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Abstract 

Laponite immobilized titania catalysts were prepared by a pillaring process and by 

hydrothermal synthesis (HT) applying different titania sources such as TiCl4 and TiOSO4. 

Textural investigations (XRD, TEM, N2 physisorption) evidenced that by the pillaring 

procedure a high specific surface area (~450 m2/g) mesoporous composite with 5-6 nm sized 

anatase nanoparticles were formed retaining the morphology of parent laponite structure. In 

contrast, by hydrothermal treatment with titanium oxysulfate the initial laponite structure was 

destroyed and a more opened nanoporous silica/titania material was formed with bigger, about 

14 nm anatase particles.  

FT-IR spectroscopic investigations revealed the different acidic character of titania/laponite 

composite samples showing stronger Lewis and weak Brºnsted acid sites on both catalysts. 

However, acidic centers in titania pillared laponite stem from TiïOïSi bonds, whereas in HT 

sample from the separated, ionic, surface sulfate species on titania. 

Catalytic activity of titania/laponite composites were tested in photo-oxidation of model 10ï5 

M phenol and 2,4,6-trichlorophenol (TCP) water solutions. Catalytic tests were carried out in a 

home constructed batch-type photo-reactor with oxygen bubbling, and applying commercial 

low pressure Hg lamps emitting UV-light at 254 nm and 361 nm. Catalytic results showed that 

utilization of titania/laponite catalysts enhanced the photo-oxidation activity. Hydrothermally 

prepared sample showed much better catalytic performance than titanium chloride pillared one, 
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probably due to the bigger titania particles and the more opened mesoporous structure of 

titania/laponite HT, and moreover to the peculiar surface acidic properties of sulfated titania 

species. Separation of catalysts from reaction media even in tap water was much easier than 

that of commercial titania, i.e. by self-settling. 

 

1. Introduction 

 

Advanced oxidation processes (AOP) can be real solutions to conventional physical water 

treatment techniques for the removal of toxic and non-biodegradable organic pollutants, if they 

are quite efficient and cost effective [1, 2]. In industrial practice it seems that AOPs can be 

rather complementary methods to biological treatment, in order to reduce toxicity of effluents 

by converting the inherent pollutants to less harmful or biodegradable ones. Among AOPs 

photocatalytic degradation is one of the suitable alternatives. By assessment of performance 

and operating costs at pilot plant scale Ortega-Mendez et. al. [3] have found that by utilization 

of TiO2 based photocatalysts, Evonik P 25, about 50 mg/L phenol containing waste waters can 

be treated economically. In heterogeneous AOPs, titania in the form of anatase appears to be 

the ultimate choice as photocatalyst for environmental applications. It has high photoactivity, 

stability under UV light and low price. From catalytic point of view, application of titania in an 

aqueous suspension would be more advantageous compared to its immobilization on a physical 

surface, however nanosized anatase powders have tendency to agglomerate into larger particles, 

more pronounced in tap water, and there are also difficulties in recovering it from the reaction 

media. Compared with the usual powdered photocatalysts, the easily recyclable photocatalysts 

have more advantages in water treatment and purification systems. Thus, immobilization of 

titania nanoparticles on a suitable support can overcome the above mentioned problems. 

Extensive research is in progress to find the appropriate, photo-chemically stable support, and 

plethora of sophisticated and more common substrates are tested [4]. Different types of porous 

silica [5] and clay mineral based titania composites attracted great interest due to the possibility 

to decrease the particle size of titania by dispersing it on high specific surface area supports and 

thus enhancing the oxidation potential of the catalysts. Titania can be incorporated into clay 

mineral structures by different ways. One of them is the so called pillaring procedure, when 

polymerized cations or positively charged nanoparticles are replacing the interlayer cations [6]. 

In this way amorphous or very small titania particles are formed between the clay mineral 

layers, showing poor photocatalytic activity [7]. Another approach is the synthesis of a porous 

composite structures, when a solid dispersion of crystalline anatase nanoparticles among the 
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swollen or decomposed silicate layer structure is formed, creating a more photoactive catalyst 

[7, 8]. The pore structure of the titania silica composite also plays a crucial role in the 

photocatalytic activity. TiO2 pillared clays are microporous solids of moderate porosity [9], 

with less accessible active sites for the reactants. In contrast, composite materials with 

mesoporous structure and bigger crystalline titania nanoparticles can be optimal solution to 

meet the requirements of high photocatalytic activity and easier way of separation. From this 

point of view laponite, a crystalline, synthetic clay, isostructural with hectorite seems to be a 

particular and ideal candidate for the preparation of porous titania nanocomposites. It is well 

known that the special house of cards structure of laponite, creating exfoliated discrete plates 

of 20-30 nm in water suspension is more suitable for the synthesis of such composites than 

