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Abstract

We have previously established that epigenetic regulator RING1 and YY1 binding protein
(RYBP) is required for the contractility of embryonic stem (ES) cell derived cardiomyocytes
(CMCs), suggesting its essential role in contractility. In order to investigate the underlying
molecular events of this phenotype, we compared the transcriptomic profile of the wild type
and Rybp null mutant ES cells and CMCs differentiated from these cell lines. We identified
genes related to ion homeostasis, cell adhesion and sarcomeric organization affected in the
Rybp null mutant CMCs, by using hierarchical gene clustering and Gene Ontology analysis.
We have also demonstrated that the amount of RYBP is drastically reduced in the terminally
differentiated wild type CMCs whilst it is broadly expressed in the early phase of differentia-
tion when progenitors form. We also describe that RYBP is important for the proper expres-
sion of key cardiac transcription factors including Mesp1, Shh and Mef2c. These findings
identify Rybp as a gene important for both early cardiac gene transcription and consequent
sarcomere formation necessary for contractility. Since impairment of sarcomeric function
and contractility plays a central role in reduced cardiac pump function leading to heart fail-
ures in human, current results might be relevant to the pathophysiology of
cardiomyopathies.

Introduction

Contractile disorders, such as cardiomyopathy and arrhythmia are often derived from struc-
tural malformations of the developing heart and lead to congenital heart defects (CHDs) [1].
Mutations in key cardiac transcription factors such as NK2 Homeobox 5 (Nkx2-5), Myocyte
Enhancer factor 2C (Mef2c) and T-box 5 (Tbx5) cause serious problems in heart development
and contractile functions [1,2]. Although the major effectors and regulators of cardiac tran-
scription are identified, there are only limited information available about how improper gene
expression and structural disorganization result in heart development defects [3-5]. During
mammalian heart formation, the early multipotent progenitor cells (MPCs) give rise to the
atrial and ventricular cell types, fibroblast cells, endocardial and epicardial cells, cells of the
conductive system (sinoatrial, atrioventricular, purkinje fiber cells), the smooth muscle cells of
the aorta, artery and the autonomic nerve cells [2]. Several ion channel genes function electro-
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physiologically in the cardiac conduction system contribute immensely towards the action
potential of the contracting heart [6]. As a result of these finely tuned events governed by series
of key transcription factors, the developing heart starts beating as early as E8.5-9 in mouse [7].
The underlying molecular events of this complex developmental process can be studied using
embryonic stem (ES) cells based in vitro differentiation systems. When ES cells are differenti-
ated to cardiac lineages in vitro, the first contractile cardiomyocytes (CMCs) appear and start
beating when the first functional sarcomeres form, which is happening mostly by the end of
the first week.

We have previously reported that mouse ES cells lacking RING1 and YY1 binding protein
(RYBP, also known as Death effector domain [DED]-associated factor, DEDAF) could not
form beating CMCs in vitro. RYBP is an epigenetic regulator and a core member of the non-
canonical Polycomb Repressive Complex 1 types (ncPRCls). Originally ncPRC1s were identi-
fied as repressor complexes, but later studies have proven that they can contribute to gene acti-
vation as well [8,9]. In vivo studies have demonstrated that RYBP is essential for the early
mouse embryonic development and the development of organ systems such as the central ner-
vous system, hematopoietic system and the eye [10-12]. By utilizing whole-genome wide tran-
scription analysis we have previously also shown that mouse ES cells lacking RYBP (hereafter
mentioned as Rybp”” or Rybp null mutant) and derivative CMCs express several key cardiac
transcription factors (including ISL1 transcription factor (Isl1), Tbx5) deficiently in compari-
son to the wild type cells. Moreover, Cardiac troponin T2 (Tnnt2), which is a major sarcomeric
component of wild type CMCs were amongst the most downregulated genes in the Rybp null
mutant, suggesting that these gene expression changes were likely to contribute to the contrac-
tility defect of the mutant cell line [13].

In this study, we dissected further the molecular events leading to the in vitro contractility
defect of the Rybp null mutant CMCs. By utilising wild type and Rybp null mutant mouse ES
cells and in vitro cardiac differentiation system we compared sarcomere formation and charac-
terised cardiac progenitor formation of the wild type and Rybp null mutant CMCs. We applied
hierarchical clustering of genome wide transcriptomics to identify genes associated with the
impaired contractility of the Rybp null mutant CMCs at pluripotent (day 0), early (day 8) and
late (day 14) differentiation stages. Our results showed that a large set of genes associated with
ion homeostasis, cell adhesion and sarcomere organisation were downregulated in the Rybp
null mutant CMCs. We investigated the protein abundance of RYBP through the time course
of in vitro cardiac differentiation and determined whether striated sarcomere and cardiac pro-
genitor pool formation were affected in the Rybp null mutant CMCs by using comparative
gene expression and protein kinetics studies. Our results show that the RYBP protein is promi-
nently represented at the early phase of cardiac differentiation and that RYBP is nearly absent
in the terminally differentiated CMCs in the wild type cultures. We also demonstrate that sar-
comeres are not formed properly and several transcription factors important for cardiac pro-
genitor formation are under-represented in the lack of RYBP. These results pinpoint the
critical role of RYBP in the early events of cardiac development and consequent sarcomere for-
mation. Our data supports that RYBP is likely required first at early differentiation phases, for
the proper cardiac progenitor pool formation.

