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Abstract

Mushroom-forming fungi are complex multicellular organisms that form the basis of a large

industry, yet, our understanding of the mechanisms of mushroom development and its

responses to various stresses remains limited. The winter mushroom (Flammulina filiformis)

is cultivated at a large commercial scale in East Asia and is a species with a preference for

low temperatures. This study investigated fruiting body development in F. filiformis by com-

paring transcriptomes of 4 developmental stages, and compared the developmental genes

to a 200-genome dataset to identify conserved genes involved in fruiting body development,

and examined the response of heat sensitive and -resistant strains to heat stress. Our data

revealed widely conserved genes involved in primordium development of F. filiformis, many

of which originated before the emergence of the Agaricomycetes, indicating co-option for

complex multicellularity during evolution. We also revealed several notable fruiting-specific

genes, including the genes with conserved stipe-specific expression patterns and the others

which related to sexual development, water absorption, basidium formation and sporulation,

among others. Comparative analysis revealed that heat stress induced more genes in the

heat resistant strain (M1) than in the heat sensitive one (XR). Of particular importance are

the hsp70, hsp90 and fes1 genes, which may facilitate the adjustment to heat stress in the

early stages of fruiting body development. These data highlighted novel genes involved in

complex multicellular development in fungi and aid further studies on gene function and

efforts to improve the productivity and heat tolerance in mushroom-forming fungi.
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Introduction

Mushroom-forming fungi are widely distributed through Earth’s ecosystems. They play essen-

tial roles in nutrient cycling, environmental protection, plant and animal health [1–3]. Mush-

rooms are also important food sources and produce molecules with therapeutic activities and

enzymes that can be applied in bioconversion [4, 5]. Furthermore, the fruiting body is a com-

plex multicellular structure [6], whose complexity level resembles that of multicellular plants

and animals. Therefore, understanding fruiting body development is important also from the

perspective of understanding major evolutionary transitions.

Fruiting body development starts with the aggregation of aerial dikaryotic hyphae under

suitable environmental conditions (nutrient, light, and temperature etc.) [7–13]. These

aggregates continuously develop into primordia, which further differentiate into mature

fruiting bodies [7–13]. Then, karyogamy and meiosis take place in the basidia within the

hymenium of the fruiting body, and additional mitosis results in basidiospores [7–13]. Copri-
nopsis cinerea and Schizophyllum commune were used as the main model species to study the

mechanisms of mushroom formation, due to their short life cycles and suitability for genetic

manipulation [7–9]. Studies on these two model species using tools such as DNA-mediated

transformation, RNA interference, and CRISPR/Cas9 etc. have pioneered our knowledge of

the multicellular development, mating pheromone, and receptor signaling pathways in the

Agaricomycetes [14–18]. More recently, studies also focused on ecologically or economically

important non-model species, which included the saprotrophic fungi (Agaricus bisporus,
Flammulina filiformis, Lentinula edodes, Lentinus tigrinus, Cyclocybe aegerita), plant patho-

gen (Armillaria ostoyae), and the ectomycorrhizal fungi (Laccaria bicolor) [2, 19–26]. These

studies broadened our knowledge on fruiting body development and also highlighted con-

served expression patterns of some key developmental genes (such as the genes encoding

light receptors (white collar complex), transcription factors (c2h2, hom1, hom2), CAZyme

and F-box protein etc.), indicating conserved molecular mechanisms in multicellular com-

plexity in Agaricomycetes. However, mushroom development is a highly organized process,

and genetic drivers of spatial and temporal differentiation events are not known, and our

understanding of mushroom formation in other ecologically and economically important

mushroom-forming fungi is still in its infancy [12, 13, 27, 28].

The winter mushroom or enokitake, Flammulina filiformis (formerly known as F. velutipes)
[29], is cultivated at large scales in East Asia [30–32]. A comprehensive understanding of fruit-

ing body development of this mushroom would not only benefit its production, but can also

help to uncover conserved molecular mechanisms of development in the Agaricomycetes.

Commercial scale cultivation of this mushroom requires a low temperature (�15˚C) (since the

wild strain commonly fruiting during late autumn to early spring), which costs large amounts

of energy, especially during summer in East Asia [29, 33, 34]. Fortunately, a heat resistant strain

(called M1 after Mingjin1) has been isolated in subtropical areas (Fujian province) of China in

summer that can fruit at 23˚C and thus has great potentials in strain improvement and should

be subject to studies of heat resistance [33].

