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Abstract 

The thin-skinned Hronic nappe system represents the structurally highest tectonic unit in the 

Late Cretaceous thrust-stack of the Central Western Carpathians. It mostly comprises a 

Permian volcano-sedimentary sequence and Triassic carbonate sediments which crop out in 

different parts of the Central Western Carpathians. We carried out a systematic paleomagnetic 

study on 24 Permian and 20 Triassic localities geographically distributed over 300 km in W-E 

direction. Several samples from each locality were drilled and oriented in-situ and specimens 

cut from them subjected to standard paleomagnetic and magnetic mineralogy experiments. 

The results were evaluated using principal component analysis, statistical evaluation of the 

characteristic remanences, and applying inclination-only and tilt tests. We documented the 

pre-tilting age of remanences for the majority of both the Permian and Triassic age groups. 

However, the latter was interpreted as remagnetized during the Cretaceous Normal Super-

Chron in the course of nappe stacking between 90-80 Ma. The Permian group is exhibiting 

about 70°, the Triassic about 34° clockwise vertical axis rotations with respect to the present 

north. There is no indication in our data set for oroclinal bending of the Hronic Unit. We 

interpret the difference in clockwise rotations (about 36°) between Permian and 90-80 Ma as 

a clockwise block rotation taking place during major extensional and/or compressive events 

between stable Europe and Africa. Taking into consideration the well-documented 

counterclockwise rotation observed for the overstep sequences in the Central Western 

Carpathians and in the Pieniny Klippen Belt, the remagnetization of the Triassic sediments 

was closely followed by about 94° clockwise rotation. Research in progress will serve to 

decide if this large clockwise rotation involved the whole Central Carpathian nappe stack or 

part of this was due to the thin-skinned nappe emplacement of the Hronic Unit. 

Key words: Central Western Carpathians, Hronic nappe Unit, Paleomagnetism, 

Remagnetization, Late Cretaceous, Tectonic rotations 
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1. Introduction 

The Western Carpathians form a northward convex, E-W trending mountain range, which is a 

part of the European Alpine orogenic system. Based on its structure and tectonic evolution it 

is divided into three main tectonic zones, namely the External, Central, and Internal Western 

Carpathians (Plašienka et al., 1997; Froitzheim et al., 2008; Plašienka, 2018). The Central 

Western Carpathians represent a nappe stack consisting of thick- and thin-skinned nappe units 

formed and thrust generally to the north-northwest (in recent coordinates) during the Late 

Cretaceous. The northern and northwestern part of the Central Western Carpathians, lying 

between the Čertovica thrust-fault and the Pieniny Klippen Belt (Fig. 1), is known as the 

Tatra-Fatra Belt comprising the Tatric-Fatric-Hronic nappe stack (Plašienka et al., 1997; 

Plašienka, 2018). The nappe stack is preserved in several fault bounded mega-anticlinal horst 

structures called the “core mountains” emerging from the sedimentary fill of the surrounding 

Paleogene and Neogene basins. The uplift of the core mountains, based on zircon and apatite 

fission-track data (e.g. Burchart 1972; Kováč et al., 1994; Danišík et al., 2004; Králiková et 

al., 2016), started already in the Paleocene with the rapid acceleration since the Pliocene – 

Pleistocene. 

Most of the published pre-Cenozoic paleomagnetic data from the Central Western 

Carpathians come from the Fatric Unit, mainly from the Polish part of the Tatry Mts. 

(Kądziałko-Hofmokl and Kruczyk, 1987; Kruczyk et al., 1992; Grabowski, 1995; 2000; 

2005). They are complemented by sporadic data from the Tatric and Hronic units in the Tatry 

Mts. (Grabowski 1997; 2000; Grabowski et al. 1999; Szaniawski et al., 2012) as well as from 

the Tatric and Fatric units of the remaining part of the “core mountains”: Nízke Tatry, Malá 

Fatra, Veľká Fatra (Kruczyk et al., 1992; Pruner et al., 1998; Szaniawski et al., 2020), 

Strážovské vrchy Mts. (Grabowski et al., 2009; Szaniawski et al., 2020) and Malé Karpaty 

Mts. (Grabowski et al., 2010). The majority of the reported paleomagnetic directions have 
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been interpreted in terms of early pre- or syn-thrusting remagnetizations acquired during the 

Cretaceous Normal Super-Chron (Grabowski and Nemčok, 1999; Grabowski, 2000). 

Exceptions are the Lower Triassic siliciclastic deposits resting directly upon the Tatric 

crystalline basement (Szaniawski et al., 2012; 2020) and Berriasian pelagic limestones of the 

Fatric Unit (Grabowski 2005; Grabowski and Pszczółkowski, 2006; Grabowski et al., 2009; 

2010) where magnetization has been interpreted as primary. Unlike the Cenozoic 

paleomagnetic directions showing consistent 50-60° CCW rotations in all principal tectonic 

units of the Western Carpathians (see comprehensive review by Márton et al., 2016), the pre-

Cenozoic paleodirections display a more complex pattern. The distribution of 

paleodeclinations for the Tatric and Fatric units (both primary and secondary) and their 

apparent agreement with nappe transport trajectories was originally taken as a proof for 

oroclinal bending of the Central Western Carpathians or alternatively interpreted in terms of 

radial thrusting (e.g. Kruczyk et al., 1992). However, recently documented primary 

magnetizations from the Tatric cover Unit (Szaniawski et al., 2012; 2020) show concordant 

paleodeclinations relative to the present north, consistent through a considerable part of the 

Central Western Carpathians, and therefore challenge the oroclinal bending model. 

In the Hronic Unit, Late Paleozoic volcanic and sedimentary rocks were the targets of the 

very early paleomagnetic studies in the Western Carpathians (see review by Krs et al., 1982). 

Results of these studies were among the first that have been interpreted in terms of large 

rotations within the Western Carpathians (Kotásek and Krs, 1965; Krs, 1966). The results 

were originally interpreted as CW vertical axis rotations. Later these paleomagnetic data were 

reinterpreted as CCW rotations (Márton et al., 1992; Krs et al., 1996), because some doubts 

had arisen about the sense of rotation in the light of the near-equatorial paleoposition of the 

studied rocks and the very similar angle of a Cenozoic CCW rotation documented for several 

areas in the Internal Western Carpathians (Márton et al., 2016 and references therein). 
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The main aim of the present study was to obtain positive proofs for the sense and amount of 

rotations in the Hronic Unit. Thus, we conducted a modern paleomagnetic study on the Late 

Paleozoic volcanic and sedimentary rocks of the basal part of the Hronic Unit (black dots in 

Fig. 1), on one hand and a new systematic research on the Mesozoic, mostly Triassic 

sediments of the same unit (Fig. 1). Our research focused on the Nízke Tatry Mts., where the 

Late Paleozoic and Triassic rocks are well exposed and accessible for sampling. Additionally, 

we collected samples from the western sector of the Central Western Carpathians (Malé 

Karpaty, Považský Inovec and Strážovské vrchy Mts.) in order to have a control on possible 

relative rotations between different partial nappes of the Hronic Unit, which could be 

attributed to oroclinal bending. 

2. Geological background 

The structurally lowermost tectonic unit of the Central Western Carpatians is the Tatric Unit. 