Materials and methods
Cell lines and culture condition

Mouse (129SV/Ola) R1 [14] (hereafter mentioned as Rybp” " or wild type) and D11 [10]
(Rybp™” or Rybp null mutant) ES cells were thawed on mitomycin C (Mit C; Sigma, Cat.No
MO0503) inactivated mouse embryonic fibroblast (MEF) layer and cultured on 0.1% gelatin
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(Gelatin from bovine skin, Sigma, Cat.No G-9391) coated tissue culture plates [15]. The cells
were maintained in ES medium that contained 80% Dulbecco’s Modified Eagle’s medium
(DMEM (1x) + GlutaMAX™-I Dulbecco‘s Modified Eagle Medium, Gibco, Cat.No 31966-
021), 15% (vol/vol) foetal bovine serum (Foetal Bovine Serum, APS, Cat.No S-001A-USDA),
1% glutamine (L-Glutamine 200mM (100x), Gibco, Cat.No 25030-081), 0.1mM non-essential
amino acids (MEM Non Essential Amino Acids (100x), Corning, Cat.No 25-025 CIR), 0.lmM
2-mercaptoethanol (2-Mercaptoethanol, Gibco, Cat.No 31350-010), 50 U/ml penicillin/strep-
tomycin (Penicillin/Streptomycin (100x), Gibco, Cat.No 15140-122), 1% sodium pyruvate
(Sodium Pyruvate 100mM (100x), Gibco, Cat.No 11360-039) and 1000 U/ml Leukemia Inhib-
itory Factor (LIF, ESGRO, Chemicon/Millipore, Billerica, MA, USA). ES medium was changed
daily. The cells were passaged prior to reaching 70% confluency (approximately every 2 days).
ES cells were cultured on 0.1% gelatin coated culture plates for at least three passages before
the start of differentiation to deplete potentially present MEF cells from the ES cell culture.
Cells were cultured in humidified conditions containing 5% CO, at 37°C.

In vitro cardiac differentiation

For cardiac differentiation, embryoid bodies (EBs) were generated by the hanging-drop (HD)
method as previously described [16]. For single-cell suspensions, the cells were dissociated from
monolayer culture (day 0) with 0.25% trypsin-EDTA (Trypsin-EDTA (0.5%), Gibco, Cat.No
15400-054). The cells were counted and 1000 cells/ 20 pl differentiation medium (ES medium
without LIF) were pipetted on the lid of a bacterial dish (4x10* cells/ml). The dish was filled
with Dulbecco’s phosphate-buffered saline (DPBS (1x), Gibco, Cat. No 14190-144) to prevent
the droplets from drying out. The cells were allowed to aggregate with the help of gravity by
reversing the dish lid. After 2 days, the droplets were collected and individual EBs were plated
into a well of a 24-well plate containing 0.1% gelatin-coated coverslips for immunocytochemis-
try (ICC) experiments and in 0.1% gelatin-coated culture plates for gene expression studies. Dif-
ferentiation medium was changed every second day. Cardiomyocytes were grown for
maximum 21 days and observed for contractility every day under a phase-contrast microscope.

The samples were derived at day 0, 2, 7, 14 and 21 (labelled as d0, d2, d7, d14 and d21,
respectively) for further gene expression studies; and at d7, d14 and d21 for ICC (Fig 1), where
dO represents the pluripotent stage, d2 the embryoid body stage, d7 the early and d10, 14 the
late cardiac differentiation stages when contractile CMCs are present in abundancy. The
expression of Brachyury and Tnnt2 were analysed for cardiac mesoderm and late CMC stages
respectively.

mRNA expression analysis

RNA was isolated from the cell cultures during the time course of in vitro differentiation at the
designated time points using Gene Jet RNA Purification Kit (Thermo Scientific, Cat.No
K0732) according to the manufacturer’s protocol. The RNA was reverse transcribed to cDNA
using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Cat.No 4368814)
as per the manufacturer’s instructions. Quantitative real-time polymerase chain reactions
(qRT-PCR) was performed in SYBR®) Select Master Mix for CFX (Applied Biosystems, Cat.
No 4472942) using Bioer LineGeneK Real-time PCR System machine (Bioer, China). Relative
gene expression changes were quantified using the AACt method. The threshold cycle (Ct) val-
ues for each gene was normalized to the expression level of Hprt, as internal control. To calcu-
late the fold change, Ct values were compared to undifferentiated samples (d0, Rybp*’™).
Experiments were performed in triplicate and repeated from three independent biological
samples. See primer sequences in S1 Table.
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Fig 1. Schematic representation of in vitro cardiac differentiation. CMCs were differentiated in vitro from ES cells through EB formation by using the HD method.
Cardiac colonies were grown for maximum 21 days, sampled for mRNA expression analysis (QRT-PCR) at day 0, 2, 7, 14, 21 and fixed for ICC analysis at day 7, 14 and 21.
Samples were derived from day 8 and 14 CMCs for whole genome transcriptomics as described previously [13]. Abbreviations: ES cells: Embryonic stem cells, EBs:
Embryoid bodies, HD: Hanging drops, CMCs: Cardiomyocytes, ICC: Immunocytochemistry, qRT-PCR: quantitative real-time polymerase chain reaction.

