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Abstract. In this paper, the concept of the centralizer of a subset (an element) of a BCI-algebra
by using commutators is given. The connection between commutative ideals with commutators
are considered. Also the pseudo center of a BCI-algebra is defined and the relationships between
center and pseudo center in BCI-algebras are discussed. Following the concept of the centralizer,
we introduce C-closed subalgebras of a BCI-algebra and discuss some characteristics of these
subalgebras. Finally, we define central ideal and derived ideal of a BCI-algebra and the relation-
ship between central ideal, derived ideal and other ideals of BCI-algebras are investigated.
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1. INTRODUCTION

K. Iséki introduced the concept of BCI-algebra in 1966 [13]. From then some
mathematicians studied and developed many concepts in this algebraic structure, for
instance, T. Lei and C. Xi [20] showed that each p-semisimple BCI-algebra can be
converted to an Abelian group and conversely each Abelian group is converted to a
BCI-algebra. S.A. Bhatti and M.A. Chaudhry introduced the concept of the center
of a BCI algebra based on the center of a group [1] and showed that the center of a
p-semisimple BCI-algebra is itself. Unlike Abelian group, this is not true in the case
of BCI-algebras. For example the center of a BCK-algebra X is {0}. This motivates
us to define pseudo center of a BCI-algebra which not only covers the mentioned
deficiencies but offers a number of advantages with respect to the center. The map
φ(x) = 0∗x, was formally introduced in [8] for BCH-algebras, but earlier it was used
in [4] and [3] to investigate some classes of BCI-algebras connected with groups. In
BCI-algebras which are quasigroups, that is, BCI-algebras isotopic to commutative
groups [1], any finite subset of such BCI-algebra is an ideal if and only if it is a
subgroup of the corresponding group. Any group G in which the square of every
element is the identity (i.e. a Boolean group) is a BCI-algebra. In [10] is proved
that a BCI-algebra (X ,∗,0) is a Boolean group if it has a neutral element (i.e. if
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0 ∗ x = x ∗ 0 = x for all x ∈ X) or if it is associative. Also every para-associative
BCI-algebra is a Boolean group [2, 6].

Since centralizer and center are two important notions, we extend these two no-
tions to these BCI-algebras and discuss further properties of these concepts. We
use the notions of pseudo center and centralizer in BCI-algebras to develop other
new concepts such as idealizer and normalizer in these structures. One of the main
motivations for defining pseudo center in BCI-algebras is proving similar Lagrange
and Sylow theorems if possible. The C-dimension theory, a new and interesting
concept has been of interest to many mathematicians recently. The theory has been
developed using centralizers in some algebraic structures including groups and rings.
The concept of C-dimension in these structures is defined as the length of the longest
nested chain of the centralizers, which is closely related to the general theory of
groups and rings. This means that if two groups have the same general theory, es-
pecially if they are elementary equivalent, they have the same C-dimension. The
converse is also correct under certain conditions. Investigation of the concept of C-
dimension in BCI-algebras using centralization could be an interesting subject for
further studies.

In this paper, we present a definition for the centralizer of an arbitrary element in
BCI-algebras on based commutators. We define also the notion of the centralizer of
a subset of a BCI-algebra, give several characterizations of it and prove that the class
of C-closed subalgebras of a BCI-algebra X is a commutative monoid and a lower
semi-lattice. We illustrate also these notions by some examples. Finally, we present
the concepts of central ideal and derived ideal of a BCI-algebra and some properties
of these notions are investigated. We verify some useful properties of these ideals in
BCI-algebras such as relation between central ideal and derived ideal with radical of
X .

2. PRELIMINARIES

By a BCI-algebra we mean an algebra (X ,∗,0) of type (2,0) satisfying the follow-
ing axioms: for all x,y,z ∈ X ,
(BCI1) ((x∗ y)∗ (x∗ z))∗ (z∗ y) = 0,
(BCI2) (x∗ (x∗ y))∗ y = 0,
(BCI3) x∗ x = 0,
(BCI4) x∗ y = y∗ x = 0 implies x = y.
A partial ordering ≤ on X can be defined by x ≤ y if and only if x ∗ y = 0. In any
BCI-algebra X for all x,y ∈ X , the following hold:

(1) (x∗ y)∗ z = (x∗ z)∗ y,
(2) x∗ (x∗ (x∗ y)) = x∗ y,
(3) x∗0 = x,
(4) x≤ y imply that x∗ z≤ y∗ z and z∗ y≤ z∗ x,
(5) (x∗ z)∗ (y∗ z)≤ x∗ y.
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A BCI-algebra X is said to be p-semisimple if 0 ∗ (0 ∗ x) = x, for all x ∈ X . A non-
empty subset S of a BCI-algebra X is called a subalgebra of X , if x∗ y ∈ S whenever
x,y ∈ S. A nonempty subset I of a BCI-algebra X is called an ideal if: (i) 0 ∈ I
(ii) x ∗ y ∈ I and y ∈ I imply x ∈ I for all x,y ∈ X . An ideal I of a BCI-algebra X is
called closed if 0 ∗ x ∈ X , for all x ∈ X . An element x in a BCI-algebra X is called
a positive element if it satisfies 0 ∗ x = 0. A BCI-algebra X is called commutative
if x ≤ y implies x∧ y = x, where x∧ y = y ∗ (y ∗ x), for all x,y ∈ X . A BCI-algebra
X is called associative if x ∗ (y ∗ z) = (x ∗ y) ∗ z, for all x,y,z ∈ X . Let I be an ideal
of a BCI-algebra X , then the relation θ defined by (x,y) ∈ θ if and only if x ∗ y ∈ I
and y ∗ x ∈ I is a congruence relation on X . Let x/I denote the class of x ∈ X , then
0/I = I. Assume that X/I = {x/I : x ∈ X}. Then (X/I,∗,0/I) is a BCI-algebra,
where x/I ∗ y/I = (x∗ y)/I, for all x,y ∈ X (see [11, 14]).

In what follows, (X ,∗,0) or simply X would mean a BCI-algebra, unless otherwise
specified.