Its more frontal and distal elements, exposed in the Malé Karpaty, Považský Inovec and in the 

western part of the Malá Fatra Mts. (Fig. 1) are known as the Infra-Tatric Unit (Putiš, 1992; 

Putiš et al., 2008; Plašienka, 2018). The Tatric and Infra-Tatric units are composed of the 

Variscan crystalline basement and its Late Paleozoic and Mesozoic para-autochthonous, 

mostly sedimentary cover. It is overthrust by the thin-skinned Fatric and the uppermost 

Hronic cover nappe units with Upper Paleozoic to Upper Cretaceous rock sequences. Based 

on deep reflexion seismic data (Tomek, 1993) the Tatric thrust-sheet is underlain by highly 

reflective horizons in middle crustal zones. These horizons were interpreted as remnants of 

the Vahic (South-Penninic) oceanic crust and basement-cover rocks of the Oravic ribbon 

continent (e.g. Plašienka 1995a; Bielik et al., 2004; Plašienka, 2012; Putiš et al., 2008, 2019) 

correlative to the Briançonnais units (Tomek, 1993) or Sub-Penninic units of the Western 

Alps (Schmidt et al., 2008). The Vahic Ocean is considered as the continuation of the 

Ligurian-Penninic oceanic tract to the Western Carpathians. The only fragments preserved on 
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the present surface structure in the Western Carpathians interpreted as of the Vahic-Penninic 

origin are Upper Jurassic to Cretaceous eupelagic sediments and Senonian syn-orogenic 

clastic deposits of the Belice Unit in the Považský Inovec Mts. (Fig. 1) (Plašienka et al., 1994; 

Plašienka, 1995b; Plašienka, 2012). 

The basal part of the Hronic nappe system is represented by the uppermost Carboniferous-

Permian volcano-sedimentary sequence called the Ipoltica Group (Vozárová and Vozár, 1981; 

1988). The Ipoltica Group is characterized by the presence of voluminous basic to 

intermediate volcanic rocks with continental tholeiitic magmatic trend. They are related to a 

regional extensional tectonic regime, which led to the formation of a rift structure as a part of 

the continental margin or back-arc settings on the continental crust (Dostal et al., 2003; Vozár 

et al., 2015). 

The Ipoltica Group comprises the uppermost Carboniferous-lowermost Permian Nižná Boca 

Fm. and the Permian Malužiná Fm. (Fig. 2). The former consists of a regressive lacustrine-

deltaic succession including sandy shales, sandstones and conglomerates. The estimated 

maximum sedimentation age of the Nižná Boca Fm. is younger than 297 Ma, based on SIMS 

U-Pb detrital zircon dating (Vozárová et al., 2018). Sporadic doleritic sills and dykes, 

occurring in the upper part of the formation, are regarded as co-magmatic with the main 

Permian andesitic to basaltic volcanism of the younger Malužiná Fm. (Vozárová and Vozár, 

1981; 1988). 

The conformably overlying Malužiná Fm. consists of three fining-upward sedimentary 

megacycles (Vozárová and Vozár, 1981; 1988). These sedimentary cycles are composed of 

fluvial-lacustrine and alluvial red beds and locally also evaporites. The characteristic feature 

of the Malužiná Fm. is the extensive andesitic to basaltic volcanism, which was generated 

during two main eruption phases. The older one belongs to the 1st, the younger and more 

voluminous one to the 3rd megacycle (Vozár, 1977; 1997; Dostal et al., 2003; Vozár et al., 
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2015). The 2nd megacycle consists mainly of fluvial-alluvial clastic rocks with fining-upward 

trend. Small portions of effusive and volcaniclastic rocks occur at the base of the 2nd 

megacycle. Uranium mineralization from the middle to upper parts of the 2nd megacycle was 

dated to 263±11 Ma (Rojkovič, 1997). CHIME dating of detrital monazites from sandstones 

of the Malužiná Fm. provide the age 280-250 Ma, with the distinct peak at 255 Ma (Vozárová 

et al., 2014). 

A different view on the division of the Malužiná Fm. was published by Novotný and Badár 

(1971). They suggested that the large volcanic complex is restricted to the Upper Permian. 

These authors argued that the volcanic bodies, occurring in the lower part of the Malužiná 

Fm. represent, in fact, hypabyssal rocks genetically associated with the Upper Permian 

effusive complex. 

The Ipoltica Group is directly overlain by Triassic sediments (Fig. 3). The Lower Triassic 

rocks are represented by siliciclastic deposits, like quartzitic sandstones followed by 

variegated shales, alternating with marlstones and sandy limestones in the upper part. The  

Triassic succession is comparatively thick and includes a wide range of carbonates, 

representing various parts of a shelf environment – from tidal flats and reef platforms up to 

pelagic intra-shelf basins, which were deposited in two basin and in two carbonate platform 

sedimentary realms (Havrila, 2011 and references therein). Carbonate sedimentation was 

interrupted by a fluvial event, at the Carnian-Norian boundary, depositing siliciclastic 

sediments that flattened basin-platform topography (Lunz Formation, Aubrecht et al., 2017; 

Kohút et al., 2017). After this event, the unified shallow-water carbonate sedimentation was 

resumed during the Upper Triassic. The Jurassic and Lower Cretaceous condensed limestones 

are rare and the youngest sediments of the Hronic Unit are represented by Hauterivian distal 

turbidites. 
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Structurally, the Hronic Unit is an internally complicated nappe system with numerous partial 

nappes and erosional remnants of the original coherent nappe body (Kováč and Havrila, 1998; 

Havrila, 2011). In the rear (south-eastern parts in the present coordinates), the partial nappes 

comprise thicker sedimentary sequences involving Late Paleozoic of the Ipoltica Group and 

Mesozoic rocks. Towards the frontal parts, i.e. to the north and northwest, the partial nappes 

form a strongly imbricated system built up almost exclusively of carbonate sequences. 

The first shortening events in the Hronic Unit is probably manifested by the Hauterivian 

turbidites. The final, in part gravity-driven emplacement together with the Fatric nappe 

system over the Tatric units is assumed to be very rapid during the Turonian (Plašienka, 

2018). Tectonic transport directions (in present coordinates) vary from the NW-wards in the 

Nízke Tatry Mts., Chočské vrchy Mts. and Malá Fatra Mts. (Kováč and Havrila, 1998) to W-

wards in the Považský Inovec Mts. (Pelech, 2015). Exceptional NE-wards tectonic directions 

were reported in the internal parts of the Central Western Carpathians, in the Sklené Teplice 

tectonic window (Hók et al., 2013) and in the SE part of the Tribeč Mts. (Ivanička et al., 

1998). 

3. Paleomagnetic sampling 

Altogether, we collected samples at 24 Late Paleozoic and 20 Mesozoic localities (Figs. 1 to 

4). Statistically acceptable directions were obtained for 20 Late Paleozoic (Table 1) and 16 

Triassic localities (Table 2). The samples were drilled by using a portable water-cooled 

gasoline and an electric drill and oriented mainly by a magnetic compass or when the 

lithology or the situation required (e.g. closeness of a railway line) a sun compass was used. 

Special care was taken to avoid slumps or weathered material. Localities that failed in 

retrieving palaeomagnetic directions are listed in Table 3.  
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Volcanic and sedimentary rocks (red beds) of the Late Paleozoic Ipoltica Group were sampled 

mainly in the northern part of the Nízke Tatry Mts. in the Ipoltica Valley and parallel valleys 

(Figs. 1, 2, 4, 5A-C) where the most continuous sections of the Upper Paleozoic rocks are 

exposed. Additionally, basalts and tuffs were sampled in two quarries in the easternmost part 

of the Nízke Tatry Mts. and basalts in two quarries (two lava flows in each) in the Malé 

Karpaty Mts. (Figs. 1, 2, 4A). A doleritic dyke and uppermost Carboniferous to Lower 

Permian siltstones, close to the dyke, were also sampled at the type locality of the Nižná Boca 

Fm. in Nižná Boca village. 