https://doi.org/10.1371/journal.pone.0235922.g001

Immunocytochemistry

For immunofluorescence staining of the cells, cells were plated onto 0.1% gelatin-coated cover-
slips and fixed with 4% (v/v) Paraformaldehyde (PFA, Sigma, Cat.No P-6148) for 20 min at
RT. Cardiomyocytes were permeabilized with 0.2% Triton X-100 (Sigma, Cat.No T8787) for
20 min at RT and blocked with blocking buffer (5% Bovine Serum Albumin (BSA, VWR Life
science, Cat.No 9048-46-8)) for 1h at RT. Cells were washed with DPBS, then incubated with
the following primary antibodies at 4°C, overnight. Primary antibodies used for this study
include Alpha cardiac muscle actin antibody (GeneTex, Cat.No GTX101876, 1:500), Cardiac
troponin T antibody (Abcam, Cat.No ab8295, 1:2000), Cardiac troponin I antibody (DSHB,
Cat.No TI-1, 1:200), Tropomyosin antibody (BABRAHAM, Cat.No BT-GB-141, 1:400), sarco-
meric Myosin antibody (DSHB, Cat.No MF20, 1:200), Myomesin antibody (DSHB, Cat.No
B4, 1:10), Titin antibody (DSHB, Cat.No 9 D10, 1:200), RYBP/DEDAF antibody (Merck-Milli-
pore, Cat.No AB3637, 1:2000). After washing thrice with DPBS the cells were blocked with
blocking buffer for 1h, then the cells were labelled with Alexa Fluor 568" Donkey anti-Mouse
IgG (H+L) highly cross-adsorbed secondary antibody (Invitrogen, Cat.No A10037, 1:2000 for
anti-Troponin T, anti-Troponin I, anti-Myosin-Sarcomere, anti-mMac Myomesin, anti-
Titin), Alexa Fluor 488" Donkey anti-Rabbit IgG (H+L) cross-adsorbed secondary antibody
(Invitrogen, Cat.No A-21206, 1:2000 for anti-alpha cardiac Actin and DEDAF antibody) and
Alexa Fluor 546" Goat anti-Rat IgG (H+L) cross-adsorbed secondary antibody (Invitrogen,
Cat.No A-11081, 1:600 for anti-Tropomyosin) for 1h at RT. The cells were washed thrice with
DPBS, then rinsed in 4’,6’-diamidino-2-phenylindole (DAPI; Vector Laboratories, Cat.No H-
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1200) for 20 min. Cells were washed twice with DPBS and mounted in Fluoromount (Fluoro-
mount-G, Invitrogen, Cat.No 00-4958-02). The images were obtained using Olympus LSM
confocal microscope (Olympus Corporation). The positive signals were semi-quantified by
Image] software analysis using RGB measure method.

Statistical analysis

All experiments were repeated at least three times. Experiments were evaluated by using Stu-
dent T-test type 3. Means are standard deviation. Values of p < 0.05 were accepted as signifi-
cant (* p < 0.05 ** p < 0.01; *** p < 0.001).

Results

1. RYBP is abundant in the developing CMCs but nearly absent in the
terminally differentiated CMCs

Since contractility depends on the presence of CMCs, first we determined whether RYBP is
present in CMCs. We determined the amount and sub-cellular localisation of the RYBP pro-
tein in differentiating CMCs during the time course of in vitro cardiac differentiation. Wild
type ES cells were differentiated for 21 days and fixed in 4% PFA at d7, d14 and d21 where d7
represents the early and d14, d21 represent the terminal stages of cardiac differentiation (see in
Materials and methods) (Fig 1). Cardiac cultures were double labelled with anti-RYBP and
anti-CTNT antibodies. The anti-CTNT antibody recognizes the product of Tnnt2, a classical
sarcomere marker of terminally differentiating cardiomyocytes. The sub-cellular localisation
of the two corresponding proteins were determined by fluorescent microscopy (see in Materi-
als and methods). As expected, RYBP was mostly found in the nuclei of cells at all stages of in
vitro cardiac differentiation. At early differentiation stages (d7), RYBP and CTNT co-stained
the nuclei of the maturing CMCs (Fig 2A-2C) and the RYBP signal was most pronounced in
the CTNT positive cells (Fig 2C, highlighted area). Quantification of the immune-stained early
cardiac cultures showed that the RYBP and CTNT signal intensities were nearly two times
higher in the nuclei of the cells within the highlighted area than in the surrounding fields (Fig
2D). At d14, CTNT appeared in the striated sarcomeric structures of the cytoplasm (Fig 2E
and 2F). Notably, RYBP was nearly absent in the nuclei of CTNT positive cells (Fig 2G). How-
ever, there was still detectable RYBP staining in the nuclei of the surrounding CTNT positive
CMCs at d14, lacking striated sarcomeres (Fig 2G). Quantification of the fluorescent RYBP
and CTNT signals in the nuclei of the cells inside and outside the highlighted areas showed
that the RYBP signal was nearly three times lower where CTNT signals marked the striated
sarcomeric structures in the cytoplasm of the wild type cultures at d14 (Fig 2H). This pattern
was similar and more profound at d21 cultures where RYBP displayed a more modest staining
(Fig 21-2L). These data suggest that RYBP is present in the early phase of differentiation when
maturing CMCs are not arranged into striated sarcomeric structures yet. However, RYBP is
nearly absent in terminally differentiated cells, which show the matured, striated sarcomeric
pattern.

2. Transcriptome analysis reveals sarcomeric, ion channel and cell adhesion
gene expression changes in the Rybp null mutant cells

In order to investigate by which mechanism the ablation of Rybp results in contractility defects,
a detailed comparison of the mRNA transcriptomes across wild type and Rybp null mutant
mouse ES cells (d0) and derived CMCs (d8, d14) was performed [13]. Samples were collected
from the designated time points where d0 represented the pluripotent stem cells stage, d8 the
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Fig 2. RYBP protein is not present in matured CMCs but expressed at the early stage of in vitro cardiac differentiation. Imnmunocytochemical analysis of
RYBP (red) and CTNT (green) protein in wild type (Rybp” ") CMCs at d7 (A-D), d14 (E-H) and d21 (I-L). The areas highlighted in white marks the border of
the cells which strongly expressed the CTNT protein. These areas lack striated sarcomeric structures. Semi-quantification of the immunopositive signals where
only performed to the nuclei of the cells enclosed in the highlighted region at all time points. Semi-quantification analysis was performed using the RGB
measurement tool in Image] program (D, H, L). Olympus Confocal IX 81, Obj.: 60 x; Scale bar: 20 um. Vertical axis indicates the intensity of the fluorescence
signal of the immunopositive cells. Means are standard deviation + SD. Abbreviations: DAPI: 4°,6-diamino-2-phenylindol, RYBP: RING1 and YY1 binding
protein, CTNT: Cardiac troponin T.