Definition 1. i) ([20]). The set {x∈ X : 0∗(0∗x) = x}= {x∈ X : φ2(x) = x}
is called the center of X and is denoted by C(X).

ii) ([1]). An element x0 ∈ X is said to be an initial element of X , if x≤ x0 implies
x = x0. Let Ix denote the set of all initial elements of X . We call it the center
of X .

iii) ([15–18]). Let x,y be two elements of X . Then the element ((y∧x)∗(x∧y))∗
(0∗ (x∗ y)) of X is called a pseudo-commutator of x and y and is denoted by
[x,y].

iv) ([17]). For nonempty subsets A and B of X the commutator of A and B is the
set of all finite ∗-products of commutators of kind [a,b] with a∈ A and b∈ B.

[A,B] ={[ai1,b j1]∗ [ai2,b j2]∗ ...∗ [ain,b jn] : aik ∈ A,b j l ∈ B,n ∈ N}.

When A = B = X , [X ,X ] is called the commutator subalgebra or the derived
subalgebra of X and denoted by X

′
. Therefore

X
′
= {x1 ∗ x2 ∗ ...∗ xn : n≥ 1, each xi is a pseudo-commutator in X}.

v) ([11]). An element x of X is a nilpotent element if 0∗xn = 0 for some positive
integer n, where x ∗ yn = (...((x∗ y)∗ y)∗ ...)∗ y︸ ︷︷ ︸

n−times

. If every x in X is nilpotent,

then X is called a nilpotent BCI-algebra. For every positive integer k, we
define Nk(X) = {x ∈ X : 0 ∗ xk = 0}. The intersection of all maximal ideals
of a BCI-algebra X is called the radical of X and is denoted by Rad(X).

Theorem 1 ([11]). A closed ideal I of X is a commutative ideal if and only if the
quotient algebra X/I is a commutative BCI-algebra.

Theorem 2 ([15, 17]). X is commutative if and only if X
′
= {0}.
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Theorem 3 ([11]). Let S be a nonempty subset of X and let

A = {x ∈ X : (...((x∗a1)∗a2)∗ ...)∗an = 0, for some a1,a2, ...,an ∈ S}.
Then < S >= A∪ {0}. Especially, if S contains a positive element of X, or if S
contains a nilpotent element of X, then < S >= A.

Lemma 1. i) ([17]). Let f be a homomorphism from X to a BCI-algebra Y .
Then f ([x,y]) = [ f (x), f (y)], for all x,y ∈ X .

ii) ([18]). [x,y] is a positive element of X , for all x,y ∈ X .
iii) ([11]). 0∗(x∗y) = (0∗x)∗(0∗y), for all x,y∈ X , i.e., φ is a homomorphism.

Theorem 4 ([11]). The following two types of abstract systems are equivalent:
p-semisimple BCI-algebra and Abelian group.

In the following lemma we show that the center of derived subalgebra C(X
′
) is

always {0}.

Lemma 2. i) x ∈C(X) if and only if a∗ (a∗ x) = x, for all a ∈ X.
ii) If x ∈C(X), then φ(y∗ x) = x∗ y, for all y ∈ X.

iii) C(X
′
) = {0}.

Proof. i) Let x∈C(X). Then 0∗(0∗x)= x. Since (a∗(a∗x))∗x= 0, a∗(a∗x)≤ x.
Conversely, (a ∗ (a ∗ x)) ∗ x = 0, then 0 ∗ ((a ∗ (a ∗ x)) ∗ x) = 0 ∗ 0 = 0. Hence
(0 ∗ (a ∗ (a ∗ x))) ∗ (0 ∗ x) = 0. Therefore (0 ∗ (0 ∗ x)) ∗ (a ∗ (a ∗ x)) = 0. Whence
x ∗ (a ∗ (a ∗ x)) = 0. Hence x ≤ (a ∗ (a ∗ x)). Then a ∗ (a ∗ x) = x, for all a ∈ X . If
a∗ (a∗ x) = x, for any a ∈ X , then 0∗ (0∗ x) = x. Therefore x ∈C(X).

ii) Suppose that x ∈C(X). Then

φ(y∗ x) = 0∗ (y∗ x) = (0∗ y)∗ (0∗ x) = (0∗ (0∗ x))∗ y = x∗ y.

iii) Let x ∈C(X
′
). Then x ∈ X

′
and 0∗ (0∗ x) = x. Thus there exist ai,bi ∈ X such

that x = ∏[ai,bi]. Hence

x = 0∗ (0∗ x) = 0∗ (0∗∏[ai,bi])

= (0∗ (0∗ [a1,b1]))∗ (0∗ (0∗ [a2,b2]))∗ ...∗ (0∗ (0∗ [an,bn])) = 0∗ ...∗0 = 0.

Therefore, C(X
′
) = {0}. �

Theorem 5. Let x,y ∈ X. Then
i) φ([x,y]) = 0,

ii) [φ(x),φ(y)] = 0.

Proof. i) We first show that [x,y]∗ y≤ φ(y).

[x,y]∗ y = (((x∗ (x∗ y))∗ (y∗ (y∗ x)))∗ (0∗ (x∗ y)))∗ y

≤ ((y∗ (y∗ (y∗ x)))∗ (0∗ (x∗ y)))∗ y

= ((y∗ x)∗ (0∗ (x∗ y)))∗ y = ((y∗ x)∗ y)∗ (0∗ (x∗ y))
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= ((y∗ y)∗ x)∗ (0∗ (x∗ y)) = (0∗ x)∗ ((0∗ x)∗ (0∗ y))

≤ 0∗ y = φ(y).