other smectite type clay minerals [9, 10]. Zhu et al. applied titanium hydrate sol as precursor, 

and found that aging at 100ÁC with laponite dispersion resulted in homogeneous deposition of 

metal hydrates on the acid-leached laponite layers [10]. During the aging period a reaction starts 

between the laponite crystallites and the acidic pillaring solution. The acid leached laponite 

layers suffer structural changes, meanwhile the high pH of laponite dispersion facilitates the 

formation of larger TiO2 nanoparticles. Application of a surfactant can further enhance the 

porosity of the nanocomposite material. Applying the above concept Daniel et. al investigated 

the effect of synthesis parameters, such as pH, Ti/clay ratio, hydrothermal treatment and 

microwave heating [11, 12]. It was found that increased titania content and temperature of 

hydrothermal treatment, enhancing the crystallinity of anatase resulted in better performing 

photocatalysts. Australian scientists modified the above synthesis procedure by applying titanyl 

sulfate as titania source first on beidellite clay [13] than in the case of laponite [14]. They have 

found that by application of the acidic precursor and hydrothermal treatment, similar 

mesoporous composite structure was formed like with prehydrated titania sol, and that the 

catalytic activity could be enhanced by increasing the crystallite size of anatase and 

mesoporosity of the catalyst. Their TiO2 immobilized clay mineral catalysts were comparably 

active in degradation of herbicides like P25 TiO2 [15], but could be more easily separated from 

the reaction mixture. 

Lin et. al. modified the titania/laponite catalysts with zirconia or ceria in order to achieve better 

photocatalytic performance [16]. Joo et al. have prepared active composite photocatalyst for the 

decomposition trichloroethylene by combining ZnO nanoparticles and PVA with laponite [17]. 

In this study, TiO2/laponite nanocomposite materials were prepared by different methods 

(pillaring or hydrothermal treatment), applying different titania precursors in order to compare 

their photocatalytic activity in decomposition of model compounds such as phenol and 2,4,6-
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trichlorophenol. TiCl4 and TiOSO4 were chosen as titanium precursors to avoid the application 

of titanium alkoxides, and to use low cost intermediates of TiO2 white pigment manufacturing. 

Photocatalytic behavior was studied by the utilization of commercial low pressure Hg UV 

lamps of different wavelengths, to reveal the effect of different radiation energies. Textural and 

spectroscopic methods evidenced the structural peculiarities of the studied catalysts and made 

easier to interpret their distinct photocatalytic behavior. 

 

2. Experimental section 

 

2.1 Materials 

The synthetic layered clay, laponite XLG grade was purchased from BYK-Chemie GmbH, 

Germany (formerly Rockwood Additives, now marketed by BYK Additives & Instruments). 

Titanium chloride, titanyl sulfate (TiOSO4ĀxH2O, 98%) hydrochloric acid and 2,4,6-

trichlorophenol were obtained from Sigma-Aldrich. Phenol (>98%) was supplied by Loba 

Feinchemie GmbH. Commercial, fumed P25 TiO2 was purchased from Evonik Industries AG, 

Germany. 

 

2.2 Synthesis of TiO2/Laponite catalysts 

Laponite immobilized titania catalysts with different amounts of titania were prepared based on 

the procedure of Long et. al. [18, 19]. A solution of partially hydrolyzed Ti-polycations was 

prepared by adding TiCl4 into a 2 M HCl solution. The mixture was than diluted by slowly 

adding deionized water with constant stirring to reach a final titanium concentration of 0.82 M. 

The final concentration of HCl was 0.6 M. The solution was aged for more than 8 h at room 

temperature prior to its use. Eight grams of laponite was dispersed in 2.0 L deionized water and 

the slurry was stirred for 5 h. The pillaring solution was slowly added into the suspension of 

clay with vigorous stirring until the amount reached 10 and 20 mmol Ti/g clay, respectively. 

The precipitated products were aged in the solution for 24 h. Subsequently, the clay particles 

were separated by centrifugation, and washed chloride free, evidenced by silver nitrate test. 

Samples were dried at 120ÁC for 12 h, and then calcined at 500ÁC for 12 h. The calcined samples 

containing different amounts of titania were designated as TiLapP1 and TiLapP2, respectively. 

Titania modified laponite was prepared also by the application of titanyl sulfate by the method 

of Yang et al. [14]. In a typical synthesis procedure 8 g of laponite was dispersed in 400 mL 

distilled water and vigorously stirred until clear, homogenous colloid solution was obtained. 

25,6 g TiOSO4 was dissolved by heating in 200 mL distilled water. 150 mL (15 mmol Ti/g 
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laponite) of the stock titanyl sulfate solution was added dropwise to the laponite suspension and 

stirred for 3 h. The mixture was transferred to a Teflon lined stainless steel autoclave, and kept 

under autogenous pressure at 150ÁC for 24 h. The solid precipitated by hydrothermal treatment 

was separated by centrifugation and washed neutral and sulfate free with distilled water. The 

sample was dried at ambient temperature. Then it was heat treated in a two-step procedure by 

2ÁC/min heating rate first at 100ÁC for 1h and in the second step at 500ÁC for 3 h. The thus 

prepared sample was designated as TiLapHT. 