https://doi.org/10.1371/journal.pone.0235922.9002

early and d14 the terminal cardiac stages (Fig 1). Hierarchical clustering of the values (log’
fold change > 2) between wild type and Rybp null mutant ES cells and differentiated CMCs by
k-means method using XLSTAT tool revealed 8 distinct gene clusters (Fig 3A). Cluster 1 per-
tained to genes that were profoundly upregulated (log” fold change > 4) in most stages (i.e. dO,
d8 and d14) of in vitro cardiac differentiation in the Rybp null mutant ES cells (Fig 3B and 3C).
These include Hyperpolarization-activated cyclic nucleotide-gated potassium and sodium
channel 2 (Hcn2) and Hyperpolarization-activated cyclic nucleotide-gated potassium and
sodium channel 3 (Hcn3) (Figs 3B and S1). High expression of Hen2 and Hen3 are associated
to cause sinoatrial node dysfunction ultimately leading to heart failure [17]. Other cardiac ion
channel genes such as Potassium voltage-gated channel Isk-related subfamily member 1
(Kcnel), Potassium voltage-gated channel Isk-related subfamily member 2 (Kcne2), Calcium
channel voltage-dependant gamma subunit 5 (Cacng5), Calcium-sensing receptor (Casr),
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Fig 3. Gene expression changes during in vitro cardiac differentiation of the Rybp null mutant ES cells and CMCs. (A) Heat map of hierarchical clustering
of RYBP regulated gene expression changes with significant upregulated (log” fold change >2; green colour) and downregulated (log> fold change <2; red
colour) genes in the Rybp null mutant cells. The cluster numbers are listed on the right side of the heat map. (B and C) Cluster 1 heat map and tendency graph
highlight the upregulated gene set at all three time points i.e. d0, d8 and d14. (D and E) Cluster 2 heat map and tendency graph highlight the genes upregulated
in dO only and downregulated in d8 and d14. (F and G) Cluster 3 heat map and tendency graph highlight the genes downregulated in d8 and upregulated in
d14. (H and I) Cluster 8 heat map and tendency graph highlight the genes highly downregulated in d0. The tendency graphs are represented as an average of
the overall log” fold change for each time point pertaining to each cluster respectively. (J) Bar graph representation of the ion channel genes using log> fold
change values from the transcriptome showing constant upregulation of major genes from d0. (K) Bar graph representation of the genes involved in
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maintaining calcium homeostasis show upregulation of major genes in the Rybp null mutant ES cells. (L) Bar graph representation of genes involved in cell
adhesion display constant downregulation of major genes in the Rybp null mutant ES cells. (M) Bar graph representation of genes involved in sarcomere
organization showing downregulation of major genes in d8 and d14 in most cases.

https://doi.org/10.1371/journal.pone.0235922.9003

Transient receptor potential cation channel subfamily V member 5 (Trpv5) and gap junction
genes such as Gap junction protein beta 2 (Gjb2) were identified to be part of cluster 1 (Fig 3B,
3C and 3]). These genes play essential roles in the maintenance of ion homeostasis in the devel-
oping CMC:s. In cluster 2 we identified several genes with significantly upregulated expression
level in the Rybp null mutant ES cells (log” fold change > 4) and decreased expression level at
d8 and d14 (log2 fold change < 2) (Fig 3D and 3E). Genes that contribute to vascular smooth
muscle contraction such as Angiotensin II receptor type 1 (Agtrl), Endothelial receptor type A
(Ednra), Arginine vasopressin receptor la (Avprla), Myosin light chain kinase 3 (Mylk3 also
called as Mlck) and Myosin light chain 2 (MyI2) that function in vasoconstriction and Adeno-
sine A2a receptor (Adora2) that plays role in vasodilation were all part of the same cluster.
Genes that are essential in maintaining calcium homeostasis in the developing CMCs such as
Potassium inwardly-rectifying channel subfamily ] member 5 (Kcnj5), Calcium voltage-gated
channel T type alpha 1G subunit (Cacnalg), Calcitonin receptor (Calcr) and Sodium channel
voltage-gated type I alpha (Scnla) were also identified in the same cluster showing that key car-
diac genes were upregulated from the ES cell stage and these gene expression changes together
could potentially lead to the loss of ion equilibrium which is required for the normal formation
of CMCs (Fig 3D, 3E and 3K). Cluster 3 contained genes that were extensively downregulated
at d8 and upregulated by d14 in the Rybp null mutant cells (Fig 3F and 3G). By Gene Ontology
(GO) analysis we identified 16 genes that act on the JAK-STAT (Janus Kinase-Signal trans-
ducer and activator of transcription proteins) signalling pathway (GO:0046425), that contrib-
utes to the normal proliferation and apoptosis of the differentiating cells. In Cluster 4, 5, 6 and
7 we did not identify genes that significantly related to any function connected to cardiac
development. In cluster 8, cell adhesion markers such as Cadherin protein 6, 7 and 17 (Cdh6,
Cdh7 and Cdh17, respectively) and Vascular cell adhesion molecule 1 (VcamI) were identified
to be downregulated in the Rybp null mutant ES cells (Fig 3H, 31 and 3L). Cell adhesion is a
key feature which is required for the proper proliferation and differentiation of various cell
types during mammalian heart development.

This analysis also revealed that genes required for sarcomeric organization were remarkably
downregulated at d8 and d14 in the mutant cells. Sarcomeric genes such as Myomesin 1
(Myom1), Titin (T'tn), Actin alpha cardiac muscle 1 (ActcI), Myosin heavy peptide 6 cardiac
muscle alpha and Myosin heavy peptide 7 cardiac muscle beta (Myh6 and Myh7, respectively)
were highly downregulated in the mutant cells (Fig 3M). This analysis shed light on the
impairment of sarcomere formation, which can immensely contribute towards the non-con-
tractility phenotype of the Rybp null mutant cells as well.