Therefore 0 = ([x,y]∗ y)∗ (0∗ y)≤ [x,y]∗0 = [x,y]. So φ([x,y]) = 0∗ [x,y] = 0.
ii) By substitute φ for f in Lemma 1 we obtain 0 = φ([x,y]) = [φ(x),φ(y)]. �

W. A. Dudek presents a new method for studying the ideals and centralizer of 0
element based on the map φ in BCI/BCH/BCC-algebra (X ,∗,0) and some useful facts
on these notion are proved in [2–9]. He defines the centralizer of 0 element in X by
Z0 = {x ∈ X : x ∗0 = 0∗ x} = {x ∈ X : φ(x) = x}. It is shown that if (X ,∗,0) is a p-
semisimple BCI-algebra, then (X , .,0) is an Abelian group, where x.y = x∗ (0∗y) for
x,y∈X and conversely, if (X , .,0) is an Abelian group, then (X ,∗,0) with x∗y= x.y−1

is a p-semisimple BCI-algebra [3]. So we expect that the centralizer of 0 to be a fixed
element such as neutral element in Abelian groups. But in the following example we
see that this is not true in general.

Example 1. We consider Abelian group (Z3,+,0) and adjoint p-semisimple BCI-
algebra (Zad

3 ,∗,0) of it with the following Cayley table:

+ 0 a b
0 0 a b
a a b 0
b b 0 a

∗ 0 a b
0 0 b a
a a 0 b
b b a 0

By definition of centralizer of an element in Abelian group (Z3,+,0) as neutral
element 0 we have Z0 = {x ∈ Z3 : x+ 0 = 0+ x} = Z3 and in adjoint p-semisimple
BCI-algebra (Zad

3 ,∗,0) we obtain Z0 = {x ∈ Z3 : x∗0 = 0∗ x}= {0}.

We are trying to resolve this disagreement. By attention to φ(x), we would like to
consider centralizer from another perspective.

3. CENTRALIZER OF A SUBSET IN BCI-ALGEBRAS

In this section, we introduce the notion of centralizer of a subset of BCI-algebras
by using commutators and study it in detail.

Definition 2. Suppose that S is a nonempty subset of X . The centralizer of S in X
is defined to be {x ∈ X : [x,s] = [s,x] = 0,∀s ∈ S} and denoted by CX(S).

When S = {x} is a singleton set, then CX({x}) can be abbreviated to CX(x). Sym-
bolically,

CX(x) = {y ∈ X : [x,y] = [y,x] = 0}.
CX(x) is a nonempty set, because [x,0] = [0,x] = [x,x] = 0, for any x∈X . Specifically,
0,x ∈CX(x).
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Example 2. Let X = {0,a,b,c,d} be a BCI-algebra with the following Cayley
table:

∗ 0 a b c d
0 0 0 0 c c
a a 0 0 c c
b b b 0 d c
c c c c 0 0
d d d c b 0

By simple calculations we obtain CX(0)=CX(c)=CX(d)=X , CX(a)= {0,a,c,d}
and CX(b) = {0,b,c,d}. For S = {0,a,b} we obtain CX(S) = {0,c,d}.

Now we describe the relation between centralizer of a set with centralizer of con-
stituent elements.

Theorem 6. For subset S of X, CX(S) =
⋂

a∈S CX(a).

Proof.

x ∈CX(S)⇔∀a ∈ S, [x,a] = [a,x] = 0

⇔∀a ∈ S,x ∈CX(a)

⇔x ∈
⋂
a∈S

CX(a).

�

Lemma 3. Suppose that I is an ideal of X and a,b ∈ X. Then
i) CX(0) = X,

ii) a ∈CX(b) iff b ∈CX(a),
iii) CX(a)/I ⊆CX/I(a/I).

Proof. i) CX(0) = {x ∈ X : [x,0] = [0,x] = 0}= X .
ii) a ∈CX(b) if and only if [a,b] = [b,a] = 0 if and only if b ∈CX(a).
iii) Let b/I ∈ CX(a)/I. Then b ∈ CX(a) and hence [a,b] = [b,a] = 0. Therefore

[a,b]/I = [b,a]/I = 0/I. But [a,b]/I = [a/I,b/I] and [b,a]/I = [b/I,a/I]. Then
[a/I,b/I] = [b/I,a/I] = 0/I. So b/I ∈CX/I(a/I). Hence CX(a)/I ⊆CX/I(a/I). �

Lemma 4. Let f ∈ Aut(X). Then f (CX(a)) =CX( f (a)), for every a ∈ X.

Proof. Let y ∈ f (CX(a)). Then there exists x ∈ CX(a) such that y = f (x). Since
x ∈ CX(a), [x,a] = [a,x] = 0. Therefore, f ([x,a]) = f ([a,x]) = f (0) = 0 and hence
[ f (x), f (a)]= [ f (a), f (x)]= 0. Thus y= f (x)∈CX( f (a)). i.e., f (CX(a))⊆CX( f (a)).
If y = f (x) ∈ CX( f (a)), then [ f (x), f (a)] = [ f (a), f (x)] = 0. Therefore f ([x,a]) =
f ([a,x]) = f (0) = 0. But f is one to one, then [x,a] = [a,x] = 0. Hence x ∈ CX(a)
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and so y = f (x) ∈ f (CX(a)), that is, CX( f (a)) ⊆ f (CX(a)). Thus, f (CX(a)) =
CX( f (a)). �

Corollary 1. For subset S of X and f ∈ Aut(X), f (CX(S)) =CX( f (S)).

Proof.

f (CX(S)) = f (
⋂
a∈S

CX(a))

=
⋂
a∈S

f (CX(a))

=
⋂
a∈S

CX( f (a))

=CX( f (S)).

�

In the following two theorems, some of the properties of operator CX , such as
symmetry and decreasing are examined.

Theorem 7. Suppose that S,T are two subsets of X. Then
i) S⊆CX(T ) iff T ⊆CX(S),

ii) If S⊆ T , then CX(T )⊆CX(S).

Proof. i) Let S ⊆CX(T ) and let t ∈ T . To show that t ∈CX(S) we must show that
for all s ∈ S, [t,s] = [s, t] = 0. Suppose that s is an arbitrary element of S. Therefore
s ∈ CX(T ). By definition [t,s] = [s, t] = 0, for every t ∈ T . Hence t ∈ CX(S). By
symmetry if T ⊆CX(S), then we see S⊆CX(T ).

ii) Let S ⊆ T . If x ∈CX(T ), then [x, t] = [t,x] = 0, for all t ∈ T . Since S ⊆ T , for
all s ∈ S, [x,s] = [s,x] = 0. Hence x ∈CX(S). �

Theorem 8. Let S be a subset of X. Then
i) S⊆CX(CX(S)),

ii) CX(CX(CX(S))) =CX(S).