The Mesozoic rocks were sampled at geographically distributed localities in the Nízke Tatry, 

Malá Fatra, Strážovské vrchy, Považský Inovec and Malé Karpaty Mts. (Figs. 1, 3, 4). The 

sampled rocks include Lower Triassic variegated shales (Fig. 5D), Anisian Gutenstein 

limestones, Upper Anisian-Lower Carnian well-bedded cherty Reifling limestones (Fig. 5E), 

Lower Carnian Oponitz limestones, the uppermost Carnian-Norian Hauptdolomites and 

Dachstein Limestones (Fig. 3). Additionally, one locality of Upper Jurassic – Lower 

Cretaceous pelagic limestones (T19) in the Malé Karpaty Mts. was sampled. The age 

determination is based mainly on micropaleontology (see comprehensive review by Havrila, 

2011).  

4. Laboratory methods 

The samples were cut to standard-size specimens by a water-cooled wheel-saw. Usually two 

specimens from a sample were obtained. The natural remanent magnetization (NRM) was 

measured by using JR-4, JR-5, JR-5A, JR-6A spinner magnetometers in Budapest, Banská 

Bystrica and Warsaw, respectively. The magnetic susceptibility and anisotropy of the low-

field susceptibility was measured by a KLY-2 kappabridge (Agico, Czech Republic). Then, 

specimens were stepwise demagnetized by either thermal (Schonstedt TSD-1 thermal 
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demagnetizer and a MMTD28 thermal demagnetizer Magnetic Measurements Ltd., the United 

Kingdom) or alternating field method (LDA-3A instrument, Agico, Czech Republic and 

Demag 0179 AF demagnetizer, Technical University, Budapest, Hungary). Magnetic 

susceptibility was monitored during thermal demagnetization. 

Magnetic mineralogy experiments included Currie point measurements (using a CS-3 

apparatus combined with a KLY-2 kappabridge, Agico, Czech Republic), acquisition of 

isothermal remanent magnetization (IRM) and thermal demagnetization of the three-

component IRM (Lowrie, 1990). IRM was imparted on selected specimens by using a 

Molspin pulse magnetizer (maximum field 1 T). 

5. Results 

5.1. Permian red sediments and igneous rocks 

5.1.1. Magnetic mineralogy 

Magnetic minerals in these rocks were identified by monitoring the magnetic susceptibility 

during heating-cooling runs from room temperature up to 700°C. In some cases, the 

experiments started from liquid nitrogen temperature (e.g. Fig. 6, SMP160, 137). 

In most of the basalts, and in intercalated tuffs (Fig. 6, SMP44), the magnetic mineral was 

identified as a slightly oxidized magnetite with Curie temperature a bit higher than 575°C. 

Some exhibited the Verwey transition in the low-temperature part of the susceptibility curve 

(Fig. 6, SMP160), some well-defined Hopkinson peak at 540-580°C (Fig. 6, SMP36). 

Exception is locality P18, where Curie point temperature around 680°C indicates haematite 

(Fig. 6, SMP9). 

The red shales show presence of haematite, with Curie point around 680°C (Fig. 6, SMP131, 

137). In addition, paramagnetic minerals (e.g. iron bearing silicate minerals) must be present 
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in abundance. The paramagnetic hyperbola was especially well visible on the low-temperature 

part of the susceptibility curve for sample SMP137 (Fig. 6). The paramagnetic minerals seem 

to produce magnetite during heating (dramatically increased susceptibility on the cooling 

curves of SMP131 and SMP137 (Fig. 6). 

5.1.2. Paleomagnetic results 

The intensity of the NRM signal before demagnetization in the igneous rocks was very 

variable (1 x 10-3 – 5 x 10 A/m) and the magnetic susceptibility was between 245 and 49 229 

x 10-6 SI. In the red sediments the NRM intensity was in the range of 9 x 10-5– 3 x 10-2 A/m, 

the susceptibility in the range of 37-283 x 10-6 SI. 

Alternating Field (AF) demagnetization was ineffective for both types of rocks. Stepwise 

thermal method efficiently demagnetized the NRM signal (e.g. Fig. 7, specimens SMP28, 35, 

46, 67, 135A, 156, 228). In cases, where the decay was not complete even at 680°C (Fig. 7, 

specimens SMP3, 77, 231) the tendency towards the origin of the Zijderveld diagram was 

clear. Thus, the experiments provided excellent material for principal component analysis 

(Kirschvink, 1980) and statistical evaluation on the locality level. The results are shown in 

Table 1. There was only one locality of red sediments where the directions of the NRM did 

not decay towards the origin, but moved along great circles (locality P3). In this case the 

McFadden and McElhinny (1988) method was used to determine the locality mean direction, 

but the result had to be excluded from tectonic interpretations due to larger than 16° 

confidence circle. It is important to note that the locality mean directions, before tectonic 

corrections (Table 1), always depart significantly from the direction of the present local 

Earth´s magnetic field which is a sign of the long-term stability of the paleomagnetic signals. 

5.2. Triassic sediments 

5.2.1. Magnetic mineralogy 
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Except for the Lower Triassic variegated siltstone (locality T1), the IRM acquisition curves 

showed the dominance of a magnetically soft magnetic mineral (Fig. 8). On the thermal 

demagnetization of the three component IRM, the variegated siltstone (Fig. 8, specimen 

SMP280B) clearly shows the dominance of the hard and medium hard components, which 

however, decay parallel to the soft component. The interesting aspect of the variegated 

siltstone in question is that a substantial part of the NRM survives even 700°C, pointing to 

hematite as the carrier of the NRM, while the IRM seems to be governed mainly by another 

magnetic mineral, possibly oxidized magnetite. In the other cases, the largest IRM component 

was soft. In specimens representing Anisian shallow-water carbonates (Fig. 8, SMP250A) and 

Anisian – Lower Carnian hemipelagic marly limestones (Fig. 8, SMP540) the soft component 

decayed well before the Curie point of magnetite, while the susceptibility re-measured after 

each heating step started to decrease dramatically as soon as the soft component was 

demagnetized. The IRM acquisition experiments repeated on the same specimens resulted in 

producing a mineral with much higher than the original intensity. 

5.2.2. Paleomagnetic results  

Initial values of the NRM were in the 1 x 10-3 and in the 1 x 10-2 A/m range. Magnetic 

susceptibilities varied from minus 6 to plus 309 x 10-6 SI. Thermal and AF demagnetizations, 

respectively, of sister specimens from pilot samples served as a basis for choosing the method 

for demagnetizing the rest of the samples from the respective localities. When the two 

methods produced similarly well-defined demagnetization curves, AF method was preferred 

to demagnetize the rest of the samples from a given locality in order to avoid mineralogical 

changes on heating. However, occasionally AF demagnetization was followed with a single 

heating step (Fig. 9, SMP 271 and 338A) in order to document that the results of the two 

methods define the same lines on the Zijderveld diagrams. The curves in Fig. 9 clearly show 

the presence of two components. The lower temperature component was easily removed and 
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represents most probably the present day viscous remanent magnetization. The higher-

temperature component decayed towards the origin. Exception is specimen SMP280A (Lower 

Triassic shale), where it was not possible to achieve the complete decay of NRM even at 

675°C due to extremely high viscosity, which already started to disturb the measurements at 

600°C. 