Previous studies revealed molecular details in fruiting body development in Flammulina spe-

cies at the transcriptome, proteome, single gene or protein level [20, 35–39]. A series of genes

associated with mushroom formation, including the mating type genes, hydrophobins, and

fruiting body specific genes have been identified [20, 31, 40]. Researches also investigated at

least two genes controlling fruiting at>15˚C based on hybridization analysis [34]. However,

the molecular response to heat stress, in particular those of the well-known heat shock protein

coding gene hsp70, hsp90 and other molecular chaperons etc., in F. filiformis remains unknown.

Although previous studies provided us with a basic understanding of fruiting body
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development of F. filiformis or its closely related F. velutipes, our knowledge about the fruiting

body development and heat stress response of this mushroom is still incomplete.

In this study, we aimed to (i) uncover key fruiting body genes in various developmental

stages; (ii) investigate whether conserved developmental patterns exist in F. filiformis and

other Agaricomycetes; and (iii) understand the responses to heat stress of heat sensitive (XR)

and resistant (M1) strains and identify the key heat stress response genes in F. filiformis. We

sampled RNA in different developmental stages of the M1 strain, and from the primordium

stage grown at 10˚C and 18˚C of both the M1 and XR strains, for studying fruiting body devel-

opment and its response to heat stress, respectively. Our results identified conserved gene

expression patterns of fruiting body development in the Agaricomycetes and revealed that the

heat tolerant strain M1 differentially expressed more genes in response to heat stress than the

heat sensitive strain XR.

Materials and methods

Strains and culture conditions

The heat tolerant strain M1 (CGMCC5.2219) was domesticated from a wild strain collected

in subtropical areas in China in summer (Fujian province). The heat sensitive strain XR

(CGMCC5.2218) was isolated from a mushroom market, this strain was imported from Japan

[33]. Both of them are deposit in the Chinese General Microbiological Culture Collection Cen-

ter (CGMCC). They were grown on enriched Potato Dextrose Agar (PDA) medium (0.05%

KH2PO4, 0.05% MgSO4, 2% glucose, 0.2% yeast extract, 0.2% peptone, 1.8% agar) in 90 mm

Petri dish for 10 days at 23 ˚C. Then, the mycelium was inoculated in liquid cultures in 500ml

Erlenmeyer flask containing 200ml enriched Potato Dextrose Broth (PDB) medium (0.05%

KH2PO4, 0.05% MgSO4, 2% glucose, 0.2% yeast extract, 0.2% peptone), shaken at 150 r.p.m

for 10 days at 23 ˚C. Afterwards, the mycelium was inoculated to a growth medium consisting

of 90% cottonseed hull, 10% wheat bran, and 65% water in 1100 ml disposable bottles after

sterilization. Inoculated bottles were incubated at 23 ˚C under dark conditions for 30 days,

and then the mycelium scratched to emulates disturbance and transferred to 23 ˚C with 95%

humidity for fruiting.

Sample collection for RNA-seq

We selected different developmental stages of strain M1 grown at 10 ˚C (except for the myce-

lium, which was grown at 23 ˚C). We collected the vegetative mycelium (VM), the primordium

(P10-M1), the young fruiting body cap (YFBC), the fruiting body cap (FBC), the young fruiting

body stipe (YFBS), and the fruiting body stipe (FBS) (Fig 1A). For the heat stress response study,

we collected the primordia, young fruiting body, and fruiting body of M1 strain grown at 18 ˚C

(P18-M1), as well as the primordia, young fruiting body and fruiting body of XR strain grown at

10 ˚C and 18 ˚C respectively (Fig 1B).

Total RNA preparation and transcriptome sequencing

Samples from three biological replicates were flash-frozen in liquid nitrogen and stored at -80

˚C. Total RNA of each sample was extracted using the RNAprep Pure toolkit, following the

manufacturer’s protocol (TIANGEN, Beijing, China). Sequencing libraries were generated

using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA) following the manufac-

turer’s recommendations and index codes were added to attribute sequences to each sample.