Proof. i) Let x ∈ S. Then x ∈ CX(CX(S)) iff for all s ∈ CX(S) we have [x,s] =
[s,x] = 0. Let s be an arbitrary element of CX(S). Then [s,s

′
] = [s

′
,s] = 0, for all

s
′ ∈ S. Since x ∈ S, [x,s] = [s,x] = 0. Therefore S⊆CX(CX(S)).

ii) Since S ⊆ CX(CX(S)), it follows that CX(CX(CX(S))) ⊆ CX(S). Also we ob-
tain CX(S) ⊆ CX(CX(CX(S))) by putting CX(S) instead of S in (i). Hence CX(S) =
CX(CX(CX(S))). �

Remark 1. CX(CX(S)) contains S but is not necessarily equal, also CX(S) need not
contain S. For the set S = {0,a,b} from Example 2, we obtain CX(S) = {0,c,d} that
is not contain S. Also CX(CX(S)) = X 6= S.

Definition 3. A subalgebra S of X is said to be C-closed if S =CX(CX(S)).
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We denote by C(X) the set of all C-closed subalgebras of X . Since CX(CX(X))
contains X , CX(CX(X)) = X . Then C(X) is nonempty.

Obvious that if CX(S) is a subalgebra of X , then CX(S) is C-closed, because
CX(S) =CX(CX(CX(S))).

Example 3. Let X = {0,a,b,c,d} be a BCI-algebra with the following Cayley
table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 a 0
b b a 0 b a
c c c c 0 c
d d d d d 0

X has 14 subalgebra, but only 4 until of their are C-closed. The sets S1 = {0,c},
S2 = {0,c,d}, S3 = {0,a,b,c},S4 = X are subalgebras of X such that

CX(CX(S1)) = S1, CX(CX(S2)) = S2, CX(CX(S3)) = S3 and CX(CX(S4)) = S4.

Hence C(X) = {{0,c}, {0,c,d},{0,a,b,c},X}.

Now, we move to the study of C-closed subalgebras of BCI-algebras and it con-
sequences.

Theorem 9. If S,T are C-closed subalgebras of X, then S∩T is a C-closed sub-
algebra of X.

Proof. Let S,T be C-closed subalgebras of X . Clearly, S∩T is a subalgebra of X .
Since CX(CX(S∩T )) contains S∩T , it is sufficient to show that CX(CX(S∩T ))⊆ (S∩
T ). But S∩T ⊆ S and S∩T ⊆ T , then CX(S)⊆CX(S∩T ) and CX(T )⊆CX(S∩T ).
Hence CX(CX(S∩T ))⊆CX(CX(S)) = S and CX(CX(S∩T ))⊆CX(CX(T )) = T . That
means CX(CX(S∩T ))⊆ (S∩T ). �

This proves that the intersection of any two C-closed subalgebra of X is again an
C-closed subalgebra of X . The above theorem can be generalized to intersection of
any family of C-closed subalgebra of X .

Remark 2. A C-closed subalgebra of a C-closed subalgebra is again C-closed.

Corollary 2. If X is commutative, then X is only subalgebra that is C-closed.

Proof. Let X be commutative. Then for every proper subalgebra S of X , CX(S) =
X . Therefore CX(CX(S)) = CX(X) = X 6= S, for every proper subalgebra S of X . If
S = X , then CX(CX(X)) =CX(X) = X . �

The following example shows that the converse of Corollary 2 is not correct in
general.
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Example 4. Let X = {0,a,b,c,d} be a BCI-algebra in which ∗ operation is defined
by the following table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b a 0 0 0
c c a a 0 0
d d c b a 0

By routine calculations we obtain C(X)= {X}. But X is not commutative, because
b∧ c = a 6= c∧b = b.

(C(X),∩,X) is a commutative monoid. C(X) is closed under ∩ and for any
S ∈ C(X), S∩ X = S. Moreover the operation ∩ is commutative and associative.
Also (C(X),∩) forms a lower semi-lattice with respect to ⊆. Indeed, (C(X),⊆) is a
partially ordered set and for any S,T ∈ C(X) we have in f{S,T}= S∩T .

In the following lemma we examine the conditions under which the converse of
the Theorem 7 (ii) is also true.

Lemma 5. If S ∈ C(X) and CX(S)⊆CX(T ), then T ⊆ S.

Proof. Suppose that CX(S) ⊆ CX(T ). Then CX(CX(T )) ⊆ CX(CX(S)). Since
S ∈ C(X), CX(CX(S)) = S, hence T ⊆CX(CX(T ))⊆ S. �

4. THE PSEUDO CENTER OF BCI-ALGEBRAS

In this section, at first, we recall that the center of a BCI-algebra is defined in
several different ways such as Definition 1, but with common results. However, the
logical reasons for this definitions is not clear, it is famed that in algebraic struc-
tures including groups, rings and Lie algebras the notion of center is defined based
on commutators [10, 19]. These motivate us to introduce a new notion of center in
BCI-algebras without using the commutators. This concept is different from the cen-
ter of BCI-algebras previously defined but it is consistent with the center of other
mentioned algebras. The new proposed center definition is more general and reliable
and is called pseudo center in this manuscript.

Definition 4. The set {x ∈ X : [x,y] = [y,x] = 0, ∀y ∈ X} is called the pseudo
center of X and is denoted by Z(X).

Obviously, 0 ∈ Z(X).

Example 5. i) For Example 2, Z(X) = {0,c,d}, C(X) = {0,c} and X
′
= {0,a}.

ii) Let X = {0,a,b,c,d} be a BCI-algebra with the following Cayley table:
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∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 a
b b b 0 b 0
c c a c 0 c
d d d d d 0

By simple calculations we obtain Z(X) = {0,a,c}, C(X) = {0} and X
′
= {0,b}.

Indeed, Z(X) is commutative part of X , and X
′

evaluates non commutative part and
commutative part of X from each other.

