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A viable modification of c-boundary construction is given which yields a satisfactory causal
boundary wherever the Geroch-Kronheimer-Penrose construction does and is free of defects at

Taub space-time.

The local structure of singularities in general relativity
can be described by adjoining boundary points to the
space-time, since the singularities themselves cannot be
regarded as actually belonging to the manifold."?> One
would expect that these boundary points are determined
by the geometry of the space-time and that at least the
topological structure of the manifold be extendible to the
enlarged space-time. According to this an appropriate
boundary construction assigns a topological space M and
an embedding i:M —M to the space-time (M,g) such
that i[M] is an open, dense topological subspace in M.
Then the points of M\i[M] represent the set of the
“boundary” points while the topology of M tells us when
a point sequence in i [M] approaches a boundary point.

The various methods that have been put forward for
constructing such a boundary, with the exception of the
¢ boundary,? yield an unsatisfactory topological struc-
ture on M (Refs. 4—6). However the “singular” portion
of the ¢ boundary of Taub plane-symmetric static vacu-
um space-time is a single point and not, as one would ex-
pect, a “one-dimensional” set.” In fact, the authors in
Ref. 7 suggest that it might not be fruitful to describe
the structure of singularities using the c-boundary con-
struction. Nevertheless we should like to save the c-
boundary construction because it has the advantage that
it is comparatively simple and for causally continuous
space-times there is a reasonable, conformally invariant
way to attach a boundary to (M,g) (Ref. 8). Since Taub
space-time is causally continuous one can hope that
there exists a slight modification of the c-boundary con-
struction [hereinafter a GKP (Geroch-Kronheimer-
Penrose) construction] which has all the advantages of
the GKP construction and avoids the difficulties. The
source of the problems appears to be that the open sets
are too small in M# (Ref. 3). For example a terminal
indecomposable past (TIP) may only be in such open sets
which are generated by indecomposable futures (IF’s).
This is not so in topology, which is defined in Ref. 8, for
causally continuous space-times.

In this paper we give a viable modification of the c-
boundary construction. Our construction yields a satis-
factory causal boundary construction wherever the GKP
construction does and is free of defects at Taub space-
time.

First we collect the standard definitions and results we
shall need: In the framework of general relativity the
space-time is represented by a pair (M,g), where M is a
four-dimensional differentiable manifold and g is a
Lorentzian metric on M. The Lorentzian metric deter-
mines the causal structure of the space-time up to con-
formal transformations.! Denote by I ~(p) the chrono-
logical past of p EM, i.e., the set of points in the space-
time which may be reached from p along a timelike
curve. To avoid pathological situations it is convenient
to require that the past- and future-distinguishing causal
conditions hold on the space-time, i.e., I ~(p)=1"(q) or
I1*(p)=1I7%(q) implies that p =q. The past of a subset S
of M, I ~[S], is defined as the union of the pasts of the
points in S: formally I "[S]=U,csI ~(p). A set PCM
is called a past set if P=1"[S] for some SCM. A past
set P is called indecomposable if it is not empty and it
cannot be expressed as a union of two proper subsets
which are themselves past sets. Denote M the set of in-
decomposable past sets (IP’s). Trivially I ~(p) for an ar-
bitrary p €M is an IP. We call such an IP “proper” IP
(PIP). The other IP’s are “‘terminal” IP’s (TIP’s). One
can similarly define the chronological future of p €M,
I (p) (or SCM, I*[S]), the notions of future set, the
indecomposable future (IF) set, proper IF, terminal IF,
and M by interchanging “past” and “future”
throughout. We shall omit the duals of definitions and
statements.

The IP’s (IF’s) can be characterized by timelike or
causal curves as follow: A subset P of the space-time is
an IP if and only if P=1*[y] for some timelike curve y
(Refs. 1 and 3). (Or) Let y be a causal curve. Then
I~ [y]is a PIP, I (p), if and only if ¥ has a future end
point p. Consequently I “[y] is a TIP if and only if ¥ is
future endless.

The sets I ~(p) and I *(p) are open in manifold topol-
ogy of the space-time for an arbitrary p €M, so all of the
IP’s and IF’s are also open sets. Using the chronological
past and future of space-time events one can define a
more physical topology on M. Stated more precisely, let
the Alexandrov topology A of a space-time be defined as
the coarsest topology in which all of the PIP’s and PIF’s
are open. Evidently the manifold topology is never
coarser than the Alexandrov topology and we recall that
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the Alexandrov topology on M coincides with the ordi-
nary manifold topology if and only if the strong causali-
ty condition holds on M (Ref. 1).

On the basis of singularity theorems one expects that
the boundary points are represented as ‘‘ideal” end
points of b-incomplete, inextendable causal curves.! If
we use only the conformal-invariant causal structure to
construct such “ideal” end points then TIP’s or TIF’s
represent not only the singular portion of the boundary
but boundary at “infinity”’ as well. Nevertheless it is
simple to construct M and M; furthermore, there exist
past and future end points in UM to every causal
curve in that sense that M (M) is future (past) com-
plete.{ We have to define some kind of identifications on

UM. All of the space-time events are represented
doubly in M UM by their chronological future and past.
|
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Moreover some further identifications may also be re-
quired between “ideal” points to get an appropriate
boundary.® The aim is to get a topology on M which is
an extension of the Alexandrov topology of the space-
time.