The heat treated TiLap catalysts were grinded in agate mortar and the 0.08-0.02 mm grain size 

fraction, found to be easily separable from reaction media by settling, was tested in 

photocatalytic reactions.  

 

2.3 Characterization 

Chemical composition of the samples was determined by ICP-OES analysis (Spectro Genesis) 

after digesting the samples in cc. HF and sulfuric acid solution on a water bath. 

X-ray powder diffraction patterns were recorded by a Philips PW 1810/3710 diffractometer 

with Bragg-Brentano para-focusing geometry applying monochromatized CuKŬ (l=0.15418 

nm) radiation (40 kV, 35 mA) and proportional counter. For the identification of anatase phase 

ICDD PDF2 card No. 21-1272 was used. X-ray diffraction patterns were collected between 3 

and 75Á2ɗ with a 0.02Á2ɗ step for 1 s. 

Nitrogen physisorption measurements were carried out at -196ÁC using Thermo Scienctific 

Surfer automatic, volumetric adsorption analyzer. Before adsorption analysis, silica samples 

were outgassed under high vacuum (<10ï6 mbar) at 250ÁC for 2 h. Specific surface area was 

calculated by the BET equation between the 0.01-0.2 relative pressure. Pore size distribution 

was evaluated from the adsorption branch by the BJH method, as suggested by Rouquerol et al. 

[20]. 

TEM images were taken using a MORGAGNI 268D transmission electron microscope (100 

kV; W filament; point-resolution = 0.5 nm). Samples were suspended in a small amount of 

ethanol and a drop of suspension was deposited onto a copper grid covered by carbon 

supporting film and dried at ambient. 

Diffuse reflectance spectra in the UV-Vis region were detected at ambient by a Jasco V-670 

UV-Vis spectrophotometer equipped with NV-470 type integrating sphere using the official 

BaSO4 standard as reference. 

Ammonia ion exchange capacity of the parent laponite and its titania modified varieties were 

determined by contacting 1 g clay with 25 ml 1 M ammonium chloride solution for 3h. The 
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procedure was repeated two more times by fresh ammonia solution after separation with 

centrifugation. After the third mixing, the clay was centrifuged and washed with distilled water 

until chloride free and dried at ambient temperature. Ammonia concentration was determined 

by temperature programmed desorption of ammonia by heating the sample with 10ÁC/min rate 

to 600ÁC in a sealed glass reactor in N2 stream, and automatically titrating the evolved ammonia 

absorbed in distilled water by 0.1 M hydrochloric acid. 

FT-IR spectroscopic measurements were carried out by a Nicolet Compact 400 

spectrophotometer equipped with a special measuring cell with in situ pretreatment facility in 

high vacuum (5Ŀ10-6 mbar). Applying the self-supported wafer technique spectra of 100ÁC 

adsorbed pyridine (Py=7 mbar), desorbed in high vacuum at different temperatures (100-200-

300-400ÁC) were obtained. Before Py adsorption catalyst wafers were dehydrated at 300ÁC in 

high vacuum. The spectra were normalized to 5 mg/cm2 ñthicknessò for comparison. 

 

2.4 Photocatalytic experiments 

A self-constructed, batch-type cylindrical photochemical glass reactor was used with internal 

diameter and overall length of 70 x 480 mm. The irradiating lamp was positioned coaxially in 

a quartz tube, in the center of the cylindrical reactor and was cooled by nitrogen flow to avoid 

the overheating of the lamp and keeping the reaction temperature constant, close to ambient at 

32 Ñ 4 ÁC. Volume of the reaction mixture was 650 cm3, which contained the model compounds, 

phenol or 2,4,6-trichloro phenol (TCP), dissolved in distilled water and the photocatalyst 

suspended by sonication prior to irradiation. The concentration of phenol or TCP was 5Ŀ10ï5 

M, whereas that of the catalyst was 0.1ï0.4 g/L. Pure oxygen was used for photooxidation that 

was fed into the reactor from the bottom through a fritted glass filter with 900 cm3/min flow 

rate; the intensive bubbling served also as an efficient stirring of the catalyst slurry. Before 

starting the reaction, the catalyst suspension was equilibrated with oxygen for 10 minutes 

without switching the lamp on. One of the objectives of our study was to test the photocatalytic 

applicability of commercially available low pressure Hg lamps manufactured by LighTech 