3. Lack of RYBP compromises the expression of sarcomeric thin and thick
filament coding genes

Since transcriptome analysis indicated a severe downregulation of genes required for sarco-
mere organization in the Rybp null mutant cells, next we compared the relative gene expres-
sion changes of the sarcomeric components in the presence and absence of RYBP. Whole cell
RNA was extracted from d0, d2, d7, d14 and d21 time points of in vitro cardiac differentiation,
reverse transcribed and qRT-PCR analysis was performed to examine whether the lack of
RYBP affects the expression of sarcomeric components (see in Materials and methods)
(Primer list in S1 Table). Gene expression changes were analysed using both wild type and
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Rybp null mutant cells from the designated time points of in vitro cardiac differentiation. Our
results showed, that Actcl, which is the major protein of sarcomeric thin filament, had reduced
expression level at all time points of cardiac differentiation in the Rybp null mutant cells (Fig
4A). The expression of terminal cardiogenic marker Tnnt2 was also significantly reduced in
the Rybp null mutant CMCs compared to the wild type at all examined time points (Fig 4B).
Further gene expression analysis revealed downregulation of the other troponin complex
members, the Calcium-binding Troponin I cardiac 3 (Tnni3) (Fig 4C) in the mutant cells and
the expression of the two major cardiac Tropomyosin (Tpm) isoforms, Tropomyosin 1 alpha
(Tpm1) and Tropomyosin 4 (Tpm4) were also greatly altered specially at later time points
(d14, d21) in the Rybp null mutant cells (Fig 4D and 4E).

Similar to the thin-filament components, thick filament marker Myh7 was expressed to a
significantly reduced extent in the mutant cells at all examined time points of cardiac differen-
tiation (Fig 4F). The expression level of the giant sarcomeric component, Ttn was found drasti-
cally reduced in the mutant cells from d7 and onwards (Fig 4G). Furthermore, Myom!1
expression was about two times lower at d7, nearly ten times lower at d14 and about three
times lower at d21 in the Rybp null mutant cells (Fig 4H). These results suggested that the gene
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Fig 4. Decreased mRNA expression of thin and thick filament associated genes in the lack of RYBP during in vitro cardiac differentiation. Relative gene
expression changes of thin-filament associated Actcl (A), Tnnt2 (B), Tnni3 (C), Tpm1 (D) and Tpm4 (E) and thick-filament associated Myh?7 (F), Myom1 (G)
and Ttn (H) genes were analysed by qRT-PCR. Abbreviations: Actcl: Actin alpha cardiac muscle 1, Tnnt2: Cardiac troponin T2, Tnni3: Cardiac troponin I,
Tpml: Tropomyosin 1 alpha, Tpm4: Tropomyosin 4, Myh7: Myosin heavy peptide 7 cardiac muscle beta, Myom1: Myomesin 1, Ttn: Titin. Means are standard
deviation + SD. Values of p < 0.05 were accepted as significant (* p < 0.05; ** p < 0.01; “** p < 0.001; n = 3). Statistical method: t test type 3.

https://doi.org/10.1371/journal.pone.0235922.9004
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expression of both the thin and thick filament components were drastically reduced in the
absence of RYBP.

4. The sarcomeric thin and thick filament proteins are under-represented
in the Rybp null mutant CMCs

After revealing the thin and thick filament associated mRNA expression changes, we analysed
the subcellular localization and appearance of the corresponding proteins to see if they orga-
nised into any striated sarcomeric structures in the two cell lines. Wild type and the Rybp null
mutant ES cells were differentiated in vitro towards CMCs (see Materials and methods). Sam-
ples were collected at late timepoints of cardiac differentiation (d14 and d21), when striated
sarcomeres are developed, and further processed for ICC (see Materials and methods) (Fig 1).
The intensity of the fluorescent signals was measured by Image] application and were plotted
as graphs (see Materials and methods) (Fig 5A e, j, o, t and Fig 5B e, j, 0). Our results showed
that the thin filament marker ACTCI assembled into less dense and filamentous structures in
the Rybp null mutant cells at both examined time points (Fig 5A a-d). This result corre-
sponded to the reduced gene expression level (Fig 4A). Semi-quantitative analyses of the indi-
vidual immune-positive cells confirmed up to four times decrease of the ACTC1 protein level
in the Rybp null mutant cells when compared to the wild type (Fig 5A e). Next, we analysed the
two troponin complex members, CTNT and CTNI (protein translated from Tnni3). We iden-
tified that neither CTNT (Fig 5A f-i) or CTNI (Fig 5A k—-n) appeared as part of any organized
sarcomere in the Rybp null mutant CMCs, the proteins were first seen at d14 distributed in a
diffused subcellular localisation in the cytoplasm (Fig 5A fand g) and later on at d21 a disorga-
nized shorter filament staining was observed (Fig 5A h and i). This result also correlates with
the reduced mRNA levels of Tnnt2 and Tnni3 (Fig 4B and 4C). Semi-quantification of CTNT
protein level shows that the staining intensity was eight times lower at d14 and two times
lower at d21 and in case of CTNI the staining intensity showed two times lower and five times
lower protein levels at d14 and d21 in the Rybp null mutant cells respectively (Fig 5A j and o).
Furthermore, TM (translated from Tpm) did not show as part of any organized sarcomeric
structure in the Rybp null mutant CMCs neither at d14 (Fig 5A p and q), nor at d21 (Fig 5A r
and s), whilst the wild type cells exhibited the expected striated pattern (Fig 5A p and r). The
TM protein level was two times lower in the Rybp null mutant CMCs (Fig 5A t). These results
correlate to the reduced mRNA levels at d14 and d21 (Fig 4D and 4E). In summary, these
results suggested that thin filament component protein production was strongly impaired by
the absence of functional RYBP.

