as the reduced time
step ∆t∗ is changed from 0.0001 to 0.1 for diameter d =
100 nm.

d (nm) 100
∆t∗ 0.0001 0.001 0.01 0.1
m (kg) 1.387E-18 1.387E-18 1.387E-18 1.387E-18
t0 (s) 1.830E-06 1.830E-06 1.830E-06 1.830E-06
v̄ (m/s) 9.463E-02 9.463E-02 9.463E-02 9.463E-02
p (Cm) 1.922E-27 1.922E-27 1.922E-27 1.922E-27
p∗ 0.0896 0.0896 0.0896 0.0896
∆t 1.830E-10 1.830E-09 1.830E-08 1.830E-07
∆s∗ 0.000173 0.00173 0.0173 0.173
γ (1/s) 3.396E+11 3.396E+11 3.396E+11 3.396E+11
γ∗ 6.216E+05 6.216E+05 6.216E+05 6.216E+05
γ∆t 6.216E+01 6.216E+02 6.216E+03 6.216E+04

6. Results and Discussion

In this study, we use a relatively small number of particles
(N = 128) in order to save on computer time and be able
to explore a wide range of parameters in reduced units.
We also fix the packing fraction expressed in term of the
reduced density at ρ∗ = 0.05. At these values the width
of the simulation cell is L = 13.68 d.

The computer code has been written (in Fortran) in
a way that we perform M0 time steps in the absence of
applied electric field (E0 = 0), and ME time steps in the
presence of it. That way, we can study the dynamics of
chain formation after the electric field is switched on. To
improve statistics, we can perform several of this Mc =
M0 +ME cycles and average over the cycles.

When we start a cycle over, we can choose between
two options. We can either continue the simulation from
the previous phase state point (configurations and veloci-
ties) only without dipoles, or we can restart from a freshly
generated initial configuration. In this work, we choose
the second option. This choice ensures that we start the
simulation with nonzero E0 in a completely disordered
state without chains. The first option makes it possible to
study the dynamics of the deconstruction of the chains.
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Figure 4: Typical snapshot of a simulation from the front (perpendicular to the z axis, left panel) and top (parallel to the z
axis, right panel) for a state when chains are formed.

6.1 Quantities studied

As the chains are being formed, certain physical quan-
tities change, so they directly or indirectly character-
ize chain formation quantitatively. In chains, particles
are aligned into head-to-tail position along the z-axis as
shown in Fig. 4. There are longer and shorter chains and
the distribution of chains of various lengths changes con-
tinuously as the simulation evolves.

Since the head-to-tail position is the lowest energy
configuration of the ER spheres (see Fig. 2 and Eqs. 24
and 25), the average one-particle dipole-dipole energy,
〈uDD〉b/kT , is a good indicator of chain formation. As
it turns out, it is the best converging indicator.

By average, we mean average over a block in the sim-
ulation, denoted by 〈. . . 〉b. The length of a block (Mb is
the number of time steps in a block), again, is a subject
of optimization. If a block is too short, the physical quan-
tities averaged over a block will have bad statistics. If a
block is too long, we loose information about the dynam-
ics of the system.

Diffusion constant When the particles are “frozen”
into chains, their mobility decreases. Chains are frozen
only at very large dipole moments, when even colum-
nar structures are formed. In a moderate range of (p∗)2,
chains move around, break apart, and rejoin, see the
video clip at https://youtu.be/OwXsuz6p0W4.
A snapshot of this video clip is shown in Fig. 5.

The isotropic diffusion constant is computed as the
slope of the mean square displacement (MSD) as a func-
tion of time:

Db =
〈r2(t)〉b

2tb
, (30)

where 〈. . . 〉b denotes an average over time steps in a
block and particles and tb is the length of the block in
time. The exact equilibrium diffusion constant is obtained
in the limit of tb →∞.

Here, we must be satisfied with an approximate value
of Db obtained over a block of limited length. Fig. 6
shows the MSD as a function of t∗ for six equidistantly
chosen blocks. In this particular case, γ∗ = 5000, so the
slope is D∗ = MSD/t∗b ≈ 0.0002 for the WCA fluid as

Figure 5: A snapshot of the video clip at https://youtu.be/OwXsuz6p0W4.
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Figure 6: The mean square displacement for six selected
blocks. The blocks are selected in equidistant time peri-
ods in way that the first three belong to the E = 0 phase,
while the second three belongs to the ER phase. Parame-
ters: (p∗)2 = 6, γ∗ = 5,000, ∆t∗ = 0.02,Mb = 50,000.

also expressed by the Einstein relation (D∗ = 1/γ∗, Eq.
28). Here, the time-length of the block is t∗b = ∆t∗Mb =
1,000, because ∆t∗ = 0.02 and Mb = 50,000. The first
three lines are in the E = 0 regime, while the second
three lines are in the ER regime. The slope apparently
is smaller in the ER case than in the WCA case, but the
scattering is large.