Lamp Technology Ltd., Hungary. Therefore, two types of custom lamps with measures of 15 

mm outer diameter x 360 mm length were used. One of them was the GHO436T5L type, ñlow 

ozone generatingò, germicidal lamp irradiating in the UV-C region at 254 nm with 13 W UV-

radiant. The other one was a GHO245T6L/4-UVA type lamp irradiating in the 316-400 nm 

range with 4.6 W UV power, with the maximum at 361 nm. During the photocatalytic tests at 

certain intervals 5 cm3 sample was taken of the reaction mixture, filtered with 45 Õm Millipore 

filter and analyzed using Agilent Technologies 1200 series HPLC apparatus equipped with a 
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UV detector and a Phenomex Luna (5 Õm, 250x4.6 mm) type reversed C18 column. The mobile 

phase was acetonitrile/water in the ratio of 30:70 and 60:40 for the determination of phenol and 

TCP conversion, respectively. The flow rate was 1.5 mL/s. Signal of phenol was detected at 

270 nm, and that of TCP at 280 nm. Concentration depletion of phenol and TCP was calculated 

by the plotting of calibrated HPLC peak areas against the irradiation time. 

In comparison, degradation of phenol and TCP were also investigated by photooxidation, i.e. 

without application of catalysts. Photocatalytic activities of the prepared TiO2/laponite samples 

were also compared to that of commercial TiO2, P25. The applied amount of P25 catalyst 

corresponded to the titania content of the titania/laponite composite samples. 

 

3. Results and discussion 

 

3.1 Textural characterization 

Textural properties of the prepared different types of laponite immobilized titania catalyst were 

characterized by X-ray powder diffraction, and nitrogen physisorption. The XRPD patterns and 

nitrogen adsorption isotherms are shown in Fig 1 and 2, respectively. Chemical composition 

and textural characteristics are summarized in Table 1. XRD pattern of parent synthetic laponite 

clay, showing the widened reflections typical for disordered hectorite structure, can be indexed 

according to reference [21], with a d(001) peak corresponding to 1.1 nm. All the titania containing 

samples show only the presence of crystalline anatase phase. However, the average crystallite 

size calculated by the Sherrer equation differ significantly (Table 1). Samples modified with 

pillaring TiCl4 solution show widened anatase reflection in connection with the small crystallite 

size, around 6 nm. The calculated average titania crystallite size of TiO2/Lap HT sample is 

somewhat bigger, ~ 12 nm, whereas this value for P25 titania is amounted to 35 nm (Table 1). 

Some weak reflections of laponite (e.g. 110) remained after pillaring process, however by 

titanyl sulfate modification reflections of laponite cannot be observed any more. The increase 

of background between 20-30Á2ɗ of TiO2/LapHT sample can be associated with the formation 

of amorphous silica. The latter indicates the deterioration of parent laponite structure by acidic 

dissolution of sodium, magnesium and lithium cations resulting in layer degradation and 

framework collapse [14]. 
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Fig. 1 X-ray powder diffraction patterns of the parent laponite and its TiO2 modified varieties 

compared to commercial P25. Dashed curve for TiO2/LapHT sample represents the pattern 

calculated by profile fitting method for the crystallite size determination of anatase. 

 

 

Fig. 2 N2 physisorption isotherms of the studied TiO2/Laponie samples compared to parent 

laponite 

 

Nitrogen physisorption results support the above-mentioned observations (Fig. 2). Parent 

laponite and the titania modified samples TiO2/LapP1-2 exhibit type IV(a) isotherms, [20] with 

H2 hysteresis loop, and a long, flat plateau, characteristic for materials with not ordered, 

ócomplex pore structure made up of interconnected networks of pores of different size and 

shapeô [20], in this case probably mainly slit-shaped ones. Increased specific surface area and 

pore volume are observed for samples modified by TiCl4. This can be due to the partial 
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delamination of the house-of-card structure of laponite by the titania nanoparticles resulting in 

a more opened structure with somewhat bigger pores. Pore size analysis assessed by BJH 

method from the adsorption branch has indeed revealed a 10% increase in pore diameter from 

3 to 3.3 nm. TiO2/LapHT sample made by titanyl sulphate modification showed a quite different 

nitrogen physisorption isotherm. The adsorbed volume significantly increased and the 

hysteresis loop of IV type isotherm became a transitional one between H1 and H2 types. The 

specific surface area slightly decreased due to the much bigger pores (~7.5 nm), but the pore 

volume doubled (Table 1). This observation implies the total deterioration of the parent laponite 

structure and the formation of a titania-silica composite material [14, 15]. The bigger pores of 

the composite material arise from the interparticle voids.  