The above results were evaluated by means of principal component analysis (see above) and 

the components heading towards the origin of the Zijderveld diagrams were entered into the 

statistical evaluation at the locality level. For locality T1, only a secondary component was 

identified, which was, however very well-defined for all the collected samples (Table 2, 

locality T1). The locality mean directions are very well-defined statistically and before 

tectonic corrections they differ from the present day direction of the Earth´s magnetic field 

(Dec=0, Inc=60°) at the sampling localities (Table 2). 

6. Discussion 

6.1. Discussion of the Permian paleomagnetic results 

The results represent mostly volcanic rocks (lava flows, dykes, and in one case an intercalated 

tuff horizon) and red sediments. The positions of the lava flows were possible to measure 

directly from the attitude of intercalated tuffs or infer from the underlying and/or overlying 

sediments.  

The paleomagnetic directions for the red sediments form two distinct groups (Fig. 10). Both 

are accompanied by those obtained for igneous rocks of Permian age. The larger group 

comprises all results from the Boca partial nappe from the Nízke Tatry Mts. and from the 

Malé Karpaty Mts. The remaining single igneous locality and two sedimentary localities from 

the Malužiná partial nappe form the other group. When calculating the overall mean 

paleomagnetic directions for the larger group, before and after tilt corrections, respectively, 
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we observe some scatter, which is considerably reduced after omitting two directions (Table 

1, localities P4, P9) using the method of Vandamme (1994). For the remaining 15 localities 

the tilt test is positive (Fig. 10) and the overall mean paleomagnetic direction is Dec=249.6°, 

Inc= -20.4°, k=22.9, α95=8.2. The result is interpreted in terms of about 70° CW net rotation 

with respect to the present north. It has to be noted, however, that the overwhelming 

dominance of the reversed polarity magnetizations (except locality P2, close to the bottom of 

the Ipoltica Valley section) fits better to ages older than 267 Ma for the source rocks (the end 

of the Kiaman Reverse-polarity Hyperchron is placed at ~ 267 Ma (Menning 1995; Ogg et al., 

2016), but this is not critical from the viewpoint of the tectonic interpretation of the 

paleomagnetic results. 

The above overall mean paleomagnetic direction is based on a robust set of data since they 

represent different lithologies and different carriers of the remanent magnetizations, either 

haematite (typical for red sediments, but also occurring at locality P18 in a lava flow) or 

magnetite, typical for the igneous rocks. Moreover, the sampling localities are geographically 

distributed and the paleomagnetic directions before tilt corrections are far from that of the 

present Earth´s magnetic field at the sampling area. 

The smaller group consisting of localities P15, P16, P17 defines a paleomagnetic direction of 

Dec=187.4°, Inc=-21.4°, k=84, α95=13.5°, which is an apparently non-rotated paleomagnetic 

direction (Fig. 10). These localities belong to the Malužiná partial nappe which is structurally 

in higher position than the Boca partial nappe comprising the other localities from the Nízke 

Tatry Mts. (Fig. 4B). This result can be considered as the consequence of local tectonics, yet 

we cannot disregard another option. Namely, that the remanent magnetizations in the 

Malužiná partial nappe can be much younger than Permian, since before tilt corrections they 

are close to the reversed polarity counterpart of the direction of the present Earth´s magnetic 
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field at the sampling area. In any case, at this stage of knowledge we have left them out from 

the regional tectonic interpretation. 

6.2. Discussion of the Triassic paleomagnetic results 

The statistically well-defined paleomagnetic directions for the Triassic sediments, mostly 

carbonates, except locality T1, were subjected to inclination-only as well as tilt tests (Fig. 11, 

12). Three localities were not included in the tests. Two of them (T1 and T3) were omitted 

because of the obviously post-tilting age of the NRM (Fig. 11). For locality T1 the linear 

segment in the Zijderveld diagram is not decaying towards the origin (Fig. 9, SMP280A), thus 

the well-defined linear segment must represent secondary NRM. Locality T3 was affected by 

complicated syn-sedimentary and repeated post-sedimentary tectonic deformations. The third 

locality excluded from the tests is T9 as a consequence of the Vandamme cutoff (1994). For 

the remaining 13 localities the tests are positive (Figs.11, 12). Despite of this the primary 

origin of the magnetizations is not likely. The reason is that the sediments cover the time span 

from the Anisian to Norian (about 40 Ma) when numerous reversals of the geomagnetic field 

were detected (Ogg et al., 2016), while the Triassic localities exhibit exclusively normal 

polarities. Therefore, we interpret the results obtained for the Triassic rocks as the 

consequence of remagnetization during the Cretaceous Normal Super-Chron. Such 

interpretation of the new results for the Hronic Unit are in line with previous ones for the 

Mesozoic rocks of the Fatric and Tatric nappe units. According to Grabowski (2000) and 

Grabowski et al. (2009), the particular thrust slices were affected by remagnetization during 

the Cretaceous Normal Super-Chron at various stages of deformation, some in horizontal and 

some in tectonically inclined position.  

A remarkable feature of the assemblage of the tilt corrected locality mean directions, obtained 

for Triassic rocks from the Hronic Unit is a quite tight cluster close to Dec=34°and Inc=54°. 
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Although the population of the locality mean directions satisfy the criteria for Fisherian 

distribution, there are moderate (localities T6, T11-13) or considerable (locality T7) 

departures from the overall mean declination. As the Triassic results represent different partial 

nappes, distributed in W-E direction, it is logical to investigate the problem of possible 

bending after the acquisition of the remanence. As Fig. 13 documents such correlation is not 

in evidence, which prohibits an interpretation of the declination differences as a result of 

oroclinal bending or radial thrusting.  

The duration of the Cretaceous Normal Super-Chron (124.5-83.5 Ma) leaves quite a long time 

period for remagnetization. This can be narrowed down to 90-80 Ma, based on numerous 

fission track and geochronological data. They record a thermal event at 90-80 Ma related to 

the burial of the crystalline basement due to overthrusting by the cover thin-skinned nappes 

followed by exhumation and collapse of the overthickened orogenic wedge during the Late 

Cretaceous to middle Eocene (e.g. for FT data see comprehensive review by Králiková et al., 

2016; Putiš et al., 2008; 2019; Etzel et al., 2018).  

The temperature in the Tatric-Infra-Tatric crystalline basement had to rise above 320°C, 

which is the upper limit for the zircon partial annealing zone (Tagami et al., 1998). At the 

same time the temperature did not exceed 350°C, because the Ar/Ar and Rb/Sr datings of the 

Tatric crystalline basement mostly record the Late Variscan 320-280 Ma ages (Janák and 

Onstott, 1993; Maluski et al., 1993; Janák 1994; Kráľ et al., 1997; 2013). There also exist 

isotope age data directly from the Hronic Unit representing the diagenetic age of tectonically 

induced burial due to thrusting. This was obtained with K-Ar method on bentonites forming 

thin layers of pyroclastic material within the Middle Triassic Reifling Fm. in the Tatry Mts. 

(Sródon et al., 2006) and Považský Inovec Mts. (Wolska et al., 2002) which revealed similar 

ages around 90-80 Ma. The maximum paleotemperature in sedimentary sequences of the 

Hronic Unit was estimated to 160-270° C. Colour alteration indices (CAI) in the Hronic Unit 
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are generally low, pointing only to diagenetic conditions. This elevated temperature is 

insufficient for thermal resetting (Grabowski et al. 1999; Gawlick et al., 2002), thus the 

remagnetization in the Triassic sediments is more likely of chemical than thermoviscous 

origin. The agents for remagnetization can be thrusting expelled orogenic fluids from the 

Tatric crystalline basement in the Fatric (Grabowski et al., 2009; Prokešová et al., 2012) as 

well as in the Hronic nappe units.  