Theorem 10. X is commutative if and only if Z(X) = X.

Proof. Let X be commutative and x ∈ X . Then [x,y] = [y,x] = 0, for every y ∈ X .
So x ∈ Z(X) and hence X ⊆ Z(X). Obviously Z(X)⊆ X . Thus Z(X) = X .

Conversely, let Z(X) = X . Then [x,y] = [y,x] = 0, for all x,y ∈ X . Therefore X is
a commutative BCI-algebra. �

Corollary 3. The following conditions are equivalent:
i) X is commutative,

ii) Z(X) = X,
iii) X

′
= {0}.

Proof. i)↔ ii) follows directly from Theorem 10.
ii)↔ iii) Let Z(X) = X . Then X is commutative. By Theorem 6, X

′
= {0}.

Conversely, let X
′
= {0}. Therefore, X is commutative. Hence Z(X) = X . �

Remark 3. Z(X) is neither an ideal nor a subalgebra of X , in general. From Ex-
ample 4 by routine calculations we obtain that Z(X) = {0,a,d} is not a subalgebra
of X because a,d ∈ Z(X) but d ∗a = c /∈ Z(X) also Z(X) is not an ideal of X because
c ∗ a ∈ Z(X) and a ∈ Z(X), but c /∈ Z(X). Also, CX(I) for ideal I is not an ideal (a
subalgebra) of X , in general. For instance, in Example 4, X is an ideal of X , but
CX(X) = Z(X) is not an ideal (a subalgebra) of X .

In the following proposition we describe the relationship between center and pseudo
center in BCI-algebras.

Proposition 1. C(X)⊆ Z(X).

Proof. Suppose that x ∈ C(X). Then 0 ∗ (0 ∗ x) = x. We must show that for all
y ∈ X , [x,y] = [y,x] = 0. But

[x,y]c = ((x∗ (x∗ y))∗ (y∗ (y∗ x)))∗ (0∗ (x∗ y)) = ((x∗ (x∗ y))∗ (x))∗ (0∗ (x∗ y))

= ((x∗ x)∗ (x∗ y))∗ (0∗ (x∗ y)) = (0∗ (x∗ y))∗ (0∗ (x∗ y)) = 0.
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Also

[y,x] = ((y∗ (y∗ x))∗ (x∗ (x∗ y)))∗ (0∗ (y∗ x)) = (x∗ (x∗ (x∗ y)))∗ (0∗ (y∗ x))

= (x∗ y)∗ (x∗ y) = 0.

Therefore x ∈ Z(X). Hence C(X)⊆ Z(X). �

Remark 4. In Example 4 we see Z(X) = {0,a,d} and C(X) = {0}. Then the
equality of Proposition 1 does not hold, in general.

As immediate consequences of Definition 2 and Definition 4 we obtain:

Theorem 11. Suppose that a,b ∈ X and X1,X2 are subsets of X. Then
i) a ∈ Z(X) if and only if CX(a) = X,

ii) Z(X) =
⋂

a∈X CX(a),
iii) If X1 ⊆ X2, then Z(X2)⊆ Z(X1),
iv) CX(a)⊆CX(b) if and only if b ∈ Z(CX(a)),
v) Z(X)⊆CX(a), for every a ∈ X,

vi) X is commutative if and only if CX(a) = X, for every a ∈ X,
vii) CX(X) = Z(X),

viii) CX(a) =CX(b) if and only if Z(CX(a)) = Z(CX(b)).

Proof. i) Let a ∈ Z(X). Then for all x ∈ X , [x,a] = [a,x] = 0. Obviously, CX(a)⊆
X . Now, let x ∈ X . Thus [x,a] = [a,x] = 0. Therefore x ∈CX(a), that is, X ⊆CX(a).
Hence CX(a) =X . Conversely, let CX(a) =X . Since CX(a) = {b∈X : [a,b] = [b,a] =
0}= X , it follows that a ∈ Z(X).

ii) Let x ∈ Z(X). Then [x,a] = [a,x] = 0 for every a ∈ X . So x ∈CX(a), for every
a ∈ X . That means x ∈

⋂
a∈X CX(a). Therefore Z(X)⊆

⋂
a∈X C(a).

Conversely, let x ∈
⋂

a∈X CX(a). Then x ∈ CX(a) for every a ∈ X . Hence [x,a] =
[a,x] = 0 for every a ∈ X . Then x ∈ Z(X). So

⋂
a∈X CX(a)⊆ Z(X).

iii) Let x ∈ Z(X2). Then for every y ∈ X2, [x,y] = [y,x] = 0. Since X1 ⊆ X2, for
every y ∈ X1 we have [x,y] = [y,x] = 0. Therefore x ∈ Z(X1).

iv) Let CX(a)⊆CX(b). Then for any x ∈CX(a), x ∈CX(b). Hence [x,b] = [b,x] =
0, for any x ∈ CX(a). Therefore b ∈ Z(CX(a)). Conversely, let b ∈ Z(CX(a)) and
x ∈CX(a). Therefore [x,b] = [b,x] = 0. Hence x ∈CX(b). Then CX(a)⊆CX(b).

v) Since Z(X) =
⋂

a∈X CX(a), it follows that Z(X)⊆CX(a), for any a ∈ X .
vi) X is commutative iff Z(X) = X iff X =

⋂
a∈X CX(a) iff X = CX(a), for every

a ∈ X .
vii) CX(X) = {x ∈ X : [x,y] = [y,x] = 0, for all y ∈ X}= Z(X).
viii) Obviously, if CX(a) = CX(b), then Z(CX(a)) = Z(CX(b)). Conversely, let

Z(CX(a)) = Z(CX(b)). Since a ∈ Z(CX(a)), a ∈ Z(CX(b)). Then CX(b) ⊆ CX(a).
Similarly, since b∈Z(CX(b)), b∈Z(CX(a)), then CX(a)⊆CX(b). Therefore CX(a)=
CX(b). �

Theorem 12. Let I be an ideal of X. Then Z(X)/I ⊆ Z(X/I).
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Proof. Let x/I ∈ Z(X)/I. Then x∈ Z(X) and hence for every y∈X , [x,y] = [y,x] =
0. Therefore [x,y]/I = [y,x]/I = 0/I. Hence [x/I,y/I] = [y/I,x/I] = 0/I, for every
y/I ∈ X/I. So x/I ∈ Z(X/I). Thus Z(X)/I ⊆ Z(X/I). �

The following example shows that the equality of Theorem 12 may not hold.