Chemical composition analysis of the parent laponite and the titania modified samples support 

the above conclusions. Sodium content of all the titania containing samples significantly 

decreased, but leaching of magnesium was partial for P1 and P2 samples and complete for HT 

one (Table 1). Interestingly, ion-exchange capacity of P1-P2 samples increased to 3 times 

higher value, indicating that the platelets of laponite are detached from each other but remained 

more or less intact. This alteration of ion-exchange capacity can be useful by further 

modification of samples with other cations, e.g. transition metals. Titania content of TiLApP1 

and TiLapHT samples are similar around 6.5 mmol/g, whereas TiLapP2 sample showed only a 

10 % higher value, 7.5 mmol/g. There is no use to put higher amount of titania precursor to the 

synthesis mixture, the maximal amount of titania to be incorporated seems to be about 30ï35 

wt.%. 

TEM investigation of the prepared catalysts support the results of other textural methods. TEM 

images are shown in Fig. 3. Parent laponite shows the well-known lamellar structure of laponite 

platelets with thickness of ~ 1 nm. By modification with the pillaring TiCl4 solution small and 

poorly crystallized titania nanoparticles among the clay sheets can be observed, in accordance 

with XRD results. 

By the hydrothermal treatment of titanyl sulfate containing laponite suspension, total 

transformation of the clay mineral is achieved and 10-15 nm sized, evenly dispersed, spherical 

titania and silica particles are formed. TEM investigations support the nitrogen physisorption 

data, i.e. enhanced porosity of the TiO2/LapHt sample is due to inter-crystallite cavities. Titania 

nanoparticles are homogeneously dispersed among the silica particles. The titania/silica ratio 

influences the hydrophobicity of the sample, since silica nanoparticles are covered by silanol 

groups. 

 



10 
 

Table 1 Textural properties of the studied samples 

Sample SBET 

m2/g 

PD1 

nm 

TPV 

cm3/g 

Na  

mmol/g 

Mg  

mmol/g 

Ti 

mmol/g 

NH3 IEC2 

mmol/g 

TiO2 cryst. 

size3 nm 

Laponite 375 3.0 0.278 1.6 4.7 - 0.22 -  

TiO2/LapP1 447 3.33 0.377 0.02 1.7 6.7 0.79 5.3 

TiO2/LapP2 450 3.35 0.359 0.02 0.8 7.5 0.65 5.9 

TiO2/LapHT 323 7.45 0.542 0.02 0.02 6.8 0 12 

P25 50 -  - - 12.5 - 35 

1 Pore diameter determined by BJH method from the desorption branch of the isotherm 

2 Determined by ammonia TPD method following ammonium chloride ion-exchange procedure 

3 Determined by XRPD based on Sherrer equation and profile fitting method 

 

 

 

 

Fig. 3 TEM images of the parent laponite and laponite immobilized titania varieties: Laponite 

(A), TiO2/LapP2 (B), TiO2/LapHT (C, D) 
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Macroscopic properties of the laponite based catalysts, important from the separation point of 

view, were also characterized by scanning electron microscopy (Supporting info, Fig. S1, S2). 

Laponite supported titania catalyst show the picture of a grinded mineral, i.e. several Õm sized, 

irregularly shaped, angular particles with very wide particle size distribution. By bigger 

magnification the layered structure of laponite can be clearly visualized by TiLapP2 sample. 

SEM images revealed that the morphology is quite different from that of P25 titania, the latter 

consisting of 35-50 nm sized nanoparticles. 

Separation properties of the different catalyst were evaluated by measuring their settling 

velocity. The method of determination and the results are summarized in Supporting 

information in Fig S4-5 and Table 2. The result show that the laponite immobilized titania 

catalysts have similar but two orders of magnitude higher settling velocity than P25 titania. It 

is not surprising according to the very different morphology of the two types of catalysts 

evidenced also by SEM images.  

 

3.2 Spectroscopic investigations: UV-Vis and FT-IR spectrophotometry 

 

 

Fig. 4 DR UV-Vis spectra of the prepared laponite immobilized titania samples compared to 

commercial P25 titania 

 

The band gap energy of titania can be investigated by the help of DR UV-Vis spectroscopy. 

The DR UV-Vis spectra of the prepared catalysts compared to commercial P25 are shown in 

Fig. 4. The characteristic absorption band of anatase can be found at 330 nm, corresponding to 

3.2 eV band gap energy. Finely dispersed anatase phase regularly shows blue-shifted absorption 

band due to quantum size effect of nanoscaled particles or interface interactions [22]. In our 

case no band shift of the prepared catalysts to lower wavelength can be observed, however the 
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slope of absorption edge slightly increased, indicating a negligibly higher band gap energy for 

the laponite-immobilized titania samples. Spectra of samples prepared by the different methods 

are very similar to each other. DR UV-Vis spectra evidence that our catalysts can be 

photocatalytically active when illuminated by UV-A, or shorter wavelength light, but similarly 

to P25 they are not in the visible region. 

