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ABSTRACT

Acinetobacter baumannii produces carbapenemase-hydrolyzing class D β-lactamases (CHDLs) as one of
the major drug resistance mechanisms. This investigation is thus aimed to assess the prevalence and to
characterize the CHDL-producing strains of A. baumannii by both phenotypic assays and genotypic
characterization. A total of 73 isolates of A. baumannii were phenotypically and genotypically
characterized from patients (N= 1,000) with severe urinary tract infection. Tested strains were subjected
to double disk synergy testing by Kirby–Bauer disk diffusion method with modified Hodge test (MHT)
for carbapenemase production. Plasmid DNA was molecularly screened for CHDL-encoding blaoxa-51,
blaoxa-23, and blaoxa-143 genes by polymerase chain reaction. Carbapenem-resistant profile showed 100%,
61.64%, and 67.12% resistance by Kirby–Bauer disk diffusion method that correlated with MHT
positivity for 100% (n= 73), 80% (n= 36), and 78% (n= 38) of the isolates against imipenem,
doripenem, and meropenem, respectively. The blaoxa-51 and blaoxa-23 were observed in 41.09%
(n= 30) and 35.61% (n= 26) with co-occurrence in 4.10% (n= 3) of the isolates. MHT-positive isolates
showed 100%, 91.66%, and 71.4% for blaoxa-51 and 91.78%, 51.11%, and 34.69% for blaoxa-23 with
imipenem, doripenem, and meropenem resistance, respectively. None of the strains yielded blaoxa-143
gene. The findings of this study showed prevalence of carbapenem resistance and high frequency of
blaoxa-51 and blaoxa-23 among A. baumannii.
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INTRODUCTION

Acinetobacter baumannii is an important nosocomial pathogen associated with recalcitrant
urinary tract infections, septicemia and pneumonia, and is considered as a frequent cause of
infections among patients in intensive care units (ICUs) [1]. In recent years, it is of major
concern that A. baumannii exhibits multidrug resistance against the routine drugs of choice
[2, 3]. A. baumannii infections are alarming with greater concern due to their dramatic rise in
the carbapenem resistance pattern and are considered as sentinels of drug resistance with the
designation as carbapenem-resistant A. baumannii (CRAB) [4]. Resistance to carbapenems is
mainly mediated by carbapenemases through different classes of genetic determinants [5].
Metallo-β-lactamases (MBLs) are rare among these species but prevalence of MBLs was
reported as 53.4% in our earlier studies [6]. However, major contribution for carbapenem
resistance was induced through the action of carbapenem-hydrolyzing class D β-lactamases
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(CHDLs), which are also referred as oxacillinases that can
cause mild hydrolysis of the administered carbapenems in
patients [7, 8] and are often overexpressed in association with
insertion sequences [9].

At present, oxacillinases are encoded by five different
subclasses of blaoxa in A. baumannii strains. The blaoxa-51 is
documented to be associated with intrinsic resistant with
70 variants. Few acquired genes are also reported namely,
blaoxa-23-like, blaoxa-24-like, blaoxa-58-like, and blaoxa-143-like genetic
determinants encoded by both chromosomes and plasmids
[10]. Basically, oxacillinases are considered as unusual
β-lactamases forming a heterogenous group based on structural
and biochemical properties with a potent hydrolyzing effect on
oxacillin than benzyl penicillin. They are also known to
hydrolyze amoxicillin, methicillin, cephaloridine, and to some
extent cephalothin. Hydrolytic efficiency of carbapenemase
hydrolyzing class D β-lactamase (CHDL) is 100–1,000-fold
lower compared to that of MBL; however, it plays a role in
inducing carbapenem resistance and still is frequently reported
in A. baumannii [11]. Although MBLs are considered to be
more potent than CHDLs, oxacillinases are known to hydrolyze
imipenem but not always meropenem [12].

In addition, CHDL-producing A. baumannii often exhi-
bits resistance against clavulanate and tazobactam, with
susceptibility to NaCl inhibition, which aids in the laboratory
investigations. Among several phenotypic detections,
Clinical Laboratory Standards Institute, CLSI guidelines,
2012, advocates the application of modified Hodge test
(MHT), CarbaNP test, and/or a molecular based assay for
the confirmation of the CHDL producers among Enterobac-
teriaceae and A. baumannii strains [13]. Genotypic charac-
terization of CHDL-producing strains is based on the
detection of genetic determinant blaoxa, that is usually
performed by polymerase chain reaction (PCR) and clonal
relatedness can be analyzed by various molecular methods
[14]. Periodic surveillance on the CHDL-producing A. bau-
mannii would definitely aid in the eradication of the
carbapenem-resistant strains in hospitalized patients.