6.3. Paleotectonic implications 

The Permian paleomagnetic inclinations for the Boca partial nappe of the Nízke Tatry Mts. 

and for the Malé Karpaty Mts. suggest that the Hronic Unit was situated between stable 

Europe and Africa (Fig. 14). The paleolatitudes for the Triassic rocks fit perfectly the 90-80 

Ma interval in a position close to the southern margin of stable Europe, thus reinforcing the 

acquisition of the remanences during thrusting. Compared to reference stable European and 

African declinations, a CCW rotation of about 60° taking place after 30 Ma must be taken 

into account for the Central Western Carpathians (see comprehensive review by Márton et al., 

2016). This means that the Hronic Unit must have rotated relative to stable Europe about 90° 

and to Africa about 110° in CW sense, after 90 Ma (Fig. 14 and supplementary material Table 

1). The net vertical axis rotation between the Permian and the Late Cretaceous is about 36° in 

the CW sense (Table 4). This means about 21° relative to stable Europe and 50° to Africa in 

the CW sense. The timing of this older rotation is loosely controlled as it must have taken 

place after the Permian but before 90 Ma. The most likely time is between the Middle Triassic 

and Middle-Late Jurassic during the opening and closing of the Neo-Tethys Ocean, 

respectively (e.g. Gawlick and Missoni, 2019). Alternatively, it could be related to the 

prolonged extensional tectonic regime affecting substantial parts of the Central Western 

Carpathians during the Jurassic to Early Cretaceous (e.g. Plašienka, 2003; 2018). 



Journal of Geodynamics 141‐142 (2020) 101796,   https://doi.org/10.1016/j.jog.2020.101796 
 

17

According to our new results, the Hronic Unit must have rotated again in the CW sense after 

90-80 Ma. This rotation must have been very fast as the final nappe emplacement of the Fatric 

together with the Hronic Unit over the Tatric Unit took place in a narrow time range during 

the Turonian (Plašienka, 2018) with the possible continuation to the Santonian in the more 

external parts (Pelech et al., 2017; Hók et al., 2019). This interpretation is based on the 

following considerations. The youngest sediments preserved in the Tatric cover unit of the 

Central Western Carpathians range from the upper Cenomanian (Wolska et al., 2016) to the 

middle Turonian – Santonian (Pelech et al., 2017 and references therein). This provides the 

lower age limit for the thrusting of the Fatric and Hronic nappes. The upper age limit is 

controlled by the oldest coarse-grained deposits of the Gosau Group which are Coniacian in 

age, regarded as a new post-orogenic sedimentary cycle (Plašienka and Soták, 2015 and 

references therein). Therefore, the paleomagnetic results from the post-nappe successions of 

the Gosau Group are of crucial importance to constrain the timing of the CW rotations of the 

Central Western Carpathian nappes (Grabowski and Nemčok, 1999; Márton et al., 2016). The 

Gosau Group is represented by wedge-top, piggy-back basins developed on top of the 

accretionary wedge of the upper plate tip facing the trench/fore-deep depozones of the 

subducting South-Penninic oceanic or subcontinental crust (for comprehensive review see 

Plašienka and Soták, 2015; Putiš et al., 2019). The evolution of the Gosau Group basins was 

largely controlled by the dynamics of the underlying wedge composed of the frontal elements 

of the Fatric-Hronic nappe systems. The erosional remnants of the originally much more 

extended Gosau basins in the Central Western Carpathians have been preserved mainly in the 

northern part of the Malé Karpaty Mts., in the Middle Váh Valley and in the Žilina-Rajec 

Basin (Plašienka and Soták, 2015). Some other occurrences have been preserved in a zone 

rimming the southern side of the Pieniny Klippen Belt with complex stratigraphic relations 

due to the Late Eocene to Miocene tectonics (Fig. 1, 15). So far, only few paleomagnetic 
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directions of pre-tilting age were published for the Campanian to middle Eocene sediments of 

the Gosau Group showing large 59-110° CCW vertical axis rotations (Márton et al., 1992; 

2013; Túnyi and Márton, 1996). The most reliable result comes from the Campanian red 

marls in the Malé Karpaty Mts. (Fig. 15, item 1 in Table 1 in Márton et al., 2013) showing 

about 60° CCW vertical axis rotation, which is in line with evidences for the regional 

Miocene CCW rotation observed for the External Western Carpathian Flysch Belt, Pieniny 

Klippen Belt and the Central Carpathian Paleogene Basin (Márton et al., 2016 and references 

therein). Accordingly, the CW rotations in the Central Western Carpathian cover nappe units 

should have ceased before the Campanian. Considering the well-documented about 60° CCW 

general rotation (Márton et al., 2009; 2016) observed for the Late Eocene to Oligocene 

sediments of the Central Carpathian Paleogene Basin (Fig. 15), which represents the younger 

overstep sequence with distinctive transgressive position above the Gosau Group in the 

Žilina-Rajec Basin (Soták et al., 2017; 2019), or more to the east, above various erosional 

levels of the Central Western Carpathian nappe structure (e.g. Soták et al., 2001) the total pre-

Senonian CW rotation inferred is about 94°. 

The question is if the post-Cenomanian and pre-Senonian CW vertical axis rotation was 

entirely or partly due to the emplacement of the Hronic Unit above the deeper nappe units, or 

the whole assemblage of the Central Western Carpathian nappe pile was participating in it. 

The earlier published (see review by Márton et al., 2016) pre-Cenozoic paleomagnetic results 

from the Central Western Carpathian units (Fig. 15) were obtained at very different times 

using different field and laboratory methods. Moreover, they produced mostly sporadic data, 

which are difficult to consider as constraints for tectonic models. Nevertheless, some have 

been interpreted as a result of oroclinal bending or radial thrusting (e.g. Kruczyk et al., 1992; 

Grabowski and Nemčok 1999; Grabowski et al., 2010). More recently paleomagnetic results 

were reported from Lower Triassic red beds resting directly upon the Tatric crystalline 
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basement (Szaniawski et al., 2012; 2020), which show virtually no rotation in relation to the 

present north (small black arrows in Fig. 15). Unlike our Permian results, these directions are 

conspicuously close to the present day Earth´s field direction at the sampling localities before 

tectonic corrections, yet are interpreted as primary due to positive tilt test. A remarkable 

feature of these results is that they exhibit consistent paleomagnetic declinations throughout 

the substantial part of the Central Western Carpathians. Thus, similarly to our present 

findings, they do not support the oroclinal bending model of the Central Western Carpathians. 

On the merit of the positive tilt test, Szaniawski et al., (2012; 2020) postulated a post-Lower 

Triassic moderate CCW rotation with respect to the APWP for stable Europe. These authors 

assume that this CCW rotation took place during Late Cretaceous thrusting. In the view of our 

results from the Hronic Unit, this means a considerable relative rotation between the Tatric 

and Hronic units during the nappe emplacements. Proving or rejecting such model requires 

further paleomagnetic investigations.  