When silica materials are modified with titania, TiïOïSi bonds can be formed between the 

silica-titania interface [23]. When titania is incorporated into a silica matrix Lewis and Brºnsted 

acid surface sites are generated [23]. One can get information about the amount and nature of 

acidity of catalysts by adsorption of a base on them and investigating the formed surface species 

by FT-IR spectroscopy. Pyridine (Py) is a well-known and verified adsorbent for the 

characterization of acid sites of metal oxides, zeolites etc. The 8a, 8b and 19b ring vibrations 

(ɜCCN) of Py give adsorption bands in the 1700-1400 cm-1 frequency region. Py can be 

physisorbed or H-bonded to silanol groups (H-Py), coordinated to Lewis acid sites (L-Py) or  

 

 

 

Fig. 5 FT-IR spectra of adsorbed Py on titania modified laponite samples. Py was adsorbed on 

300ÁC dehydrated samples at 100ÁC, and desorbed at 100-200-300ÁC (from bottom up) 

 

protonated on Brºnsted acid centers (B-Py). The latter one gives a band at 1545 cm-1, whereas 

H-Py bands appear at 1446 and 1598 cm-1, and L-Py bands at 1448 and 1610 cm-1 frequencies.  
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The FT-IR spectra of pyridine adsorbed on the studied titania modified samples are shown in 

Fig. 5 A and B. It can be observed that on both types of samples relatively higher concentration 

of Lewis acid sites can be found compared to that of Brºnsted type. These sites can be formed 

when titania is interacting with the silica framework, and TiïOïSi bonds are formed [23]. Tiï

OïSi bridges can generate Brºnsted acid sites when Ti atoms are in octahedral coordination 

and hydroxyl groups or water molecules are in the vicinity of their coordination spheres. In the 

absence of coordinated water or hydroxyl groups incorporated Ti species behave as Lewis acid 

centers. The intensity of L-Py bands is related to the concentration of the TiïOïSi bonds 

available for Py molecules to be adsorbed. According to FT-IR spectra there is no significant 

difference between acidic character of the titania/laponite samples prepared by the two different 

methods, and it seems that only a small amount of Ti is involved in the TiïOïSi bond formation 

reaction. The strength of acid sites can be characterized by the desorption temperature of 

pyridine. Py is mainly desorbed from the Brºnsted centers even at 200ÁC, demonstrating very 

weak acidity of the samples. Lewis acid centers show higher acid strength, Py can be desorbed 

totally from these centers only at 400ÁC. On the other hand, the acidity of TiLapHT sample 

originates rather from surface sulfate groups and not from TiïOïSi bond formation, as 

evidenced by the presence of S=O stretching vibration band at 1368 cm-1. Sulfate groups can 

probably be localized on the surface of bigger titania particles, and their formation can be due 

to the reaction of sulfuric acid originating from decomposition of titanium oxysulfate with the 

titania nanoparticles during the hydrothermal treatment. Formation of covalent disulfate species 

is hindered by the size of titania nanoparticles (~ 12 nm). According to Barthos and L·nyi et 

al. [24, 25] the S=O stretching vibration band found between 1340-1385 cm-1 is characteristic 

of isolated, monosulfate groups with ionic character. S=O stretching vibration band 

characteristic for covalently bond disulfate species appear around 1400 cm-1 [25]. Liu et al. [26] 

have found the S=O band appearing at 1390 cm-1 on sulfated bulk titania photocatalyst with 

higher sulfur content. Upon Py adsorption, the S=O bands totally disappear, which support the 

idea that they are located on the surface of titania, and do not belong to unreacted titania 

oxysulfate or titania sulfate species. Upon desorption of Py at 200 ÁC the band appear somewhat 

redshifted to 1340 cm-1, then totally restored at 300ÁC (fig. 5). This phenomenon is well known 

on sulfated titania/titania-zirconia/silica catalyst [25]. The chemisorbed pyridine can 

backdonate electrons to the sulfate groups through the titanum ion, changing its character to 

more ionic. This change induces the shift of the ɜS=O band to lower frequencies.   
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Detection of surface sulfate species on TiLapHT sample means that this catalyst has titania 

species not only differing in size but also in acidity and surface properties compared to that of 

titanium chloride pillared ones.  

The different surface characteristic of the two laponite-titania composites was also supported 

by the FT-IR spectra in the OH region (Fig. 5A). TiLApHT sample show typical OH bands 

characteristic for amorphous silica. The intensive band at 3742 cm-1 is associated with terminal 

silanol groups and the wide band around 3600 cm-1 belongs to hydrogen bonded neighboring 

silanols. In the spectra of TiLapP2 sample a band at 3678 cm-1 also appears. The latter is 

characteristic for the Mg-OH vibration. This observation is in line with our former chemical 

analysis and textural characterization results, indicating that the parent laponite structure was 

still preserved.  