The clustering of the index-coded samples was performed on a cBot Cluster Generation Sys-

tem using TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to the manufacturer’s
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Fig 1. Overview of the sampling and differential expression analyses used in this study. A: fruiting body

development. B: heat stress; C: Venn diagram of the numbers of up-regulated genes at 18˚C compared to 10˚C in each

developmental stage of the M1 and XR strain.

https://doi.org/10.1371/journal.pone.0239890.g001
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instructions. After cluster generation, the library preparations were sequenced on an Illumina

Hiseq platform and 125 bp/150 bp paired-end reads were generated. All raw-sequence reads

data were deposited in NCBI Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/

Traces/sra) with accession number of PRJNA557510.

Read mapping to the reference genome, FPKM and gene annotation

Clean data were obtained by removing reads containing adapters, reads containing poly-N and

low-quality reads from raw data through Trimmomatic (v.0.33) [41]. Then, we used HISAT2

(v.2.10) [42] to map the clean reads to the reference genome which assembled to chromosome

level [20], and employed StringTie (v.1.3.4) [43] to calculate each gene’s FPKM value. All of the

genes were annotated using local BLASTX programs against the Nr, SwissPort, GO and PFAM

databases.

CAZyme gene annotation

Carbohydrate-active enzymes (CAZymes) were classified separately by HMM search of

dbCAN HMMs 4.0 [44] (default cutoff threshold) and BLASTP search of the CAZy database

[45] (evalue < = 1x10-6 and coverage > = 0.2, maximum hit number is 500).

Differential gene expression analysis

We performed differential gene expression analyses on each adjacent developmental stage of

the M1 strain (Fig 1A) as well as the primordium stage grown at 10 ˚C vs 18 ˚C of the M1 and

XR strains (Fig 1B). Analyses were based on three biological replicates per condition and were

performed using the DESeq package (1.18.0) [46]. The input data of young fruiting body grown

at 10 ˚C of M1 (YFB10-M1) were used as the pooled reads of young fruiting body cap (YFBC)

and young fruiting body stipe (YFBS) of M1, and the input data of fruiting body grown at 10˚C

of M1 (FB10-M1) were used as the pooled reads of fruiting body cap (FBC) and fruiting stipe

(FBS) of M1. Genes with log2 (fold change)� 1 and Padj� 0.05 were considered as differen-

tially expressed gene (DEG).

Gene network construction and visualization

Co-expression networks were constructed using the WGCNA package in R [47]. Genes

with averaged FPKM from three replicates higher than 1 in at least one sample were

input to WGCNA unsigned co-expression network analysis (S1 Table). The modules

were obtained using the step-by-step network construction function on block-wise mod-

ules with default settings, except that the power is 24 for fruiting body development analy-

sis, 20 for M1 and 10 for XR in heat stress response analysis. TOM-Type was set to signed,

minModuleSize to 30, and mergeCutHeight to 0.25. The networks were visualized using

Cytoscape (v.3.5.1) [48].

Comparative genomic analysis

In order to check the conservation level of the developmentally regulated genes? during fruit-

ing body development, analyzed a 201 genome dataset (ranging from unicellular yeasts to fila-

mentous and complex multicellular fungi which also included F. filiformis in this study) and

the corresponding phylogenetic tree taken from a previous study [13]. Conservation of genes

was assessed based on the phylogeny, by assessing the presence/absence of genes across the

panel of species.
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qRT-PCR analysis

Reverse transcription of RNA (1ug) in a 20 μL reaction volume was performed using TURE-

script 1st Stand cDNA SYNTHESIS Kit, following the manufacturer’s protocol (Aidlab, Beijing,

China). Reactions were incubated at 42 ˚C for 60min, and 65 ˚C for 10min. The amplifications

were performed using 5 μL SYBR qPCR Mix, 0.5 μL forward primer, 0.5 μL reverse primer and

1 μL cDNA, and 3 μL ddH2O in a final volume of 10 μL. The cycling parameters were 95 ˚C

for 3 min followed by 30 cycles of 95 ˚C for 10 s, 58 ˚C for 30 s and 72 ˚C for 20 s. The relative

gene expression was analyzed calculated by the qPCRsoft3.2. The 18S ribosomal RNA gene

was used as the internal reference. The primers of each gene were listed in S2 Table.