Example 6. Let X = {0,1,2,3,4,5} be a BCI-algebra with the Cayley table as
follows:

∗ 0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 0 1 0 1 5
2 2 2 0 2 0 5
3 3 3 3 0 0 5
4 4 3 4 1 0 5
5 5 5 5 5 5 0

By simple calculations we obtain Z(X) = {0,5} = C(X). For ideal I = {0,2} of
X we have X/I = {0/I,1/I,3/I,4/I,5/I}. By routine calculus we obtain Z(X/I) =
{0/I,4/I,5/I} and Z(X)/I = {0/I,5/I}. Then Z(X)/I ( Z(X/I).

Lemma 6. f (Z(X))⊆ Z(X) and f (C(X))⊆C(X), for every f ∈ Aut(X).

Proof. Let y ∈ f (Z(X)). Then there exists x ∈ Z(X) such that y = f (x). Since
x ∈ Z(X), [x,a] = [a,x] = 0, for all a ∈ X . Therefore, f [x,a] = f [a,x] = f (0) = 0 and
hence [ f (x), f (a)] = [ f (a), f (x)] = 0. Since f ∈ Aut(X), y = f (x) ∈ Z(X). Hence
f (Z(X))⊆ Z(X).

If y ∈ f (C(X)), then exists x ∈ C(X) such that y = f (x). Since x ∈ C(X),
0∗ (0∗x) = x. Therefore f (x) = f (0∗ (0∗x)) = f (0)∗ ( f (0)∗ f (x)) = 0∗ (0∗ f (x)).
Thus y ∈C(X). Hence f (C(X))⊆C(X). �

Proposition 2. i) If X is a p-semisimple, then Z(X) = X.
ii) If X is an associative, then Z(X) = X.

Proof. i) Let X be a p-semisimple. Since C(X) ⊆ Z(X) and C(X) = X we obtain
Z(X) = X .

ii) Suppose that X is associative, then for any x,y ∈ X

[x,y] = ((x∗ (x∗ y))∗ ((y∗ (y∗ x))))∗ (0∗ (x∗ y))

= (((x∗ x)∗ y)∗ ((y∗ y)∗ x))∗ (x∗ y)

= ((0∗ y)∗ (0∗ x))∗ (x∗ y)

= (y∗ x)∗ (x∗ y) = (y∗ x)∗ (y∗ x) = 0.

Similarly, [y,x] = 0. Then Z(X) = X . �
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In the following example we show that the converse of Proposition 2 is generally
not correct.

Example 7. Let X = {0,a,b} with (∗) be defined by the following table:

∗ 0 a b
0 0 0 0
a a 0 0
b b a 0

X is a commutative BCI-algebra. Therefore Z(X) = X . But X is not associat-
ive because a = a ∗ (a ∗ b) 6= (a ∗ a) ∗ b = 0. Also X is not p-semisimple because
0∗ (0∗a) 6= a.

Lemma 7. Let X ,Y be two BCI-algebras. Then Z(X×Y ) = Z(X)×Z(Y ).

Proof. Let (x,y) ∈ Z(X×Y ). Then for every (a,b) ∈ X×Y , we obtain

[(x,y),(a,b)] = [(a,b),(x,y)] = (0,0).

But

[(x,y),(a,b)]

= (((x,y)∗ ((x,y)∗ (a,b)))∗ ((a,b)∗ ((a,b)∗ (x,y))))∗ ((0,0)∗ ((x,y)∗ (a,b)))
= ((x∗ (x∗a),y∗ (y∗b))∗ (a∗ (a∗ x),b∗ (b∗ y)))∗ (0∗ (x∗a),0∗ (y∗b))

= ((x∗ (x∗a)∗ (a∗ (a∗ x))),((y∗ (y∗b))∗ (b∗ (b∗ y))))∗ (0∗ (x∗a),0∗ (y∗b))

= ((x∗ (x∗a)∗ (a∗ (a∗ x))∗ (0∗ (x∗a))),((y∗ (y∗b))∗ (b∗ (b∗ y)))∗ (0∗ (y∗b)))

= ([x,a], [y,b]).

Since [(x,y),(a,b)] = [(a,b),(x,y)] = (0,0), ([x,a], [y,b]) = ([a,x], [b,y]) = (0,0).
Therefore, [x,a] = [a,x] = 0, for any a ∈ X and [y,b] = [b,y] = 0, for any b ∈ Y .
Hence x ∈ Z(X) and y ∈ Z(Y ). Then (x,y) ∈ Z(X)×Z(Y ). That means Z(X ×Y ) ⊆
Z(X)×Z(Y ).

Conversely, let (x,y) ∈ Z(X)× Z(Y ). Then x ∈ Z(X) and y ∈ Z(Y ). Therefore,
for every a ∈ X , [x,a] = [a,x] = 0 and for every b ∈ Y , [y,b] = [b,y] = 0. Thus
[(x,y),(a,b)] = ([x,a], [y,b]) = (0,0) and [(a,b),(x,y)] = ([a,x], [b,y]) = (0,0). So
(x,y) ∈ Z(X ×Y ). Hence Z(X)× Z(Y ) ⊆ Z(X ×Y ). Whence Z(X ×Y ) = Z(X)×
Z(Y ). �

Lemma 8. Let S be a subalgebra of X. Then

i) S⊆ Z(Z(S)),
ii) Z(Z(Z(S))) = Z(S).
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Proof. i) Let s ∈ S. Then for any x ∈ Z(S) we get [x,s] = [s,x] = 0. Hence
s ∈ Z(Z(S)). Therefore S⊆ Z(Z(S)).

ii) Since S ⊆ Z(Z(S)), it follows that Z(Z(Z(S))) ⊆ Z(S). Also by putting Z(S)
instead of S in (i) we obtain S⊆ Z(Z(Z(S))). Hence Z(Z(Z(S))) = Z(S). �

Theorem 13. Z(X)⊆
⋂

S∈C(X) S.