 

3.3 Photocatalytic activity 

Photocatalytic activity of the synthesized titania/laponite composite catalysts was tested by 

studying the degradation of model compounds, phenol and 2,4,6-trichloro phenol (TCP) in 

water solution. Two types of commercially available low pressure Hg lamps were applied, 

providing UVC and UVA radiation at 254 nm and 361 nm, respectively. Fig. 6 shows the results 

obtained by UVC irradiation of phenolic solution, containing 5Ŀ10ï5 M phenol. Photocatalytic 

oxidation efficiencies of TiO2/lap catalysts were compared to that of commercial P25 titania 

and to photooxidation without added catalyst. The amount of P25 was chosen to contain equal 

amount of titania with that of TiO2/Lap samples (see Table 1). It is observed that TiO2/LapHT 

sample degrades phenol in 20 minutes, showing superior activity compared to TiO2/LapP2 

catalyst and photooxidation (Fig. 6). P25 exhibit somewhat better performance eliminating 

phenol within 10 min. Decomposition of TCP was very fast on all catalysts and also by 

photooxidation by using UVC irradiation, it was completed within 5 minutes. 
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Fig. 6 Degradation of phenol by photo-, or photocatalytic oxidation with 254 nm UVC 

irradiation on titania/laponite catalysts compared to commercial P25 titania 

 

It seems that reaction rate of TCP oxidation is higher and activation energy is much lower than 

that of phenol under similar reaction conditions. It is well known phenomena from 

photodegradation studies of phenol and chlorophenols, that substitution pattern of phenol 

strongly influences the rate of photodegradation [27]. Thus, most probably, adsorption 

properties of different phenols on the hydrophilic surface of titania composite, and the complex 

equilibrium conditions of the three adsorbed phases (oxygen, phenol/TCP, titania/silica) are 

responsible for the different photocatalytic behavior.  

In order to more closely study the effect of catalysts rather than that of high energy irradiation, 

the photodegradation of phenol and TCP was investigated also by UVA irradiation, with lower 

energy input. The determined depletion data are presented in Fig. 7. Trends, similar to those 

experienced with UVC radiation were observed for the catalytic activity. Application of 

titania/laponite composites significantly increased the reaction rate compared to simple 

photooxidation, and TiO2/LapHT sample showed better catalytic performance than the pillared 

variety, TiO2/LapP2. Commercial P25 titania exhibited similarly high activity like before, 

degrading phenol in 15 min.  

Decomposition of TCP was also faster with the applied catalysts than that of phenol, but total 

decomposition could be only achieved with P25 and TiO2/LapHT catalyst, in 15 and 80 min, 

respectively. As expected, the catalytic acceleration has been found more apparent at the longer 

wavelength of 361 nm compared to 254 nm. Referenced to non-catalyzed photooxidation, 

phenol depletes ~2 times and ~15 times faster in photocatalytic oxidation with TiO2/LapHT and 

P25 catalysts, respectively. Similarly, the rate enhancing effect for TCP is a factor of 4 and 18 

using the above catalysts.  
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Fig. 7 Degradation of phenol (A) and 2,4,6-trichloro phenol (B) by photo-, or photocatalytic 

oxidation with 361 nm UVA irradiation on titania/laponite catalysts compared to commercial 

P25 titania 

 

This is in line with the observation, that the homogeneous depleting process of direct photolysis 

and OH radical reactions play a decreasing role with increasing wavelength, and heterogeneous 

surface reactions become more dominant. The fact that phenol and TCP undergo 

photooxidation in the absence of a catalyst at 361 nm is surprising, since these molecules does 

not absorb light at this relatively long wavelength. One possible explanation has recently been 

provided in conjunction with the thermal oxidation of chlorophenols, where the accelerating 

effect of stray light was attributed to the formation of quinones, photocatalytically active 

intermediates in the reaction [28, 29]. 

In summary, it was found that titania/laponite composite material prepared by titanium 

oxysulfate and hydrothermal method was more active in decomposition of phenol and TCP than 

titania/laponite pillared catalyst, but could not exceed the activity of commercial P25 titania. 

The significant difference in catalytic activity of the two titania/laponite composites can be 

explained by their structural characteristics. TiO2/LapHT catalyst can be considered rather a 

mesoporous mixed oxide composite material possessing well-crystallized, bigger anatase 

nanoparticles that can be easily accessed by the reactant molecules. For porous structures, the 

diffusion of reactant molecules can be a rate-determining step: smaller pore size can hinder the 

diffusion. TiO2/LapP catalysts have bigger surface area because of its much smaller pore size, 

and very small anatase particles that are confined in the laponite structure. The peculiar pore 

structure and the optimal crystallinity of anatase nanoparticles seem to have beneficial effect 

on photocatalytic activity in TiO2/LapHT. Similar trends were found by B. Paul et.al. [15] 
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investigating herbicide decomposition on titania/laponite composite materials. Surface charge, 