Conclusions 

The presented paleomagnetic results from the Late Paleozoic and Triassic rocks of the Hronic 

nappe units demonstrate that: 

1) The Permian overall mean paleomagnetic direction is based on a robust set of data since it 

relies on locality mean directions, which are geographically distributed, represent different 

lithologies, and different carriers of the remanent magnetizations. Moreover, the 

paleomagnetic directions before tilt corrections are far from that of the present Earth´s 

magnetic field at the sampling area pointing to a long-term stability of the paleomagnetic 

signal. Tilt test constraining the age of the magnetization is positive. The paleolatitude 

calculated from the overall mean inclination points to a paleoposition of the studied area close 

to the European platform during the Permian. 
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2) The paleomagnetic directions of the Anisian – Norian carbonate sediments are significantly 

different from that of the present Earth´s magnetic field in the sampling area (evidence for 

long term stability). Most of the paleomagnetic directions obtained for geographically 

distributed localities pass inclination-only and tilt tests with the positive result. Nevertheless, 

the primary origin of the ChRM was excluded because of solely normal polarities and the 

paleolatitude fitting the 90-80 Ma interval in a position close to stable Europe. 

3) The overall mean paleodeclination for the Triassic sediments with Late Cretaceous 

remagnetizations show about 34° CW rotation relative to the present north, which considering 

the 60° CCW Miocene rotation of the Central Western Carpathians means about 94° CW 

vertical axis rotation. This rotation must have taken place during Turonian – Santonian and 

can be connected to thrusting of the Hronic Unit over the structurally lower nappe units 

and/or the simultaneous rotation of the whole nappe stack connected to the subduction of the 

South-Penninic oceanic crust below the Central Western Carpathians accretionary wedge. 

4) The older CW rotation affecting the Hronic Unit was about 36°. We interpret it as a 

vertical axis block rotation connected to major tectonic events in the Neo-Tethys. 

5) Our data set does not support oroclinal bending during or after nappe emplacement. 

6) Our future research will concentrate on the nappe units below the Hronic Unit, in order to 

solve problems, like possible simultaneous rotations of the Tatric-Fatric-Hronic nappe stack 

and the problem of the correct model in which some earlier observed differences in locality 

mean declinations can be interpreted.  
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Table 1 
 Locality Litostratigraphy  Coordinates n/no D° I° K α95° DC° IC° k α95° Dip Lat° Lon° δp° δm° B95° plat° 
NT                    
P1 Ipoltica 2 

SMP128-137 
Malužiná Fm. red 

shale 
1st megacycle 
Lower Permian 

48°58’17.1” 
19°58’54.9” 

 
10/10 249 -23 230.2 3.2 241 -12.2 230.2 3.2 358/27 23.5 128.4 3.2 1.6 2.3 6.2 

P2 Ipoltica 3 
SMP138-147 

Malužiná Fm. basaltic 
andesite/basalt 
1st megacycle 
Lower Permian 

48°58’16.0” 
19°58’54.9” 

 
10/10 97.1 12.3 72.3 5.7 90.4 15.1 72.3 5.7 358/27 5.5 104.6 5.9 3.0 4.2 7.7 

P4a Ipoltica 5a 
SMP180-190 

Malužiná Fm. basaltic 
andesite/basalt 
1st megacycle 
Lower Permian 

48°58’33.8” 
19°58’41.0” 

 
9/11 45.0 -22.0 37.7 8.5 73.1 -42.1 37.7 8.5 353/46       

P5 Ipoltica 7 
SMP213-218 

Malužiná Fm. red 
siltstone 

1st megacycle 
Lower Permian 

48°58’50.6” 
19°58’30.4” 5/6 268.4 -10.9 52.7 10.6 258.1 -12.8 52.7 10.6 351/46 12.7 114.7 10.8 5.5 7.7 6.5 

P6 Ipoltica 4 
SMP148-160 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°59’42.9” 
19°57’42.2” 12/13 250.1 -17.4 42.7 6.7 242.2 -10.2 42.7 6.7 348/32 22.1 128.2 6.8 3.5 4.8 5.3 

P7 Ipoltica 1 
SMP100-108 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

49°00’04.6” 
19°57’16.0” 9/9 273.5 -14.2 279.9 3.1 267 -10.0 279.9 3.1 8/30 5.8 108.9 3.1 1.6 2.2 5.0 

P8 Nižný Chmelinec 
SMP259-266 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°58’35.7” 
19°54’04.0” 5/8 261.4 -12.3 90.7 8.1 248.2 -27.6 90.7 8.1 322/38 25.3 116.6 8.8 4.8 6.5 14.6 

P9 Svarinka 4 
SMP233-240 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°58’31.5” 
19°52’06.9” 

 
8/8 241.3 13.6 54.9 7.5 256.6 +22.7 54.9 7.5 350/45       

P10 Svarinka 2-3 
SMP228-232 

Malužiná Fm. red 
shale/siltstone + 

basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°50’41.2” 
19°51’53.1” 5/5 250.3 -17.9 138.1 6.5 241.4 -10.3 138.1 6.5 348/35 22.4 128.8 6.6 3.4 4.7 5.2 

P11 Kvetnica 1 
SMP30-39 
SMP47-50 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

49°00’38.8” 
20°17’14.2” 9/14 249.2 -41.2 62.3 6.6 247.8 -15.3 62.3 6.6 63/26 20.4 122.2 6.8 3.5 4.9 7.8 

P12 Kvetnica 2 
SMP40-46 

Malužiná Fm. tuffs 
3rd megacycle 
Upper Permian 

49°00’38.8” 
20°17’14.2” 7/7 266.3 -50.5 165.2 4.7 259.2 -25.9 165.2 4.7 63/26 17.3 109.2 5.1 2.8 3.7 13.6 

P13 Nižná Boca 1 
SM2418-2425 

Nižná Boca Fm.  
doleritic dyke 

Upper Permian? 

48°56’59.5” 
19°46’00.3” 

 
8/8 282.6 -38.0 80.9 6.2 220.3 -40.2 80.9 6.2 340/65 49.0 134.5 7.5 4.5 5.8 22.9 
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Table 1 continuation 
 Locality Litostratigraphy  Coordinates n/no D° I° K α95° DC° IC° k α95° Dip Lat° Lon° δp° δm° B95° plat° 
P14 Nižná Boca 2 

SM2426-2434 
Nižná Boca Fm.  

siltstone 
Upper Permian? 

48°56’59.5” 
19°46’00.3” 

 
8/9 271.7 -34.3 55.5 7.5 223.6 -31.0 55.5 7.5 340/65 42.3 136.6 8.4 4.7 6.3 16.7 

P15 Malužiná quarry 
SMP51-75 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°58’29.6” 
19°45’21.5” 16/25 217.7 -72.3 86.8 4.0 191.9 -25.3 86.8 4.0 360/50 53.0 180.3 4.3 2.3 3.2 13.3 

P16 Malužiná forest 1 
SMP76-87 

Malužiná Fm. red 
siltstone 

3rd megacycle 
Upper Permian 

48°58’42.8” 
19°46’45.5” 10/12 204.3 -52.3 31.2 8.8 178.9 -23.8 31.2 8.8 323/41 53.4 201.6 9.4 5.0 6.9 12.4 

P17 Malužiná forest 2 
SMP88-99 

Malužiná Fm. red 
siltstone 

3rd megacycle 
Upper Permian 

48°58’42.8” 
19°46’45.5” 10/12 209.0 -38.0 29.1 9.1 191.1 -14.7 29.1 9.1 323/41 47.5 183.4 9.3 4.8 6.7 7.5 

MK 
Mts. 