Next, we compared the amount and subcellular distribution of thick filament associated
proteins in the wild type and Rybp null mutant cells. We identified normal, striated Myosin
structure in the wild type cultures at d14, while there was just a limited amount of protein pres-
ent in the Rybp null mutant cells (Fig 5B a and b). Myosin signals were seen as dense, filamen-
tous and striated pattern in the wild type CMCs at d21, but in the Rybp null CMCs it was less
filamentous and lacked any striated structure (Fig 5B c and d). These data correlated with the
reduced gene expression level of Myh7 mRNA in the Rybp null mutant cells (Fig 4F). The
staining intensity of individual immunopositive cells for Myosin protein clearly displayed the
decreased protein levels (Fig 5B e). The subcellular organization of Myomesin (MYOM)
appeared as displaying sarcomeric structure in the wild type cultures but did not exhibit any
organized sarcomere structures in the Rybp null mutant CMCs at neither d14 nor d21 (Fig 5B
f-i). Moreover, there were hardly any detectable positive MYOM signal in the Rybp null
mutant cells (Fig 5B j). The staining intensity of individual immunopositive cells correlated to
the reduced mRNA level of Myom1 gene (Fig 4B). The immunostaining of TTN showed that
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Fig 5. The sarcomeric thin and thick filament associated proteins are disorganized in the lack of RYBP during in vitro cardiac
differentiation. (A) Immunocytochemical analysis of thin filament markers ACTC1(A a-d), CTNT (A f-i), CTNI (A k-n) and TM (A
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p-s) in wild type (A a, ¢, f, h, k, m, p, r) and Rybp null mutant CMCs (A b, d, g, i, 1, , q, s). Vertical axis indicates the intensity of the
fluorescence signal of the immunopositive cells (A e, j, 0, t). (B) Immunocytochemical analysis of thick filament markers MYOSIN (B a-
d), MYOM (B f-i) and TTN (B k-n) in wild type and Rybp null mutant CMCs. Vertical axis indicates the intensity of the fluorescence
signal of the immunopositive cells (B e, j, 0). Semi-quantification of the signals was performed using the RGB measuring tool in Image]J
program for both the thin and thick-filament proteins. Abbreviations: ACTC1: Actin alpha cardiac muscle 1; CTNT: Cardiac troponin
T; CTNI: Cardiac troponin I; TM: Tropomyosin; MYOM: Myomesin; TTN: Titin; d: day; CMC: cardiomyocyte. Olympus Confocal IX
81, Obj.: 60x; Scale bar: Myosin 20 um, Myom 100 pm/ 50 um, Ttn 20 um/ 30 um. Means are standard deviation + SD. Values of

p < 0.05 were accepted as significant (* p < 0.05; ** p < 0.01; *** p < 0.001). Statistical method: t test type 3.

https://doi.org/10.1371/journal.pone.0235922.9005

there were well-organized sarcomeric structures in the wild type cells, whilst the Rybp null
mutant CMCs did not have any structured sarcomeres in both time points and the protein
showed diffuse dispersion in the cytoplasm (Fig 5B k-n). Measuring the intensity of signals
confirmed that TTN was present only in reduced amount in the Rybp null mutant CMCs (Fig
5B o) and this observation is consistent with the reduced mRNA expression level of Ttn gene
(Fig 4C).

These results suggested that the thin filament and thick filament components of the sarco-
mere were affected in the absence of RYBP.

5. Cardiac progenitor formation is immensely affected in the Rybp null
mutant cells

Since cardiac lineage specific gene expressions were affected from as early as ES cell stage, we
wondered if the cardiac progenitor formation was affected in the Rybp null mutant cells.
Proper cardiac progenitor formation contributes extensively towards differentiation of CMCs.
Gene expression changes were checked by qRT-PCR using both wild type and Rybp null
mutant cells during the time course of in vitro cardiac differentiation for the expression of car-
diogenic mesodermal markers Brachyury (T) and Mesoderm posterior 1 (Mespl) and early
cardiac markers Kinase insert domain protein receptor (Kdr also called as Flk-1), Isl1, Sonic
hedgehog (Shh) and Mef2c which mark the formation of the first and second heart field (FHF
& SHEF) in vivo (Primer list in S1 Table). In the wild type cultures the expression of T and
Mespl mRNA was increasing gradually at the beginning of differention, peaked by d7 and
declined during the terminal stages (d14 and d21). In the Rybp null mutant cells the expression
of both T'and Mesp1 were deficient showing the highest difference at d7 when compared to
the wild type. At d14, the expression of T'and Mesp1 displayed a delayed kinetic shift in the
Rybp null mutant cells (Fig 6A and 6B). The expression of Kdr and IslI was pronounced at d7,
then declined and gradually went down by d21 in the wild type cells. In the Rybp null mutant
cells the expression levels never reached the levels of the wild type cells (Fig 6C and 6D). Car-
diac progenitor markers Shh and Mef2c displayed similar expression kinetics with profound
expression seen from d7. In d14 their expression was the highest and their expression levels
went down by d21 in the wild type cells. In the Rybp null mutant cells Shh and Mef2c were defi-
ciently induced during all time points of in vitro cardiac differentiation (Fig 6E and 6F).
Existing ChIP-seq tracks [18] of RYBP and RNF2 display binding peaks at the MespI, Shh,
Nkx2-5 and Isl1 genomic locus (S2A-S2D Fig and S3 Table) and the binding peaks of RYBP
and RING finger protein 2 (RNF2, also known as RING1B) were occupied at the CpG islands
of Mesp1, Shh, Nkx2-5 and Isl1 genomic locus. Integrative heatmap of RYBP and RNF2 ChIP-
seq binding peaks and the global CpG islands exhibit global occupancy of RYBP and RNF?2 at
the CpG islands in mesoderm precursor cells. RYBP seemed to show more condense binding
at the CpG islands than RNF2 (S2E and S2F Fig and S4 Table). These results suggest that in the
lack of RYBP, cardiac progenitor formation is impaired, early cardiac progenitor markers are
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Fig 6. Cardiac progenitor formation is impaired in the Rybp null mutant cells. Relative gene expression changes of cardiac
progenitor markers Brachyury (A), Mesp1 (B), Kdr (C), Isl1 (D), Shh (E) and Mef2c (F) revealed deficiency in the cardiac pool formation
in the Rybp null mutant cells. Abbreviations: Mespl: Mesoderm posterior 1, Kdr: Kinase insert domain protein receptor, Is/I: ISL1
transcription factor, Shh: Sonic hedgehog and Mef2c: Myocyte enhancement factor 2c. Means are standard deviation + SD. Values of