hydrophobic-hydrophilic character of the catalyst can also influence the catalytic activity by 

favoring the adsorption of reactant molecules on active surface species. From this point of view, 

it seems that both types of titania/laponite composite have weak Brºnsted and Lewis acidic 

character as a consequence of TiïOïSi bond formation during the synthesis, or due to the 

presence of isolated sulfate groups on the surface of titania nanoparticles as it is the case 

concerning TiO2/LapHT sample. However, the presence of surface sulfate groups on TiLapHT 

sample and the Mg-OH groups in TiLapP samples can significantly affect the electron structure 

of anatase particles. Liu et. al. [26] have found that ionic sulfate species, with S=O bond order 

less than two, representing coordinatively unsaturated Lewis acid sites have beneficial effect 

on photocatalytic activity. Surface sulfate species can withdraw electrons from the neighboring 

Ti4+ cations, resulting in increased electron deficiency. The presence of acid sites can improve 

the charge separation of the photo-generated electrons and holes and hinder the recombination 

of electron-hole pairs. In contrast, high sulfate coverage of titania and formation of covalent 

disulfate species rather reduce the photocatalytic activity.  

In order to find some correlation between the surface properties and photocatalytic activity, 

liquid phase adsorption of phenol on the studied catalysts was investigated. Results are 

summarized in Supporting information Fig S3, and table S1. Our experiments revealed that by 

the applied photocatalytic reaction parameters, it is not possible to reach the equilibrium 

concentration, and the dispersion of the catalysts, especially in the case of P25 plays important 

role in the adsorbed amount of phenol. Our adsorption experiments clearly evidenced that P25 

titania adsorbs at least two times higher amount of phenol than the laponite immobilized ones. 

This can be one reason, among the many other factors, influencing the catalytic activity. The 

adsorption behavior by one-hour contact time show similar tendency like the photocatalytic 

activity, being P25 the most active one, followed by TiLapHT sample. By 24 h adsorption the 

adsorbed amount of phenol significantly increased, but P25 still overcomes the laponite 

supported titania catalysts. 

Titania/laponite composite catalysts have been found to be inferior in photatalytic activity 

compared to commercial titania. They do have, however showed the practical benefit, that they 

can be easily recovered from the reaction slurry by settling or filtration. As evidenced also by 

our investigations, the sedimentation rate of P25 catalyst is very slow, it needs several hours to 

be settled. 
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Conclusions 

Our experiments have proved that laponite is a suitable support for the production of easily 

separable TiO2-based catalysts. Applying different titania immobilization procedures, it turned 

out that although ôpillaringô process opens the laponite structure, only 5-6 nm TiO2 

nanoparticles are incorporated in between the layers. By applying hydrothermal treatment and 

acidic TiOSO4 precursor, the laponite structure is converted to a silica/titania nanocomposite 

with 12-14 nm titania particles. FT-IR study of adsorbed pyridine revealed the different acidic 

character of the studied catalysts, evidencing the presence of sulfate species on the surface of 

titania phase in TiO2/LapHT sample. The latter catalyst is more active in photocatalytic 

degradation of phenol and 2,4,6-trichlorophenol than the ôpillaredô one, probably due to bigger 

size of crystalline titania nanoparticles, to the peculiar pore system and different acidity. It was 

also found that P25 titania overcomes the catalytic activity of laponite based titania catalysts 

but it has the drawback that can hardly be separated from the reaction media by sedimentation 

or filtration. 
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Figure captions 

 

Fig 1. X-ray powder diffraction patterns of the parent laponite and its TiO2 modified varieties 

compared to commercial P25. Dashed curve on TiO2/LapHT sample represents the pattern 

calculated by profile fitting method for the crystallite size determination of anatase. 

Fig. 2 N2 physisorption isotherms of the studied TiO2/laponite samples compared to parent 

laponite 

Fig. 3 TEM images of the parent laponite and laponite immobilized titania varieties: Laponite 

(A), TiO2/LapP2 (B), TiO2/LapHT (C, D) 

Fig. 4 DR UV-Vis spectra of the prepared laponite immobilized titania samples compared to 

commercial P25 titania 
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Fig. 5 FT-IR spectra of adsorbed Py on titania modified laponite samples. Py was adsorbed on 

300ÁC dehydrated samples at 100ÁC, and desorbed at 100-200-300ÁC (from bottom up) 

Fig. 6 Degradation of phenol by photo-, or photocatalytic oxidation with 254 nm UVC 

irradiation on titania/laponite catalysts compared to commercial P25 titania 

Fig. 7 Degradation of phenol (A) and 2,4,6-trichlorophenol (B) by photo-, or photocatalytic 

oxidation with 361 nm UVA irradiation on titania/laponite catalysts compared to commercial 

P25 titania 
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