Results and discussion

Overview of the transcriptome sequence data

We obtained 39.4–63.6 million paired-end reads for 15 sample types in triplicates (45 libraries

in total) (S3 Table). Of the quality-filtered reads 58.3–71.2% mapped to the reference genome

of F. filiformis (S3 Table). The moderate mapability may be caused by the different strains used

in this study compared with the reference genome from strain KACC42780 [20]. Although

we expect this to not influence our results, it may cause lower sensitivity in faster evolving or

strain specific genes. Differences in read mapability were not found between the M1 and XR

strain which made the transcriptome comparable across these two strains (S3 Table). To vali-

date the results of the RNA-seq analysis, 18 genes were randomly selected for quantitative real-

time PCR (qRT-PCR). These genes showed expression patterns similar to those in the RNA-

seq data (S1 Fig), indicating that our transcriptome sequencing provided a good estimate of

gene expression patterns in the analyses of fruiting body development and heat stress response

of F. filiformis.

Temporal- and spatial-gene expression across F. filiformis development

Differential expression analysis indicated the highest number of differentially expressed genes

(DEGs) in the transition from vegetative mycelium to primordium (1,313 up-regulated, 1,243

down-regulated), followed by young to mature fruiting body cap (1,284 up-regulated, 986

down-regulated) relative to primordium (Fig 1A; S2A Fig, S4 Table). This gene expression

pattern was also recognized by the WGCNA analysis, a systems biology approach aimed at

uncover gene modules which share gene expression patterns at a pre-specified similarity cut-

off [47]. We identified six gene modules highly correlated with a single tissue type (Fig 2A; S5

Table). Among them, the primordium module (module no. 6), young fruiting body cap mod-

ule (module no. 4) and mature fruiting body cap module (module no. 12) contained the high-

est number of genes (Fig 2A). These results indicate that primordium stage comprises the

most significant morphogenetic transition, and that hymenium maturation and sporulation

in young and mature fruiting body caps may also harbor complex molecular mechanisms.

This gene expression pattern is consistent with those found in other Agaricomycetes [8, 22, 13,

49]. Moreover, the DEGs related to each developmental stage were enriched for GO terms typ-

ical for fruiting body formation, see S3 Fig and S6 Table.

Primordium development includes genes widely conserved in

Agaricomycetes

The top 20 up-regulated genes induced in primordium relative to vegetative mycelium were

listed in Table 1. Building on a previously published dataset [13], we found these genes were

widely conserved in fungi, and re-emphasized that several primordium-upregulated genes
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have homologs in simple multicellular or unicellular fungi. This indicates that some conserved

gene families were recruited for complex multicellularity during evolution [13]. Among them,

the Gti1/Pac2 family is conserved in all fungi (Table 1; Fig 3). Previously, this family has been

discussed mostly in yeasts and pathogenic fungi, where it plays an important role in fungal

growth and development [50]. Recent research revealed that this family is also developmentally

regulated in Armillaria ostoyae, Coprinopsis cinerea, Lentinus tigrinus, Rickenella mellea, Schi-
zophyllum commune, and Phanerochaete chrysosporium [13]. Thus, these genes may also play a

key role in fruiting body development in Agaricomycetes. In addition, three TFs in the top 20

up-regulated genes (Zinc finger, C2H2 type, Zinc finger, Ring type, and Zn (2)-C6 fungal type)

are conserved in Dikarya and Zoopagomycota plus later diverging phyla (Table 1; Fig 3),

which reinforces the role of these TFs in complex multicellularity in fungi [13].

We found the gene encoding flammutoxin was conserved in 19 species in Agaricomycetes

and 1 species in the Dacrymycetes (Table 1; Fig 3). This protein has been studied in F. filifor-
mis, and may form a pore in the intestinal epithelial cells of fungivorous animals, leading to

cell death [51]. However, because this protein is heat-labile, clinical reports about the intestinal

dysfunction caused by ingestion of this mushroom are rare. Pore-forming proteins have been

Fig 2. Gene expression patterns in fruiting body development of F. filiformis. A: Gene module-sample association revealed by gene co-expression analysis in

