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Introduction. The setoid model of type theory provides a way to bootstrap functional ex-
tensionality [1] and propositional extensionality [3]: the setoid model can be defined in an
intensional metatheory with a universe of definitionally proof irrelevant (strict) propositions
SProp. It is a strict model in such a metatheory, that is, all equalities of the model (e.g. β and η
for function space) hold definitionally. As a result, we obtain a model construction: any model
of type theory with SProp can be turned into another model, its “setoidified” version which
supports these extra principles. In addition to functional and propositional extensionality, the
setoid model justifies propositional truncation1, quotient types2 and countable choice3.

Since Agda supports SProp [9], it is a convenient tool to experiment with the setoid model.
It is straightforward to formalise the setoid model as a category with families (CwF [6]) with
Π, Σ, unit, empty, Bool, N, Id types, a universe of strict propositions. Extending the setoid
model with a (non-univalent) universe of sets is harder, it was shown by Altenkirch et al. [2]
that it can be done using a special form of induction-recursion or large induction-induction or
an SProp-valued identity type with transport over types.

Until recently we thought [12] that general inductive types and even quotient inductive-
inductive types (QIITs, initial algebras of generalised algebraic theories [13, 5]) are unproblem-
atic in the setoid model, provided we have (possibly SProp-sorted) inductive-inductive types
in the metatheory. Simon Boulier pointed out that our formalisations of Martin-Löf’s identity
type4 and the universal QIIT5 only provide eliminators in the empty context. They can be sal-
vaged using a method related to the local universes construction [14] which we explain below.

The setoid model. A context or a closed type in this model is a setoid, i.e. a set (we
say set instead of (Agda) type to avoid confusion) together with an SProp-valued equivalence
relation. A type over a context Γ = (|Γ|,∼Γ) is a displayed setoid with a fibration condition
coeA : x ∼Γ x′ → |A| x → |A| x′ such that x ∼A (coeA p x). Substitutions (and terms) are
(dependent) functions between the underlying sets which preserve the relations.

Example: Con-Ty. To illustrate the general method, we explain how to construct the follow-
ing QIIT in the setoid model6. It has two sorts, five constructors and one equality constructor.

Con : Set U : Ty γ

Ty : Con→ Set El : Ty (γ � U)

• : Con Σ : (a : Ty γ)→ Ty (γ � a)→ Ty γ

– � – : (γ : Con)→ Ty γ → Con eq : γ � Σ a b = γ � a� b
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1https://bitbucket.org/akaposi/setoid/src/master/agda/Model/Trunc.agda
2https://bitbucket.org/akaposi/setoid/src/master/agda/Model/Quotient.agda
3https://bitbucket.org/akaposi/setoid/src/master/agda/Model/CountableChoice.agda
4https://bitbucket.org/akaposi/qiit/src/master/Setoid/Path.agda
5https://bitbucket.org/akaposi/qiit/src/master/Setoid/UniversalQIIT/
6https://bitbucket.org/akaposi/qiit/src/master/Setoid/ConTy2.agda
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We omitted some arguments, e.g. U implicitly takes a parameter γ. In the setoid model, we
need to define a type Con in the empty context, a type Ty over Con, and their elimination
principles. We start by defining in Agda an inductive-inductive type (IIT) with these sorts:

|Con| : Set |Ty| : |Con| → Set

∼Con : |Con| → |Con| → SProp ∼Ty : γ ∼Con γ
′ → |Ty| γ → |Ty| γ′ → SProp

The constructors of |Con| are | • | and |� |, the constructors of |Ty| are |U|, |El| and |Σ|, while
∼Con has a constuctor |eq|. In addition, ∼Con and ∼Ty have constructors stating that it is an
equivalence relation, and they have congruence constructors for each point constructor, e.g.
there is ∼�: (p : γ ∼Con γ

′)→ ∼Ty p a a
′ → (γ�a) ∼Con (γ′�a′). Finally, |Ty| has a constructor

coeTy : γ0 ∼Con γ1 → |Ty| γ0 → |Ty| γ1 and ∼Ty a constructor for ∼Ty p a (coeTy p a). Thus the
IIT is the “fibrant equivalence congruence closure” of the constructors.

With the aid of this IIT (note that it has both Set and SProp-sorts) we define the type
formation rules and constructors of the Con-Ty QIIT in the setoid model in the empty context :
the underlying set for Con is |Con|, the relation is ∼Con, the witnesses for the equivalence relation
come from the corresponding constructors of ∼Con, and so on. Thus Con becomes a type in the
empty context in the setoid model. Ty is a type over the one-element context Con. • is a term
in the empty context of type Con, and so on. We added exactly the required structure to the
IIT to be able to define the constructors. The eq equality constructor is given by |eq|. Given a
Con-Ty algebra in the empty context, we define four functions by recursion-recursion as a first
step towards the (non-dependent) elimination principle.

The type formation rules and constructors can easily be lifted from the empty context to an
arbitrary context and all the substitution laws hold definitionally. We also need that for any
context Γ, we can eliminate into a Con-Ty algebra in Γ. Our setoid model has Π types and
K constant types (a context can be turned into a type). With the help of these we can turn
a type C in Γ into the type Π(x : KΓ).C[x] which is in the empty context. This way we turn
the algebra in Γ into an algebra in the empty context on which we can apply our previously
defined elimination principle. This way we obtain the eliminator in arbitrary contexts. All
computation rules of this eliminator are definitional.

We prove uniqueness of the eliminator by induction-induction on |Con| and |Ty|. The sub-
stitution law of the eliminator is proven by another induction-induction on the same sets.

In our formalisation, Con-Ty has an additional infinitary constructor (an infinitary Π type
indexed by a code of a setoid in a universe). It seems that with the help of a universe in the
setoid model, open QIITs and those with infinitary constructors can be handled as well. Note
that in contrast with the unordered infinitely branching tree example in [4], we do not use the
(countable) axiom of choice to construct this QIIT.

Arbitrary QIITs Signatures for QIITs can be specified using the theory of QIIT signatures
[13] (ToS) which is itself an infinitary QIIT. We formalised7 that the setoid model supports ToS
in the empty context. Based on our experience with Con-Ty, we expect that it is possible to
lift ToS from the empty context to arbitrary contexts. If this succeeds, then following [13], we
can construct all QIITs from ToS with propositional computation rules. As the construction
of [13] is performed in extensional type theory, we use Hofmann’s conservativity result [10, 15]
to transfer it to the setoid model. This way however we only obtain propositional computation
rules. It remains to be proven that all QIITs are supported by the setoid model with definitional
computation rules. We plan to do this by induction on QIIT signatures.

We would also like to understand the relationship of this construction to that of higher
inductive types (HITs) in cubical models [8, 7] and how they could be extended to HIITs [11].

7https://bitbucket.org/akaposi/qiit/src/master/Setoid2/ToS/
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