Now we shall construct M as union with
identifications of M and ﬂ; furthermore a Hausdorff to-
pology 4 on M such that there exists an embedding
i:M — M for which i [M] is an open and dense topologi-
cal subspace in M. The fact is that the topology and the
identifications are obtained simultaneously. Let us first
define the (extended Alexandrov) topology A* on
MUM. The A* topology is the coarsest topology in
which, for each PIF, F, and PIP, P, the four sets Fint
Fext, pint pPeXt are all open, where

F"={4€EMUM | A€M and A NF+~BorA EM and (for all SCM) I *[S]=A =1 [S]NF£D} ,

F"={AEMUM | AEMand4 ZFord €M and (for all SCM) A =I"[S]=I*[S]|CF} ,

Pint and pPext being defined similarly, with the roles of
past and future interchanged. The sets F™ and P™ are
the analogues in M UM of the sets I (p) and I*(q).
The sets F' and P! are needed to get appropriate
neighborhoods for the points of the “null” part of the
boundary.® The most significant difference between the
GKP construction and ours are that we did not use the
intermediate space M ¥ and the open sets may include
TIP’s and TIF’s simultaneously.

Now the following simple lemmas are easily seen to
hold. ‘

Lemma 1. F'™ and F**' are disjoint. y

Lemma 2. Let O be an open subset in M UM. Then
I~(p)EO if and only if I *(p)EO,

Lemma 3. The map I~ :M —MUM is a dense topo-
logical embedding of (M, 4) into (M UM, A*).

However our aim is to construct a Hausdorff topologi-
cal space M so we must carry out some identifications in
MUM. The minimal requirement for an appropriate
identification is that P=1"(p) and F €M be identified if
and only if F= =I%(p). Let R be an equivalence relation
on M UM which satisfies this requirement. Denote by
M UM /R the quotient space and 4 * /R the quotient to-
pology on M UM /R (i.e., a set is open in 4 * /R if and
only if its 1nverse _image under the identification map
7r:M UM —M UM /R is open in the original space).
Using lemmas 2 and 3 one can prove the following.

Proposition 1. Let 7y :M UM —M UM /R be the nat-
ural projection generated by the equivalence relation R.
Then the map 7TRcI is a dense embedding of (M, A4)
into (M UM /R, A*/R).

Now the question is if there exists an equivalence rela-
tion R with the additional property that the topology

A* /R is Hausdorff.
A=I"(p) and BEM

Lemma 4. Let
UMN {I (p),I"(p)}. Then A4 and B are T, related in

f

A* if for each p EM there exist a,b EM such that
a€I (p), bEIT(p) and there is no set S, satisfying
both I t[S]CI*(a) and I ~[S]CI ~(b), for which I *[S]
isa TIF or I ~[S] is a TIP.

Using lemmas 2 and 4 it is evident that there exists an
equivalence relation on M UM which has the required
property when the causality condition in lemma 4 holds
on M, which was already stipulated in Ref. 3. For ex-
ample, the equivalence relation R can be such that it
simultaneously identifies all of the TIP’s and TIF’s;
moreover R should identify each PIP and PIF generated
by the same point of M. But we need not, in general, do
all of these identifications to produce the “largest viable”
Hausdorff space. Denote by Ry the intersection of all of
the equivalence relations R on M UM such that the to-
pological space (MUM /R, A*/R) is Hausdorff. Then
Rp is required “smallest” equlvalence relation. Let
M= MUM/RH and A= A*/Ry then using proposi-
tion 1, lemma 2, and lemma 4 one can prove the follow-
ing.

Corrolary 1. When the causal condition of lemma 4
holds on M there exists a Hausdorff topological space
(M, 4) such that the map (ﬂ'RHoI‘):M—>A_4 is a dense
embedding of (M, 4) into (M, 4), where g,
ural projection from MUMto M generated by Ry.

As an application of these ideas, we now show that
the “singular” portion of the causal boundary of Taub
plane-symmetric static vacuum space-time is a one di-
mensional set. It was proved in Ref. 7 that
It(n°)*EM* and I~ (9% )*EM¥* are non-T, related
in M ¥ provided that ¢ <c. Now it is easy to show that
It )EIH(P)]™ and I~ (95 E[I~(p)]™ if (for ex-
ample) pPEI (S )NI* (%) hold. According to this
I*(n°)EM and I (9 )EM are T, related in A4*
whenever ¢+c. The sets I 7(n°.) and I ~(n% ) are non-
T, related when ¢=c, which is just the one-dimensional

is the nat-
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property of the “singular” portion of the causal bound-
ary of Taub space-time.

It is difficult to foresee whether or not our construc-
tion gives a satisfactory boundary structure for an arbi-
trary space-time, since the identifications on the set
TIP’s and TIF’s are given (as in GKP construction) in

an implicit manner. It would be worth finding an expli-
cit identification rule (in that way it was given in Ref. 8)
for any causally “well-behaved” space-times.
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