WGCNA. Each row corresponds to a module, each column corresponds to a developmental stage or tissue type. VM, P10-M1, YFBC, YFBS, FBC and FBS correspond

to vegetative mycelium, primordium, young fruiting body cap, young fruiting body stipe, fruiting body cap and fruiting body stipe, respectively. Upper and lower

numbers in the cells indicate the correlation coefficient between the module and sample and the significance of the correlation (p-value), respectively; B: Expression

patterns of the three aquaporin genes and the eln3 gene in each developmental stage of strain M1. E-value was reported by BLASTX search; C: Gene co-expression

networks of the primordium module (module no. 6). The scale bar indicates the number of connections a gene has; D: Gene co-expression network of young fruiting

body cap module (module no. 4). The red dots represent ribosomal protein encoding gene, blue dots represent other gene; E: Heatmap of the CAZyme and F-BOX

gene expression in each developmental stage.

https://doi.org/10.1371/journal.pone.0239890.g002
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studied in Pleurotus species, which exhibit cytotoxicity toward insect cells via pore formation

in cell membranes to defend predation [52, 53]. Thus, whether flammutoxin serves to protect

the fruiting body of F. filiformis predated by mammals or insects needs further investigation.

In addition, a ricin-B lectin gene (chr11_AA_01461), showed high expression in fruiting bod-

ies. It is homologous to the Macrolepiota procera mpl, Mpl protein shows toxicity towards the

nematode Caenorhabditis elegans [54]. A re-analysis of its homologs in C. cinerea, L. tigrinus,
R. mellea, S. commune, and P. chrysosporium revealed that it has fruiting body specific expres-

sion pattern in these species as well. This is in concordance with its expression pattern in M.

procera, indicating a conserved role of this gene in protecting fruiting bodies against predators

and parasites in Agaricomycetes [54]. Compared with the conserved flammutoxin and ricin-B

lectin gene discussed here, we found the previously mentioned widely conserved ribotoxins

gene is not exists in F. filiformis genome [55].

Interestingly, the second most up-regulated gene in primordium was restricted to the fam-

ily Physalacriaceae, which indicated a role in primordium formation in this family (Table 1;

Table 1. Top 20 most upregulated and two other notable genes up-regulated in the primordium stage relative to vegetative mycelium. Aquaporin and hydrophobin

genes mentioned in the text are also shown.

Rank Protein ID Log2 (FC) P-value (FC) Best Hit (Accession No.)

1 chr11_AA_00208 10.37 5.8x10-14 -

2 chr08_AA_01205 9.39 5x10-55 Hypothetical protein

3 chr10_AA_00968 8.87 4.3x10-60 Short-chain dehydrogenase (IPR002347)

4 chr11_AA_00046 8.70 1.9x10-138 Gti1/Pac2 family (IPR018608)

5 chr10_AA_00489 8.65 5x10-12 Flammutoxin (BAA32792)

6 chr01_AA_00267 8.62 7.4x10-25 -

7 chr03_AA_00235 8.52 7.5x10-30 -

8 chr08_AA_01207 8.37 7.9x10-16 -

9 chr08_AA_01206 8.35 1.3x10-13 -

10 chr11_AA_00874 8.28 5.2x10-18 Schizophyllum commune hydrophobin, Sc3 (P16933)

11 chr11_AA_01512 8.24 9.2x10-7 Cytochrome P450 (IPR001128)

12 chr07_AA_00932 8.22 6x10-21 Zinc finger, RING-type (IPR001841)

13 chr03_AA_00276 7.97 8.1x10-95 Flammulina velutipes hydrophobin, fv-hyd1 (AB126686)

14 chr04_AA_00509 7.91 5.4x10-85 Zinc finger, C2H2 (IPR007087)

15 chr05_AA_00568 7.77 6.2x10-126 Kre9/Knh1 family (IPR018466)

16 chr08_AA_00570 7.01 1x10-127 -

17 chr01_AA_00480 7.68 1.4x10-17 -

18 chr08_AA_01181 7.56 1.3x10-117 -

19 chr09_AA_01255 7.53 1.2x10-26 Zn(2)-C6 fungal-type (IPR001138)

20 chr10_AA_01153 7.47 9x10-17 -

47 chr11_AA_01264 5.81 3x10-79 Aquaporin (P43549)

54 chr05_AA_00590 5.63 1x10-9 Flammulina velutipes hydrophobin, fv-hyd1 (AOV80987)

FC: Fold Change; Chytridio: Chytridiomycota; Mucoro: Mucoromycota; Zoopago: Zoopagomycota.