p < 0.05 were accepted as significant (* p < 0.05; ** p < 0.01; *** p < 0.001; n = 3). Statistical method: t test type 3.

https://doi.org/10.1371/journal.pone.0235922.9006

inappropriately downregulated suggesting that the insufficient progenitor pool can limit con-
sequent CMC development and contractility.

Discussion

Contractility depends on functional sarcomeres, which develop via finely tuned mechanisms

of multiple transcription factors and events including signalling pathways and structural for-

mations. To unreveal the undergoing molecular events of contractility disorders is not only
crucial for understanding the mechanisms of development, but it is important for early diag-
nosis of heart diseases and their treatment. In the current study we provide evidence about the
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importance of epigenetic regulator RYBP in CMC development including sarcomere and early
cardiac progenitor formation. We provide evidence for the first time that CMC development
is impaired and functional sarcomeres cannot be formed in the lack of RYBP suggesting its
role in the development of cardiac contractility and related disease conditions. Epigenetic reg-
ulators have key role in organogenesis, but their function in cardiac development is still elu-
sive. Histone deacetylases regulate contractility of the heart in mice [19] and members of the
Polycomb Repressive Complex 2 (PRC2) are required for proper spatiotemporal regulation of
cardiac gene expression and cell growth [20]. Members of the ncPRCls, regulate mesodermal
precursor fate and lineage specification [18] but their role in cardiac progenitor formation,
lineage commitment and contractility are not defined yet.

Elucidating the role of RYBP in cardiac differentiation is important as RYBP is abundantly
present in the embryonic mouse heart in vivo [13]. In the current study, we showed that RYBP
is the most abundant at the early developmental stage CMCs in vitro (d7) where CTNT is also
present (Fig 2A-2C), and that RYBP is nearly absent in the terminal stages of cardiac differen-
tiation where the cells exhibited the striated pattern of CTNT (Fig 2E and 2I) suggesting that
the role of RYBP is more prominent during the early stages of cardiac differentiation. CTNT is
one of the major structural components of CMCs and is expected to appear as a cytoplasmic
component. The nuclear staining of CINT in d7 differentiating wild type CMCs is unexpected
and is still not fully understood [21]. CTNI, which is another member of the cardiac troponin
complex was shown to be present in the nucleus in primary cultures and it relocalized to the
cytoplasm during consequent myogenic differentiation [22]. Since the cardiac troponin com-
plex comprising of CTNI and CTNT along with Cardiac troponin C1 (CTNC) function
together in modulating actin-myosin movement, it is possible that CTNT can also be trans-
ported from the nucleus to the cytoplasm during the process of CMC maturation.

Hence, the absence of RYBP is already manifested at the stage of progenitor formation it is
not unexpected that the effect alters late events like sarcomeric structure formation as well.
While RYBP is a well-known member of the ncPRCls, its functions towards cardiac ion chan-
nel genes such as Hen2, Hen3, Kenel, Kene2 and Trpv5 seemed classical in the ES cell stage as
they were over ten times upregulated in the Rybp null mutant ES cells. Upregulation of these
genes alone are already shown to cause contractility defects [17,23]. Cacnalg, Agtrl, Ednra,
Avprl and Adora2 are other genes highly upregulated in the Rybp null mutant ES cells (Fig
3D) suggesting that RYBP might be amongst the factors required for the repression of these
lineage specific genes. The upregulation of these ion channel genes could lead to hyperpolari-
zation in the Rybp null mutant ES cells and can cause breakdown in the differentiation process
eventually contributing to impairment in contractility [24].

We also demonstrated that RYBP is required for sarcomere development. RYBP has not
been previously described to be required for the proper assembly of sarcomeric components.
During cardiac colony formations, the cytoplasm of the mutant cells showed diffused distribu-
tion of sarcomeric components at d14 and d21 of in vitro cardiac differentiation, while the
wild type cells had striated sarcomeric organization. Gene expression analysis of undifferenti-
ated ES cells, as well as early (d7) and matured (d14) CMCs demonstrated the downregulation
of both thin filament (Actcl, Tnnt2, Tnni3, Tpml, Tpm4) and thick filament markers (Myh?7,
Myom]1, Ttn) and associated structural proteins that are critical for the proper sarcomere for-
mation (Fig 4A-4H). The immunocytochemical analysis of these proteins further confirmed
the thin and thick filament components were disorganized and irregularly formed in the Rybp
null mutant CMCs (Fig 5A and 5B). This suggests that RYBP is essential for the formation of
the major components i.e. thin and thick filaments of the sarcomeres. Deficiency in gene
expression and assembly of key sarcomeric components can individually cause impairment in
cardiac differentiation. Deletion of thin filament markers Tnnt2 and Tnni3 and thick filament
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marker Ttn in mice caused severe cardiomyopathy pinpointing the relevance that RYBP may
function in the development of cardiomyopathy in humans as well [25-27].