Proof. Since CX(S)⊆ X , for any S∈C(X), we obtain CX(X)⊆CX(CX(S)). Hence
for any S ∈ C(X), CX(X)⊆ S. Then Z(X) =CX(X)⊆

⋂
S∈C(X) S. �

Theorem 14. Suppose that S is a nonempty subset of X. Then the following con-
ditions are equivalent:

i) CX(S) = X,
ii) S⊆ Z(X),

iii) [S,X ] = [X ,S] = {0}.

Proof. i)↔ii) Let CX(S) = X and s ∈ S. Since s ∈ X = CX(S) we obtain [x,s] =
[s,x] = 0, for every x ∈ X . Therefore s ∈ Z(X). Conversely, let S ⊆ Z(X). Then
CX(Z(X))⊆CX(S). But CX(Z(X))=X and hence X ⊆CX(S). Obviously, CX(S)⊆X .
Then CX(S) = X .

ii)le f trightarrowiii) Let S⊆ Z(X) and t ∈ [S,X ]. Then t = ∏[si,xi] such that si ∈ S
and xi ∈ X . Since S⊆ Z(X), si ∈ Z(X) and so t = [si,xi] = 0. Therefore [S,X ] = {0}.
Similarity, [X ,S] = {0}. Conversely, let [S,X ] = [X ,S] = {0} and let s ∈ S. Therefore
[s,x] = [x,s] = 0, for all x ∈ X . Then s ∈ Z(X). Hence S⊆ Z(X). �

5. CENTRAL IDEAL AND DERIVED IDEAL

In this section, we introduce the notions of central ideal and derived ideal and in-
vestigate the relation between commutative ideals and the derived subalgebra, central
ideal and derived ideal and others ideals of BCI-algebras.

Definition 5. The generated ideal by Z(X) is called the central ideal of X and is
denoted by CI(X). i.e.,

CI(X) =< Z(X)>=
⋂

Z(X)⊆I

I.

Also the generated ideal by X
′

is called the derived ideal of X and is denoted by
DI(X). i.e.,

DI(X) =< X
′
>=

⋂
X ′⊆I

I,

where I is any ideal of X .

Example 8. i) In Example 7 we have CI(X) = X = DI(X) and for Example 5 (ii),
we have CI(X) = {0,a,c},DI(X) = {0,b}.
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ii) Let X = {0,a,b,c,d} be a BCI-algebra in which ∗ operation is defined by the
following table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 a 0
b b a 0 b 0
c c c c 0 c
d d d d d 0

By routine calculations, we obtain Z(X)= {0,c}. The central ideal of X is CI(X)=

{0,c}. Also X
′
= {0,a,b}. Therefore DI(X) =< X

′
>= {0,a,b}.

Theorem 15. Let I be an ideal of X. Then the following hold:

i) X/I is commutative if and only if X
′ ⊆ I,

ii) X/DI(X) is commutative,
iii) If DI(X) =X

′
, then X

′
is smallest ideal of X such that corresponding quotient

algebra is commutative.

Proof. i) see Theorem 5.1 in [17].
ii) Since X

′ ⊆ DI(X) by (i) X/DI(X) is a commutative BCI-algebra.
iii) Let DI(X) = X

′
, then X/DI(X) = X/X

′
is commutative. Now, let I be an ideal

of X such that X/I is commutative and I ⊆ X
′
. Since X/I is commutative by (i)

X
′ ⊆ I. Therefore, X

′
= I. Hence X

′
is smallest ideal of X such that corresponding

quotient algebra is commutative. �

Remark 5. Since X
′

is a subalgebra of X , DI(X) =< X
′
> is a closed ideal [3].

Then X/DI(X) is a commutative BCI-algebra. Hence DI(X) is a commutative ideal.
The converse of this statement is not correct, for example X is a commutative ideal
of X but is not a derived ideal of X , generally.

The following example shows that the central ideals and derived ideals are differ-
ent from the other ideals, in general.

Example 9. i) Generally, a central ideal is neither commutative nor positive im-
plicative ideal of X . The central ideal from Example 3 is CI(X) = {0,c}. Since
a ∗ d = 0 ∈ CI(X) but d ∗ (a ∗ (a ∗ d)) = d /∈ CI(X), CI(X) is not a commutative
ideal. Also (b ∗ a) ∗ a = 0 ∈ CI(X) and a ∗ a = 0 ∈ CI(X) but b ∗ a = a /∈ CI(X).
Therefore CI(X) is not a positive implicative ideal. Also (a∗ (d ∗a))∗c = 0 ∈CI(X)
and c ∈ CI(X) but a /∈ CI(X). Therefore, CI(X) is not an implicative ideal. Since,
b∧ d = d ∗ (d ∗ b) = d ∗ d = 0 ∈ CI(X) but d ∧ b = b ∗ (b ∗ d) = a /∈ CI(X), CI(X)
is not a normal ideal. CI(X) is not prime ideal of X , because b∧ d = d ∗ (d ∗ b) =
d ∗d = 0 ∈CI(X) but neither b ∈CI(X) and nor d ∈CI(X).
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ii) Let X = {0,a,b,c,d} be a BCI-algebra in which ∗ operation is defined as fol-
lows

∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0

By routine calculations, the central ideal of X is CI(X) = {0}. Also X
′
= {0,a,b}.

Therefore, the derived ideal of X is DI(X) = {0,a,b}. In this example CI(X) = {0} is
not a maximal ideal of X , because CI(X)( I = {0,a}. Also CI(X) = {0,a}∩{0,b}
but CI(X) 6= {0,a} and CI(X) 6= {0,b}. Then CI(X) is not an irreducible ideal of X .
Since a,b /∈CI(X) and neither a∗b ∈CI(X) and nor b∗a ∈CI(X), CI(X) is not an
obstinate ideal of X .

iii) In Example 3, X is an implicative, commutative, positive implicative, prime,
obstinate, maximal, Varlet, irreducible and normal ideal but is not central ideal of X
(for more details see [3, 12]).