Genes conservation level in Fungi

Black-Species specific

Blue-Conserved in Physalacriaceae

Light blue-Conserved in Agaricomycetes

Green-Conserved in Basidiomycota

Yellow-Conserved in Dikarya

Orange-Conserved in Chytridio/Mucoro/Zoopago+higher

Red-Conserved in Fungi

https://doi.org/10.1371/journal.pone.0239890.t001
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Fig 3). Unfortunately, our knowledge about this gene is limited. However, recent study

reported the successful overexpression and RNA interference of the transcription factor pdd1
in F. filiformis, which provides genetic tools to study this gene in the future [56]. Based on our

analysis, almost half of the top 20 up-regulated genes in primordium stage without annotations

(Table 1), they are widely conserved in simple multicellular and complex multicellular fungi,

indicating that systematic studies are needed on mushroom development to help to under-

stand multicellularity.

Fig 3. Synoptic summary of key genes at different stages of development of F. filiformis. 1–6 indicates developmental stages of basidia.

https://doi.org/10.1371/journal.pone.0239890.g003
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Notable genes during fruiting body development

In the primordium stage, we found that genes encoding hydrophobins were (homologs of fv-
hyd1, fv-hyd7 and S. commune sc3) significantly up-regulated relative to vegetative mycelium

(Fig 3; S2A Fig; S4 Table). It is well known that hydrophobins and cerato-platanins assemble at

the hyphae surface to promote their aggregation in humid environments [57–59]. Hydropho-

bins may also hinder water absorption through the membrane [60].

We detected the aquaporin gene specifically induced in primordia and stipe tissues (Fig 2B;

S2A Fig; S4 Table). Aquaporins are integral membrane proteins responsible for water and solute

transport, and also involved in mycorrhizal formation and plant-fungal interactions during sym-

biosis establishment [26, 61]. Recent study revealed that aquaporins were also developmentally

regulated in L. bicolor fruiting bodies [26]. However, aquaporins have been discussed mostly in

the context of mycorrhizal fungi [62–65]. Based on our results, it seems likely that aquaporin-

dependent water transport is a key process during mushroom development in saprotrophic fungi

too, possibly in water transport along the stipe to facilitate water supply of the developing cap and

gills [64]. A re-analysis of the data published by Sipos et al. (2017) [22] and Krizsán et al. (2019)

[13] indicated that aquaporins were developmentally regulated in all six species studied by these

authors, indicating that the role of aquaporins in development is not restricted to Flammulina,

but may be widely conserved in fruiting body development. Aquaporins were differentially

expressed in mycorrhizal species [2, 26, 64], which provides additional support to the hypothesis

that fruiting bodies and ectomycorrhizae have many shared gene expression patterns, possibly

pointing to common developmental origins [2, 64, 66].

Interestingly, we found that the Flammulina homolog of the stipe elongation gene eln3 of C.

cinerea possessed similar expression pattern to those of aquaporin genes during fruiting body

development (Figs 2B and 3; S2A Fig; S4 Table). The mutant strain of this gene in C. cinerea
produced aberrant fruiting bodies, in which the stipe hardly elongated during development

[67]. The eln3 homolog of Volvariella volvacea was also reported to be differentially expressed

during fruiting body development [68]. A re-analysis indicated that eln3 in C. cinerea and its

homologs in L. tigrinus, A. ostoyae and R. mellea were developmentally regulated in RNA-Seq

on data from previous studies [22, 13]. Homologs in S. commune and P. chrysosporium were

not developmentally expressed, which might be explained by the lack of a stipe in these species.

The broad conservation and expression patterns of eln3 suggests that the molecular mecha-

nisms of stipe elongation may be shared in Agaricomycetes, despite the independent origins of

pileate-stipitate fruiting bodies in the class [28]. These results further highlight this gene as an

interesting target in future strain improvement programs.

We found that one of the hub genes in the primordium module (module no. 6, WGCNA

co-expression analysis) was a homolog of Aspergillus nidulans ppoA (Figs 2C and 3). This gene

participates in oxylipin synthesis, which modulates sexual and asexual development in A. nidu-
lans [69]. During sexual development, the PpoA protein initially localized in Hülle cells formed

at the stage of cleistothecial primordium formation, and subsequently in immature cleistothecia

in A. nidulans [69]. Over-expression of this gene in A. nidulans promotes sexual spore forma-

tion [69]. A re-analysis of this gene’s homologs in C. cinerea, R. mellea, and A. ostoyae revealed

a conserved expression pattern in these species, which indicates that oxylipins may mediate

sexual development in the Ascomycota and the Agaricomycetes.