By examining the mRNA levels of cardiac progenitor markers such as T, Mesp1, Kdr, Isl1,
Shh and Mef2c we suggest that the cardiac progenitor formation is also greatly affected in the
Rybp null mutant cells. In the lack of RYBP, all the examined progenitor markers exhibited a
huge difference in their expression levels at d7, the stage which is critical for cardiac progenitor
formation in the wild type cells. The normal expression of cardiac progenitor transcription fac-
tors such as Mesp1, Shh, Isl1, Shh and Mef2c are shown to play essential roles for the formation
of the structural and functional units of contractile CMCs [28-32]. They also collectively func-
tion in the formation of the first and second heart fields in vivo [33]. These genes are also
shown to be enhanced in the pulsating primitive heart tube suggesting the downregulation of
these genes are crucial in triggering the catastrophic changes that cause non-contractility from
as early as d7 in the Rybp null mutant cells [28-32]. Previous studies have determined that dur-
ing cardiac precursor formation RYBP can target genes crucial for cardiac progenitor forma-
tion. Furthermore, these genes are direct targets of both RYBP and RNF2 as well [18] (S2
Table and S2A-S2D Fig) (Fig 7A). The binding peaks of both RYBP and RNF2 at Mesp1, Shh,
Nkx2-5 and Isl1 genomic locus displayed their co-occupancy at the CpG Islands (S2A-S2E
Fig). The downregulation of Mesp1, Shh, Nkx2-5 and IslI in the Rybp null mutant cells and the
direct binding of RYBP at their genomic region present a seemingly plausible ncPRC1 medi-
ated regulation of these genes (S4 Table). These data suggest that RYBP is important for the
proper induction of differentiation at progenitor stage when precardiac cells mature towards
cardiomyocytes by inducing the expression of cardiac-specific genes.

Whilst RYBP and RNF?2 can directly target sarcomeric genes Myh7, TpmI and Tpm4, it is
more likely that the majority of genes required for sarcomere organization are activated by the
cardiac transcription factors that include NKX2-5, GATA Binding Protein 4 (GATA4),
MEF2C and TBXS5 [34,35]. Co-occupancy of NKX2-5, GATA4, MEF2C and TBX5 are identi-
fied to bind to the promoters of key cardiac genes essential for the formation of CMCs includ-
ing the sarcomeric components [34,36] (S3 Table) (S2G Fig) (Fig 7B). Therefore, the lack of
RYBP may also represent an indirect effect on the formation of sarcomeres by regulating car-
diac transcription factors.

The precise mechanism by which RYBP exerts its functions throughout development is still
not thoroughly known. The activity of RYBP containing ncPRC1 complexes is strongly influ-
enced by their subunit composition and stoichiometry [9,37]. ncPRCls contain RING finger pro-
tein 1 (RING1 also known as RING1A), RNF2, Polycomb Group Ring Fingers (PCGFs) and
RYBP or YY1 associated factor 2 (YAF2) as the core subunits instead of Chromobox (CBX) and
Histone phosphorylation (HPH) subunits of PRC1s. Notably, ncPRCI subunits can associate
with a versatile set of accessory proteins, which often specifies the developmental function of the
complex. RYBP can bind YY1, a repressor of sarcomeric gene expression [38]. This way ncPRCls
recruiting YY1 has the potential to regulate sarcomeric genes as well. Knockdown of ncPRC1.2
complex member Polycomb group ring finger 2 (PCGF2 also known as MEL18) is shown to reg-
ulate cardiomyogenesis. By utilising RNA-sequencing and ChIP-sequencing (ChIP-seq) approach
PCGF2 is shown to exert repressor functions in the ES cell stage and later revealed to exert both
activation and repressor functions [18]. Most of the upregulated ion channel gene set in the Rybp
null mutant ES cells identified from the transcriptomic analysis (Fig 3B-3E) were also direct tar-
gets of RYBP and RNF2 as seen in the previously described ChIP-seq analysis [18] whereas cer-
tain genes such as Hen2, Kenj8, Cacnalg and Calcr were targets of PCGE2 as well suggesting that
these genes could be regulated in a polycomb dependent manner in the ES cell stage. Although
there is emphasis on the role of PCGF2 in cardiomyogenesis, no efforts were taken to investigate
the effect of the lack of PCGF2 in sarcomere organization [18]. The question whether RYBP
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https://doi.org/10.1371/journal.pone.0235922.9007

mediates its functions via ncPRCI1 during CMCs differentiation still remains opened. The fact
that the absence of RYBP caused impaired cardiac progenitor formation suggests that RYBP likely
acts as an activator in the process. It is possible that RYBP could either act via polycomb depen-
dent or polycomb independent manner, regulating key lineage determinant factors which are
critical for progenitor formation in wild type conditions. Moreover, RYBP can perform more
than one function being a moonlighting protein, and member of several multiprotein complexes
besides ncPRCls [9,37]. This brings up the possibility that RYBP can also function as a part of
other multimeric protein complexes other than ncPRCls and regulate cardiac progenitor as well
as sarcomere formation consequently (Fig 7).

In order to establish the role of RYBP during heart development and disease formation
more emphasis will be required to be put on in vivo animal models or three-dimensional tissue
culture studies. Due to the fact that the phenotype of the Rybp null mutant mice are early
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embryonic lethal, the conventional knockout mouse models are not suitable for answering the
role of Rybp in mammalian heart development. More emphasis will also be required to be put
on conditional mouse models to clarify the exact role of RYBP in heart development.

Taken together we provide evidence for the first time that RYBP is important for CMC devel-
opment especially at the early phase when cardiac progenitors and sarcomeric filaments form.
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S1 Fig. Lineage specific ion channel genes are upregulated in the early time points of car-
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$2 Fig. Co-occupancy of RYBP and RNF2 at the CpG islands of key cardiac genes and the
co-occupancy of NKX2-5, GATA4, MEF2C and TBXS5 at the Tnnt2 regulatory regions as
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