                   

P18 Sološnica 1 
SMP1-21 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°26’43.1” 
17°13’17.6” 13/21 280.0 7.0 126.7 3.7 268.3 -25.1 126.7 3.7 340/70 10.9 99.6 4.0 2.1 2.9 13.2 

P19 Sološnica 2 
SMP109-118 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°26’43.1” 
17°13’17.6” 9/10 272.8 -24.6 79.7 5.8 232.1 -28.3 79.7 5.8 340/70 36.0 126.8 6.4 3.5 4.7 15.1 

P20 Lošonec 1 
SMP22-29 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°29’23.5” 
17°22’15.7” 6/8 259.7 16.5 41.7 10.5 261.7 -14.1 41.7 10.5 333/84 10.9 108.8 10.7 5.5 7.7 7.2 

P21 Lošonec 2 
SMP119 127 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°29’23.5” 
17°22’15.7” 10/9 262.7 7.9 146.5 4.0 253.4 -18.5 146.5 4.0 333/84 18.1 113.5 4.2 2.2 3.0 9.5 

Table 1: Hronic Unit, Late Paleozoic Ipoltica Group, characteristic remanence magnetizations. Summary of locality/site mean paleomagnetic directions 
based on the results of principal component analysis (Kirschvink, 1980). Localities are numbered according to the Fig. 1 and 4. Key: geographic coordinates 
(WGS84) measured by GPS, n/no: number of used/collected samples (the samples are independently oriented cores); D, I (Dc, Ic): declination, inclination 
before (after) tilt correction; k and α95: statistical parameters (Fisher, 1953). Lat and Lon: coordinates of the paleomagnetic pole; δm and δp: half cones of the 
error ellipse of the paleomagnetic pole. Plat: paleolatitude. References for geological ages: Vozárová and Vozár 1981, 1988, Vozárová et al. 2014, 2018. 
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Table 2 
 Locality  Litostratigraphy Coordinates n/no D° I° k α95° DC° IC° k α95° dip remark Mts Lat

° 
Lon° δp° δm° B95° plat° 

T1 Šuňava 
SMP279-287 

Šuňava Beds  
Lower Triassic 

49°01'01.0" 
20°01'56.2" 9/9 66.2 42.3 30.4 9.5 54.4 21.1 30.4 9.5 15/30 postfolding NT      24.5 

T2 
Liptovské 
Revúce 
SMP311-316 

Gutenstein Fm. 
Anisian 48°54'15.8" 

19°10'05.6" 6/6 140.5 71.4 51.0 9.5 28.9 48.9 51.0 9.5 8/52 
 

VF 60.9 139.5 12.5 8.2 10.1 29.8 

T3 
Podbrezová-
Lopej 
SMP337-348 

Gutenstein Fm. 
Anisian 48°49'11.1" 

19°29'50.7" 10/12 44.4 46.4 185.0 3.6 20.8 12.8 185.0 3.6 342/50 postfolding NT      27.7 

T4 Svarínka 6  
SMP247-258 

Gutenstein Fm. 
Anisian 

49°00'00.5" 
19°51'06.7" 10/12 77.3 24.7 49.5 7.2 27.4 51.9 49.5 7.2 300/60  NT 63.8 138.5 9.8 6.7 8.1 32.5 

T5 Stará Lehota 
SMP635-645 

Gutenstein Fm. 
Anisian 

48°38'23.5" 
17°56'00.1" 7/11 65.8 19.8 62.9 7.7 19.1 53.4 62.9 7.7 285/62  PI 69.6 146.9 10.7 7.4 8.9 34.0 

T6 Homôľka 
SMP536-548 

Reifling Fm. Upper 
Anisian – Lower 
Carnian 

48°54'28.8" 
18°14'14.4" 9/12 89.6 56.0 223.6 3.5 52.7 71.7 223.6 3.5 301/23  SV 58.0 74.2 6,1 5.3 5.7 56.5 

T7 Dolný Jelenec 
SMP317-325 

Reifling Fm. Upper 
Anisian – Lower 
Carnian 

48°51'32.9" 
19°09'19.6" 8/9 279.0 79.0 42.1 8.6 357.4 35.6 42.1 8.6 11/54 

 
VF 60.8 204.2 10.0 5.8 7.6 19.7 

T8 Zámostie 
SMP326-336 

Reifling Fm. Upper 
Anisian – Lower 
Carnian 

48°49'31.8" 
19°26'07.2" 11/11 63.0 64.0 203.8 3.2 39.0 44.9 203.8 3.2 9/25 

 
NT 52.5 131.6 4.0 2.6 3.2 26.5 

T9 Michalovo 
SMP376-386 

Reifling Fm. Upper 
Anisian – Lower 
Carnian 

49°00'05.7" 
19°44'15.8" 11/11 90.8 61.3 267.5 2.8 132.4 71.2 267.5 2.9 229/20 Vandamme 

cutoff NT       

T10 
Liptovská 
Porúbka 
SMP399-417 

Reifling Fm. Upper 
Anisian – Lower 
Carnian 

49°01'00.2" 
19°43'00.4" 8/20 23.0 7.1 61.4 7.1 24.6 57.1 61.4 7.1 201/50 

 
NT 69.0 133.0 10.4 7.6 8.9 37.7 

T11 Svarín 
SMP364-375 

Reifling Fm. Upper 
Anisian – Lower 
Carnian 

49°00'45.7" 
19°51'37.4" 11/12 126.3 40.1 57.5 6.1 62.0 67.0 67.0 5.6 337/53

37/45 

 
NT 50.8 84.5 9.3 7.7 8.5 49.7 

T12 Východná 
SMP387-397 

Reifling Fm. Upper 
Anisian – Lower 
Carnian 

49°02'36.2" 
19°53'09.3" 11/11 92.0 40.0 59.7 6.0 63.6 60.1 59.7 6.0 308/30 

 
NT 45.7 95.2 9.1 6.9 7.9 41.0 

T13 Važec 
SMP267-278 

Reifling Fm. Upper 
Anisian – Lower 
Carnian 

49°03'32.3" 
19°57'21.6" 11/12 99.8 70.9 35.4 7.8 84.9 49.8 27.1 8.9 

60/22 
94/23 
84/20 

 
NT 25.8 92.1 11.9 7,9 9.7 30.6 

T14 
Liptovská 
Osada 
SMP197-206 

Wetterstein Fm. 
Lower Anisian – 
Upper Carnian 

48°56'25.8" 
19°15'48.0" 6/9 34.4 58.1 352.2 3.6 25.2 37.6 352.2 3.6 8/22 

 
VF 55.6 154.5 4.2 2.5 3.2 21.1 

T15 
Podbrezová-
Piesok 
SMP349-363 

Oponitz Beds  
Lower Carnian 48°49'12.4" 

19°33'36.1" 11/13 123.8 83.4 
82.4 38.2 7.5 17.6 63.2 38.2 7.5 3/30 

 
NT 77.3 121.9 11.8 9.3 10.5 44.7 

T16 
Liptovský 
Hrádok 
SMP161-172 

Hauptdolomite Fm. 
uppermost Carnian - 
Norian 

49°02'39.1" 
19°43'55.4" 12/12 54.8 67.3 175.6 3.3 38.9 37.2 175.6 3.3 25/32 

 
NT 48.2 138.1 3.9 2.3 2.9 20.8 

Table 2. Hronic Unit, Triassic sediments, characteristic remanence magnetizations. Summary of locality mean paleomagnetic directions based on the results 
of principal component analysis (Kirschvink, 1980). Localities are numbered according to Fig. 1 and 4. Key: geographic coordinates (WGS84) measured by 
GPS, n/no: number of used/collected samples (the samples are independently oriented cores); D, I (Dc, Ic): declination, inclination before (after) tilt 
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correction; k and α95: statistical parameters (Fisher, 1953). Lat and Lon: coordinates of the paleomagnetic pole; δm and δp: half cones of the error ellipse 
of the paleomagnetic pole. plat: paleolatitude. References for geological ages: Havrila 2011. 
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Table 3 