The homolog of Lentinula edodes priA was highly induced in primordium and young fruit-

ing body cap of F. filiformis (S2A Fig; S4 Table). This gene was reported to possess the higher

expression level in primordium and young fruiting body of L. edodes and over-expressing the

priA gene in L. edodes monokaryotic mycelium remarkably decreased zinc ion accumulation,

which indicates this gene may play a role in regulation of the intracellular zinc concentration
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[70]. Surprisingly, we found its homologs were highly expressed in vegetative mycelium and

lower expressed in fruiting bodies in A. ostoyae, C. cinerea, L. tigrinus, R. mellea, S. commune,
and P. chrysosporium.

A large number (74) of ribosomal protein encoding genes, and homologs of genes involved

in cell differentiation and cell wall formation in S. pombe (agn1 and rae1), Candida albicans
(ada2), and S. cerevisiae (ecm3) were hub genes in the young fruiting body cap module of the

WGCNA analysis or were up-regulated relative to the primordium stage (Figs 2D and 3; S2A

and S2B Fig; S4 Table). These results might reflect intense growth and protein synthesis in

young fruiting bodies. Although the hymenium was immature in this stage, four meiosis regu-

lation genes homologous to S. pombe mei2, Cryptococcus neoformans dmc1, and S. cerevisiae
hfm1, hop1, and zip4 were up-regulated (Fig 3; S2A Fig; S4 Table). Among them, dmc1, hop1
and hfm1 homologs were also up-regulated in mature cap (Fig 3; S2A Fig; S4 Table).

Compared to young fruiting body cap, more meiosis genes (homologs of S. pombe psm1
gene, C. neoformans dmc1 gene, and S. cerevisiae, msh4, msh5, meu13, hop1, hfm1, and smg7)

were induced in the fruiting body cap (Fig 3; S2A Fig; S4 Table). Among the genes induced in

young fruiting body cap and fruiting body cap, the genes homologous to C. neoformans pum1

may be noteworthy (Fig 3; S2A Fig; S4 Table). Pum1 is an RNA binding protein, and possesses

an important role in post-transcriptional regulation in basidium development and sporulation

in C. neoformans [71–73]. Previous studies revealed that the knockout of this gene in C. neofor-
mans resulted in a severe defect in basidium formation [71–73]. In this study, we detected five

genes homologous to C. neoformans pum1, two of them were developmentally regulated in

young fruiting body cap and fruiting body cap, which indicates they may participate in basid-

ium formation and sporulation in F. filiformis (Fig 3; S2A Fig). We detected another sporula-

tion-related gene, homologous to A. nidulans samB (Fig 3; S2A Fig). Knock out of this gene

in A. nidulans hindered ascospore formation [74]. A re-analysis of the homologs of pum1

and Samb in A. ostoyae, C. cinerea, L. tigrinus, R. mellea, S. commune, and P. chrysosporium
revealed they possess conserved expression patterns in these species. Due to these two genes

were widely conserved (Fig 3), we therefore speculate that some molecular mechanisms of

spore formation may be conserved in fungi.

CAZymes and F-box genes

Certain CAZymes were shown or assumed to participate in cell wall remodeling during fungal

tissue differentiation [13, 49, 75–77]. We annotated 407 CAZymes genes in F. filiformis, 137 of

them were differentially expressed (Fig 2E; S7 Table), which is consistent with previous studies

in other mushroom-forming fungi [13, 20, 49]. Among these genes, Glycoside hydrolases

(GH) and Glycosyltransferases (GT) were most abundant, with 57 and 30 genes, respectively.

Although the targets of these families in fruiting bodies are currently unknown, the stage spe-

cific expression of these genes during fruiting body development reinforces the view that cell

wall remodeling is a widespread and well-organized process in fruiting body development in

Agaricomycetes.