The sampling can be improved by averaging over cy-
cles, but this does not help on the problem of the diffu-
sion constant being approximate obtained for a too short
block.

Chain length distributions The chain formation can
be directly followed by identifying chains in every con-
figuration. If that is done, we can obtain the number of
chains, ns, having length s. The average chain length can
be computed as

l =

∑
s sns∑
s ns

. (31)
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Figure 7: The trend of the change in the average chain
length with various definitions of a chain: energetic with
λe = 0.5 and 0.7, geometrical with λg = 1.1 and 1.2.
Parameters: (p∗)2 = 6, γ∗ = 10,000, ∆t∗ = 0.01,
Mb = 10,000.
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Figure 8: Chain length distribution averaged over three
time intervals at the beginning (10,000 < t∗ < 25,000),
in the middle (25,000 < t∗ < 65,000), and at the end
(65,000 < t∗ < 100,000) of chain formation. Parameters
are the same as at Fig. 7.

This quantity than can be averaged over time steps in a
block, so chain formation can be followed by plotting the
average chain length, 〈l〉b, as a function of time in steps
of t∗b.

A chain, however, can be defined in various ways.
One simple definition is geometrical. If two particles are
closer to each other than a predefined distance:

rij < λgd, (32)

they are said to be part of the same chain. Another defi-
nition is energetic. If the dipole-dipole interaction energy
is smaller than a predefined threshold:

uDD
ij (rij , θ) < λeu0, (33)

then they are said to be part of the same chain, where u0

is the DD interaction energy in the head-to-tail position
(Eq. 24).

Fig. 7 shows the increase of the average chain length
as a function of time as obtained from different chain def-
initions and thresholds λe and λg. In general, the trends
as shown by the various definitions are the same. The dy-
namic process of chains breaking up and reforming have
the same effect in the cases of the various definitions.
This process can be characterized by time constants ob-
tained from fitting exponential functions. These time con-
stants are insensitive to the choice of the chain definition.
Here, we will use the geometrical definition with the pa-
rameter λg = 1.2. The geometrical definition is advan-
tageous, because it can also be used in the absence of an
electric field.

The average chain length is an informative, but aver-
aged quantity. From the simulations, we have the more
detailed ns vs. s chain length distributions that give
the average number of chains of different lengths as a
function of s. This function varies with time, see the
video clip at https://youtu.be/OwXsuz6p0W4.
To show the dynamics of this function, we average it for
three distinct time intervals. The first one refers to the
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Figure 9: The variation of the number of chains of vari-
ous lengths in time. Top: chains of lengths 2, 3, 4, and 5.
Bottom: number of chains belonging to the ranges 6−12,
13 − 20, and above 21. Parameters are the same as at Fig.
7.

beginning of the time period in the presence of the field
when the chains start forming. In the second, intermedi-
ate time interval (25,000 < t∗ < 65,000) longer chains
are formed, while in the third time interval (65,000 <
t∗ < 100,000), full chains crossing the simulation box
are formed.

Fig. 8 shows these three time-averaged functions. At
the beginning, there are many pairs and short chains
(black curve). In the intermediate time interval, the num-
ber of short chains decreases and longer chains are
formed. In the third time interval, a well-defined peak at
s = 14 appears that corresponds to the full chains cross-
ing the simulation box of length L = 13.68d.

We can get a much better impression of the dynam-
ics of chain formation, if we plot ns as a function of
time. Because there are too many possible ns numbers
to plot, again, we average over certain regions of chain
lengths as seen in Fig. 9. In the top panel, the behavior of
short chains from pairs to s = 5 is shown. The behavior
of these chains is qualitatively similar. First, as the elec-
tric field is switched on, their numbers increase abruptly,
then, as longer chains absorb them, or they fuse into
longer chains, their numbers gradually decreases. Practi-
cally, they behave like reactive intermediates in chemical
reactions: their formation is a first necessary step towards
the formation of the end products.