 Locality Litostratigraphy Coordinates remark dip Mts. 
P3 Ipoltica 6 

SMP191-196 
Malužiná Fm. red 
siltstone/sandstone 

1st megacycle 
Lower Permian 

48°58’16.0” 
19°58’54.9” 

 

α95=20 22/40 NT 

P4b Ipoltica 5b 
SMP207-212 

Malužiná Fm. basaltic 
andesite/basalt 
1st megacycle 

Lower Permian 

48˚ 58’33.8” 19˚ 
58’41.1” 

α95=31 353/46 NT 

P22 Spišské Bystré 
SMP173-179 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

49°01‘39.1“ 
20°15‘28.9“ 

unstable 9/30 NT 

P23 Svarínka 1 
SMP219-227 

Malužiná Fm. basaltic 
andesite/basalt 
3rd megacycle 
Upper Permian 

48°58‘41.2“ 
19°51‘53.1“ 

heavily overprinted and becomes unstable before 
complete demagnetization  

337/34 NT 

P24 Svarínka 5 
SMP241-246 

Malužiná Fm. red shale 
3rd megacycle 
Upper Permian 

49°58‘31.5“ 
19°52‘06.9“ 

about 30% of the original intensity is lost by 
675°, before that large scatter, at 675° instability 
sets in 

344/42 NT 

T17 Terchová 
SMP831-842 

Reifling Fm. Upper 
Anisian – Lower Carnian 

49°14‘54.7“ 
19°02‘20.3“ 

enormous scatter 5/34 MF 

T18 Ježovka 
SMP656-669 

Dachstein Fm. Carnian - 
Norian 

49°31‘53.0“ 
17°20‘42.0“ 

well-defined specimen directions exhibit great 
circle distribution 

334/52 MK 

T19 Chteľnica 1 
SMP646-651 

Upper Jurassic - Lower 
Cretaceous 

49°35‘51.9“ 
17°36‘18.6“ 

two population of directions  360/50 MK 

T20 Chteľnica 2 
SMP652-655 

Dachstein Fm. Carnian - 
Norian 

49°35‘51.9“ 
17°36‘18.6“ 

heavily overprinted/weak remanence  358/48 MK 

Table 3. Rejected localities. For the location see Fig. 1, 4. NT=Nízke Tatry Mts., MF=Malá Fatra Mts., 
MK=Malé Karpaty Mts.
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Table 4 

            Based on localities Based on samples 

Area Age N D° I° k α95° Dc° Ic° k α95° fold test Pole 
lat° 

Pole 
long° K A95° Pole 

lat° 
Pole 
long° K A95° 

Hronic Unit  Triassic 13 74.3 59.0 6.4 17.8 34.4 54.3 20.1 9.5 positive 
85±24% 61.3 122.2 13.6 11.7 60.3 118.2 11.1 4.0 

Hronic Unit  Permian 15 85.0 18.0 14.3 10.5 69.6 20.4 22.9 8.2 positive 
82±49% 21.7 117.9 24.8 7.8 21.4 117.3 21.2 2.8 

Table 4. Overall mean palaeomagnetic directions and overall mean palaeomagnetic poles for the Hronic Unit. 
Key: N: number of geographically distributed localities; D°, I° and DC°, IC°: declination, inclination before and after tilt correction; k, α95° and K, 
A95° statistical parameters (Fisher, 1953) of the palaeomagnetic directions and palaeomagnetic poles, respectively. Tilt test based on Enkin 
(2003a). 
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Supplementary Table 1 

 stable Europe Africa Hronic Unit stable Europe – Hronic Unit Africa – Hronic Unit 

 N Pole lat.  Pole 
lon. A95 N Pole lat. 

N 
Pole 

lon. E A95 N Pole lat. Pole 
lon. A95 Poleward 

displacement Apparent rotation Poleward 
displacement 

Apparent 
rotation 

30 Ma 2 80.3 152.6 21.1 8 82.6 173.6 6.0 10 46.5 296.6 7.3 4.8 ± 8.5 -68.4 ±21.8 5.0 ±6.9 -63.2 ±9.0 

90 Ma 4 73.4 158.1 6.2 20 70.3 238.0 2.6 13 61.3 122.2 11.7 -0.8 ± 9.4 22.1 ±12.0 -3.9 ±8.8 49.9 ±10.9 

270 Ma 16 51.1 157.4 3.6 11 38.1 239.6 7.4 15 21.7 117.9 7.8 5.4 ± 6.3 43.4 ±6.4 -6.4 ±7.9 99.7 ±8.0 

Supplementary Table 1. The apparent rotation and poleward displacement of the Hronic Unit (48.9°N, 19.4°E) with respect to stable Europe and 
Africa (Torsvik et al., 2012) based on Debiche and Watson (1995), Enkin (2003b). 
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represent inclinations before (after) tectonic correction. Localities in circles yield 
postfolding magnetizations (T1, T3).
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Fig. 12. Tilt test for the Triassic rocks of the Hronic Unit. Locality paleomagnetic mean directions 

with α  are shown before (left side) and after (right side) tilt corrections. Stereographic 95

projections, all vectors are pointing downwards. Stars represent the present day 

geomagnetic dipole field at the sampling area. Between the left and right diagrams the 

result of the stepwise untilting is plotted.
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Fig. 13. Declination deviations relative to the fold axes deviations (method proposed by Schwartz and Van der 
Voo,1983 and successively applied by several authors, e.g. Speranza et al., 1997).  Sr corresponds to the 
general W-E trend of the Hronic Unit, S is the strike measured at the respective localities. The  overall-
mean paleomagentic declination is  Dr,  D is the observed locality mean declination. The slope of the 
regression line does not differ significantly from zero slope, since the t test for the line is 0.62, which is 
much smaller than the critical value  (t  = 2.65) at 99% significance level.99
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Fig. 14. Comparison of paleolatitudes and paleodeclinations for the Hronic Unit with those expected in an 
African and a stable European framework calculated from the APWP by Torsvik et al., (2012). All data 
are recalculated for a reference location 48.9°N, 19.4°E. Cretaceous Normal Super-Chron, Kiaman 
Reversed-polarity Hyperchron and the mostly reversed polarity part of Illawara Series are indicated by 
shaded intervals. All data for the Hronic Unit are from the present study, except those for the Oligocene 
which are from Márton et al., 2009, 2016). All calculations are based on Butler (1992).
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Fig. 15. Geological sketch map with distribution of paleomagnetic declinations for tectonic units of the Central Western Carpathians 
(map slightly modified after Plašienka, 2003; 2012). Red and purple arrows refer to our new results (see also Tab. 1, 2, Fig. 1, 
4, present paper). Coloured circles are the locations from which the paleomagnetic results were published as the means for 
more than one sampling localities of similar age, accompanied arrows are black (positive fold test) or grey (exclusively N 
polarity), when the direction is interpreted as Late Cretaceous but pre-Senonian age and numbers correspond to items in 
Tables 1 and 2 for Mesozoic and Cenozoic rocks respectively in the overview by Márton et al., (2016). Green and yellow, not 
numbered circles with arrows are for Gosau Group and CCPB sediments from the same overview. Short black arrows are 
locality mean directions obtained for Lower Triassic sandstones of the Tatric cover Unit interpreted as primary (Szaniawski et 
al., 2020).
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