F-box proteins play a key role in protein ubiquitination and modification, and are involved

in many important biological processes not only in plants, but all eukaryotic [78, 79]. They

were recently reported in relation to fruiting body development [13, 49]. In this study, 210 F-

box encoding genes were annotated in F. filiformis, of which 80 were developmentally expressed

and showed stage-specific expression patterns (Fig 2E; S8 Table). Similar expression patterns

were also recognized in A. ostoyae, C. cinerea, R. mellea, L. tigrinus, and S. commune, which

suggests that F-box genes may be crucial during fruiting body development in Agaricomycetes

[13].
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Strain M1 expressed a large gene pool in response to heat stress relative to

XR

Based on cultivation tests, we found that the growth of M1 strain showed no difference in

10˚C and 18˚C, while, the growth in XR strain was obviously retarded at 18 ˚C. On the molec-

ular level, we found more differentially expressed genes in M1 (882 DEGs) than in XR (556

DEGs) (Fig 1C; S4 Fig). Based on the Venn diagram on Fig 1, we found two genes with ele-

vated expression level in all developmental stages of strain M1 at 18 ˚C: a DNA damage repair

gene homologous to S. cerevisiae rad18 and a epoxide hydrolase gene homologous to A. niger.
For strain XR, seven genes had an elevated expression level at all developmental stages under

18 ˚C (Fig 1C): two hsp20 genes, one WD repeat-containing gene, and four genes without

annotation. Consistent with these functions, a GO enrichment analysis revealed that up-regu-

lated genes in M1 were mainly enriched in ‘response to stress’ (GO:0006950, P<0.05), ‘protein

folding’ (GO:0006457, P<0.01), and ‘chaperone binding’ (GO:0051087, P<0.05) etc. And the

genes up-regulated in XR were mainly enriched in ‘protein binding’ (GO:0005515, P<0.01),

‘DNA binding’ (GO:0003677, P<0.01), and ‘protein kinase binding’ (GO:0019901, P<0.01)

etc. (S5 Fig; S9 Table). These results indicate the different heat stress response strategies were

employed in these two strains.

Specifically, differential expression analyses revealed that the M1 strain had more heat

shock protein genes up-regulated than XR (S4 Fig). Among them, homologs of S. cerevisiae
hsp70, S. pombe hsp90 and another gene homologous to Ustilago maydis fes1 induced in M1

at 18˚C may be noteworthy. The Hsp70 protein could protect nascent polypeptides and refold

the damaged proteins under heat stress conditions [80]. If protein folding fails with Hsp70,

Fes1 could interact with misfolded proteins and lead to their destruction by the ubiquitin-

proteasome machinery [81]. Compared with Hsp70, Hsp90 functions primarily in the final

maturation of proteins. Therefore, these genes may act as an “assembly line” [80] of protein

maturation under heat stress during primordium development of strain M1. The heat stress

induction of hsp70 and hsp90 was also reported in Lentinula edodes and Ganoderma lucidum
[82, 83]. Homologs of these two genes were not differentially expressed in XR strain. Instead,

the genes homologous to S. pombe hsp20 were up-regulated in XR strain in all developmental

stages at 18˚C, they play different roles than hsp70 and hsp90, which are probably required to

prevent misfolded protein aggregation and their degradation under heat stress [80].

In addition, the DNA damage repair gene homologous to S. cerevisiae rad18 was up-regu-

lated in all developmental stages in M1. Yeast strains lacking Rad18 proteins may be highly

sensitive to a wide variety of DNA damaging agents such as UVC-light, ROS stress and γ-radi-

ation [84–86]. However, this gene was only up-regulated in the young fruiting body stage of

XR grown at 18˚C. This example, combined with the fewer DEGs in the XR strain may indi-

cate the loss of an ancestral heat stress response mechanisms in the commercial XR strain.

This may result from the lack of temperature fluctuations and stress in general in factory

settings.

Conclusions

This study broadened our knowledge of fruiting body development and heat stress response

of mushroom-forming fungi based on comparisons of transcriptomic data in F. filiformis. We

detected a series of genes (e.g. aquaporins, eln3-homologs, hydrophobins, conserved transcrip-

tion factors, oxylipin biosynthesis genes) that show conserved, dynamic expression during

fruiting body development, and also uncovered signal for defense against high temperature in

the heat tolerance strain (M1) (e.g. hsp70, hsp90 and fes1 homologs). These, or other differen-

tially expressed genes, might be good candidates for in-depth experimental follow-up analyses
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(e.g. gene knockout) to understand their specific roles and answer important or interesting

questions that remained open. Analyzing the function of conserved genes in model and non-

model species will be necessary to broaden our knowledge on fruiting body development in

the Agaricomycetes.
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