The number of chains whose lengths are between 6
and 12 (bottom panel) behaves similarly. The curve for
the chains whose lengths are between 13 and 20, how-
ever, saturates around ns = 4. This means that there are
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Figure 10: Radial distribution functions averaged over
four time intervals in the absence of the electric field (0 <
t∗ < 10,000), at the beginning (10,000 < t∗ < 25,000),
in the middle (25,000 < t∗ < 65,000), and at the end
(65,000 < t∗ < 100,000) of chain formation. Parameters
are the same as at Fig. 7.

generally about 4 full chains in the simulation box (this
value, of course, depends on system size and packing
fraction). They are often accompanied by shorter chains
as seen in Fig. 4 and the video clip.

Chains longer than 20 also exist. It can also occur
that two chains are stuck together. Whether it is a stable,
long time-span configuration, depends on the strength of
the dipole moment (the electric field, in reality). A par-
ticle is attracted to another particle in a chain, if they
are aligned in a way that θ = π/4, see Fig. 2. This is
a relatively weak attraction compared to the head-to-tail
position. The chains displace due to thermal motion, so
the chains move out of these mutual positions that favors
aggregation of chains. If two chains move in a way that
the particles get next to each other (θ = π/2), a repul-
sive force replaces the weak attractive one. So, a strong
dipole moment is needed to overcome the thermal motion
if we want to see stable columnar aggregations of chains
as seen many times in the literature.

Pair distribution functions As particles aggregate into
chains, the structure of the fluid, generally expressed with
pair distribution functions, changes. In an anisotropic
dipolar fluid, we generally use the series expansion of the
pair correlation function of axially symmetric molecules
as

g(ij) =
∑
nml

hmnl(rij)u
mnl(ij). (34)

This expansion separates distance and angular depen-
dence in such a way that the projections hmnl(rij) de-
pend only on the distance of particles and the projections
umnl(ij) are rotational invariants.

The projection g(rij) = h000(rij) is the usual radial
distribution function (RDF):

g(rij) =

∫
g(ij)dΩidΩj , with u000 = 1, (35)
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Figure 11: The xy-plane radial distribution functions av-
eraged over four time intervals as in Fig. 10. Parameters
are the same as at Fig. 7.

where Ωi denotes molecular orientation. In a fluid phase,
h000(rij) → 1 when rij → ∞ both in isotropic and
anisotropic phases. Other projections, called angular cor-
relation functions, can also characterize chain formation,
but we will discuss only the RDF in this study.

Similar to Fig. 8, we plot the RDF averaged over the
time intervals discussed at the chain length distributions.
In addition to those three time intervals, we also consider
the time interval 0 < t∗ < 10,000 here, which is the time
of the electric field being switched off. Fig. 10 shows that
the g(r) function behaves like a typical RDF for a dense
real gas (ρ∗ = 0.05) in the absence of E0.

As the electric field is switched on, however, larger
and larger peaks appear as time goes by and longer and
longer chains are formed. The peaks appear at every
integer multiples of d values that correspond to parti-
cles in the chain. A more detailed behavior of g(r) can
be followed in the video clip: https://youtu.be/
OwXsuz6p0W4.

When the chains are formed, they are relatively stable,
but they diffuse around in the xy plane. Therefore, we
also define the RDF in the xy plane to follow how the
chains are distributed over the xy plane. We will denote
it with gxy(r) and is calculated the same way as the three-
dimensional RDF.

Fig. 11 shows these functions averaged over the time
periods as in Fig. 10. A similar conclusion can be drawn
as from that figure except that the first peak now appears
at r∗ = 0, where now r =

√
∆x2 + ∆y2. This peak

represents particles belonging to the same chain. Peaks
represent probable distances between chains. The shape
of the curve indicates that this ER system ((p∗)2 = 6)
behaves like a two-dimensional fluid of chains.

At a given time (or, in a given block), these series
of peaks are absent. Snapshots of gxy(r) show where
the chains are in a given moment. This can be followed
in the video clip: https://youtu.be/OwXsuz6p0W4.
The gxy(r) function averaged over a longer time pe-
riod characterizes the behavior of the chains as a two-
dimensional fluid.
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Figure 12: The one-particle dipole-dipole energy (top
panel), the diffusion constant relative to its value in the ab-
sence of E0 (middle panel), and the average chain length
(geometrical definition with λg = 1.2, bottom panel) as
functions of time using different time steps. Parameters:
(p∗)2 = 6 and γ∗ = 10,000. TheMb is changed in a way
that ∆t∗ ×Mb is constant.