Theorem 16. Let X be a BCI-algebra. Then
i) CI(X) = {x∈ X : (...((x∗a1)∗a2)∗ ...)∗an = 0, for some a1, . . . ,an ∈ Z(X)}.

ii) DI(X) = {x ∈ X : (...((x∗a1)∗a2)∗ ...)∗an = 0, for some a1, . . . ,an ∈ X
′}.

Proof. Since 0 is a positive element of X and 0 ∈ Z(X) and 0 ∈ X
′

by Theorem 3
(i) and (ii) holds. �

Theorem 17. Suppose that I is a closed ideal of X. Then I is a commutative ideal
if and only if [x,y] ∈ I, for all x,y ∈ X.

Proof. Let I be a closed ideal of X . I is a commutative ideal if and only if X/I
is a commutative BCI-algebra if and only if X

′ ⊆ I if and only if [x,y] ∈ I, for all
x,y ∈ X . �

In the following theorem we consider a condition under which the equality of
Theorem 12 is correct.

Theorem 18. Let I be a commutative closed ideal of X and I ∩X
′
= {0}. Then

I ⊆ Z(X) and so Z(X/I) = Z(X)/I.

Proof. Let I be a commutative closed ideal of X and let x ∈ I. Then [x,y] ∈ I, for
every y ∈ X . Since [x,y] ∈ X

′
for every x,y ∈ X , [x,y] ∈ I ∩X

′
= {0} . Therefore,

[x,y] = 0. Similarity, [y,x] = 0. Thus [x,y] = [y,x] = 0. Hence x ∈ Z(X). That is
I ⊆ Z(X). But Z(X/I) = {x/I : [x/I,y/I] = [y/I,x/I] = 0/I, for all y/I ∈ X/I} =
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{x/I : [x,y]/I = [y,x]/I = 0/I, for all y ∈ X} = {x/I : [x,y], [y,x] ∈ I, for all y ∈ X}.
Since [x,y], [y,x] ∈ X

′
, for all x,y ∈ X , then the recent set is equal {x/I : [x,y], [y,x]

∈ I∩X
′
, for all y ∈ X}= {x/I : [x,y] = [y,x] = 0, for all y ∈ X}= {x/I : x ∈ Z(X)}=

Z(X)/I. �

Theorem 19. If I is a commutative closed ideal of X, then I is a normal ideal of
X.

Proof. Let I be a commutative closed ideal of X and x∧ y ∈ I. Then [y,x] =
(y∧ x)∗ (x∧ y) ∈ I for all x,y ∈ X . But I is an ideal, then (y∧ x) ∈ I.
Conversely, let y∧x ∈ I. Since [x,y] = (x∧y)∗ (y∧x) ∈ I and I is an ideal of X , then
x∧ y ∈ I. Therefore, I is a normal ideal of X . �

In the following example we show that the converse of Theorems 18, 19 are gen-
erally not correct.

Example 10. Let X = {0,a,b}. Define a binary operation (∗) on X by

∗ 0 a b
0 0 0 0
a a 0 0
b b b 0

X is a BCI-algebra. The set I = {0} is a closed ideal of X . With simple calculations
we obtain Z(X) = {0} and X

′
= {0,a}. Also I∩X

′
= {0} and I ⊆ Z(X) but I is not

a commutative ideal, because [a,b] = a /∈ I.
In the Wronski algebra [3] I = {0} is a normal ideal of X but is not a commutative

ideal.

Remark 6. The set Nk(X) = {x ∈ X : 0∗xk = 0}, where k is a fixed natural number
is a commutative closed ideal of X [3]. Then X/Nk(X) is a commutative BCI-algebra.
Hence by Theorem 15, X

′ ⊆ Nk(X) and so DI(X) =< X
′
>⊆< Nk(X) >= Nk(X).

Therefore, any pseudo commutator element of X is a nilpotent element of X . Also by
Corollary 3, we have Z(X/Nk(X)) = X/Nk(X).

In the last theorem a relationship between Rad(X) and CI(X), DI(X) is expressed
and proved.

Theorem 20. CI(X)∩DI(X)⊆ Rad(X).

Proof. It is sufficient to show that every maximal ideal M of X is contains
CI(X)∩DI(X). Since M is a maximal ideal, DI(X) ⊆ M or X = M×DI(X), be-
cause if DI(X) * M, then M ( M×DI(X), by the maximality of M in this case
X = M×DI(X). If DI(X) ⊆ M, then CI(X)∩DI(X) ⊆ M. In the case X = M×
DI(X), X/M ∼= DI(X). Then X/M is a commutative BCI-algebra and hence X

′ ⊆M.
Therefore DI(X) =< X

′
>⊆< M >= M. Hence CI(X)∩DI(X)⊆M. �
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Open problem: Under what conditions dose the equality in Theorem 20 hold?

6. CONCLUSION

In groups, rings, lie algebras, monoids and semigroups the centralizer of a subset
is the set of all elements such that commute with all elements of them set and the
normalizer are elements that satisfy a weaker condition. This article presented the
centralizer of a subset of BCI-algebras as well as the concept of pseudo center of
BCI-algebras. The results of this paper show that:

i) X is commutative iff Z(X) = X iff X
′
= {0}.

ii) The pseudo center of X is exactly CX(X) and X is commutative if and only if
CX(X) = Z(X) = X .

iii) For subsets S,T of X , T ⊆CX(S) if and only if S⊆CX(T ).
iv) CX(CX(S)) contains S, but CX(S) need not contain S.
v) CI(X)∩DI(X)⊆ Rad(X).

Some important topics for future work are:
i) The concept of C-dimension in BCI-algebras using centralization could be

an interesting subject for studies.
ii) Making normalizer of a subset S of X such that NX(X) = X and for singleton

sets, NX(a) =CX(a), for a ∈ X .
iii) Find subalgebra of X to which X/CI(X) (also X/DI(X)) is isomorphic.
iv) Using commutators to construct idealizer of an ideal I of X .
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