6.2 The effect of time step

First, let us consider the effect of the choice of the time
step, ∆t∗. Fig. 12 shows the variation of the one-particle
dipole-dipole energy, the diffusion constant, and the aver-
age chain length (geometrical definition with λg = 1.2)
for different values of ∆t∗. The length of a block mea-
sured in t∗ is kept fixed. It is seen that the measured quan-
tities behave the same way as a function of time, which
indicates that the BD simulation algorithm is robust and
provides results that are independent of the time step.

Also, we monitored the temperature computed from
the kinetic energy, 〈T 〉 = m〈v2〉/3k, and found that
the algorithm reproduces the prescribed temperature very
precisely even for this highly anisotropic fluid. This sup-
ports the claim of the developers that this algorithm pro-
vides a very good Langevin thermostat [24–26].

If we change ∆t∗, but we keep Mb at the same value,
meaning that we change the time length of the block, the
dipole-dipole energy and the average chain length are still
insensitive to the choice of ∆t∗ (data not shown). The
diffusion coefficient, however, changes with the length of
the blocks as already discussed above (at Fig. 6). This
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Figure 13: The one-particle dipole-dipole energy (top
panel), the diffusion constant relative to its value in the ab-
sence of E0 (middle panel), and the average chain length
(geometrical definition with λg = 1.2, bottom panel) as
functions of time using different friction coefficients. Pa-
rameters: (p∗)2 = 6 and ∆t∗ = 0.01.

means that we have a trade-off between satisfactory sam-
pling over a block and good resolution in time.

We do not consider viscosity in this paper; we refer it
to future studies. This trade-off will be present in the case
of the viscosity (and the stress tensor) as well. It will be
even more serious, because the viscosity is even a more
poorly converging quantity than the diffusion constant.

6.3 The effect of friction coefficient

We fix the dipole moment at (p∗)2 = 6 and the time step
at ∆t∗ = 0.01, and change the friction coefficient from
γ∗ = 1,000 to 10,000. As discussed in the next section,
realistic ER fluids have friction coefficients even larger
than 10,000, but we refer studying that regime to future
publications.

As γ∗ is increased, the curves tend to their equilib-
rium values as E0 is switched on at a lower rate. Fitting
exponential functions to these curves and identifying pro-
cesses of different time lengths as parts of the complex
process of chain formation will also be the subject of fu-
ture studies.

The change in γ∗ does not influence the value where
the energy and the average chain length converge to.
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Figure 14: The one-particle dipole-dipole energy (top
panel), the diffusion constant relative to its value in the ab-
sence of E0 (middle panel), and the average chain length
(geometrical definition with λg = 1.2, bottom panel) as
functions of time using different dipole moments. Param-
eters: γ∗ = 10,000 and ∆t∗ = 0.01. This figure shows
two M0 +ME cycles.

They converge to the same value but with a different rate.
Changing friction, however, changes the diffusion con-
stant. Fig. 13 shows the diffusion constant relative to its
value in the absence of the field computed asD∗ = 1/γ∗.
The diffusion constant decreases to a smaller value rela-
tive to D∗(E = 0) at smaller values of γ∗.

The average chain length shows that smaller γ∗ re-
sults in a more wildly fluctuating system than a larger γ∗.
The particles diffuse faster and produce larger variations
in configurations during a given time period.

6.4 The effect of dipole moment

Our simulations show (Fig. 14) that the quantity that
determines the structure of the ER fluid is the reduced
dipole moment, namely, the relation of the dipole-dipole
energy to the thermal energy unit, kT . Fig. 14 shows that
these quantities converge to their equilibrium values ex-
hibiting a similar trend.

The dipole moments studied in this work belong to
the regime where the ER fluid considered as a collection
of chains is still a fluid, namely, it does not solidify. Sev-
eral papers in the literature study solidification of the ER
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chains [5, 6, 15, 16, 22].

7. Summary

In this work, we use a newly developed integrator algo-
rithm to solve the Langevin equations and to perform BD
simulations for ER fluids. Our focus was on the method-
ological development and identifying appropriate system
parameters through which we can follow the dynamics of
chain formation in the system.

The usefulness of computer simulations lies not only
in the fact that we can follow the particles’ trajectories,
but also in the fact that we can gain a profound amount
of information from these trajectories. In the BD simula-
tions, for example, we can follow how the average num-
ber of chains of varying lengths changes in time. From
that detailed information we can deduce time constants
for characteristic processes during chain formation.

We intend to dig into those details in subsequent stud-
ies. Also, we want to examine the behavior of the chains
under a stress.
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