With this background, the present investigation is aimed
to phenotypically and genotypically characterize the CHDL
producers among A. baumannii strains with the phylogenetic
assessment of CHDL-based genetic determinants namely,
blaoxa-51, blaoxa-23, and blaoxa-143 screened from the patients
with severe urinary tract infections from South India.

MATERIALS AND METHODS

Study design

A total of 73 consecutive, non-repetitive A. baumannii
isolates that were isolated and identified for a period of
12 months (2014–2015) were phenotypically and genotypi-
cally characterized from urine samples of patients with severe
urinary tract infections (N= 1,000). Severe urinary tract
infection was defined in patients with one or more symptoms
of frequency or urgency in urination, suprapubic pain,
dysuria, and flank pain. Study cases included the outpatients

(OP cases), inpatients (IP cases), and hospitalized patients in
ICUs (ICU patients). Proper ethical guidelines and informed
consents were obtained prior to beginning of the study. The
strains were phenotypically and genotypically confirmed by
conventional microbiological analytical tests and PCR,
respectively. These characterized strains were subjected to
antibiotic susceptibility test by standard Kirby–Bauer disk
diffusion method using imipenem (10 μg), doripenem
(10 μg), and meropenem (10 μg) for the carbapenem-
resistant profile of the selected strains under study [15].

Phenotypic confirmatory test

Detection of CHDL-based oxacillinases or carbapenemases
was carried out by MHT. Briefly, 0.5 McFarland standard
turbid Escherichia coli ATCC 25922 broth suspensions was
lawn cultured on a sterile Mueller–Hinton agar plate. Using a
sterile forceps, imipenem (10 μg) disk (HiMedia laboratories,
Mumbai, India) was placed at the center of the plate and the
overnight fresh suspension of A. baumannii test strain was
streaked from the center to the periphery of the plate. Based on
the CLSI guidelines, a distorted zone after overnight incuba-
tion is interpreted as positive for carbapenemase production
among members of Enterobacteriaceae. Although it is not
recommended for non-fermenting Gram-negative bacilli, the
test is conducted as many previous studies have suggested the
test to detect CHDLs among A. baumannii strains [16, 17].

Molecular detection of blaoxa-51, blaoxa-23, and
blaoxa-143 genetic determinants in CHDL
producers

Extraction of plasmid DNA and PCR amplification. All the
strains were stored at −80 °C in 80%/20% (v/v) glycerol in
Luria–Bertani medium for genetic stability of resistance upon
storage [18]. Plasmid DNA was extracted from fresh cultures of
A. baumannii using Qiagen extraction kit in accordance with
the manufacturer’s instructions and was stored in −20 °C until
further use. An amount of 15 μl of amplification reaction
mixtures was prepared by mixing 7.8 μl of 2× Master Mix
(Takara, Japan) in 5.6 μl of double distilled water. Specific
forward and reverse primers (Eurofins Genomic India Pvt. Ltd.,
Bangalore, India) of blaoxa-51, blaoxa-23, and blaoxa-143 were added
with the standard PCR conditions (Table I). PCR amplification
was carried out and the resulting PCR amplicons were exam-
ined in 1% agarose gel electrophoresis containing ethidium
bromide, which was visualized in a gel documentation system.
The 100-bp DNA ladder was used to confirm the amplicon size.

RESULTS

Preliminary screening for the carbapenem resistance tested
showed 100%, 61.64%, and 67.12% resistance against imipe-
nem, doripenem, and meropenem, respectively, as per CLSI
zone interpretative criteria. MHT was positive in 100% of
imipenem-resistant isolates followed by 80% (n= 36) and
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78% (n= 38) among doripenem- and meropenem-resistant
strains (Table II).

Genotypic characterization of the CHDL genetic deter-
minants showed the presence of blaoxa-51 and blaoxa-23 in
41.09% (n= 30) and 35.61% (n= 26) of the isolates
(Figures 1–3). Co-occurrence of blaoxa-51 and blaoxa-23 was
observed in 4.10% (n= 3) of the isolates. MHT-positive
isolates showed 100% positive for blaoxa-51 with imipenem
resistance, 91.66% (n= 33) with doripenem resistance, and
71.4% (n= 35) with meropenem resistance. Similarly,
blaoxa-23 was positive in 91.78% (n= 67) with imipenem

resistance, 51.11% (n= 23) with doripenem resistance, and
34.69% (n= 17) with meropenem resistance among MHT-
positive isolates. Among the three isolates with both blaoxa-51
and blaoxa-23 genes, only one strain was MHT-positive.
However, none of the strains yielded blaoxa-143 gene.

DISCUSSION

CRAB strains were declared as the priority number one
pathogen by WHO in the year 2017 [19], due to a wide

Table I. Primer sequence and PCR conditions to detect blaOXA-51, blaOXA-23, and blaOXA-143 among CHDL producer A. baumannii

Target gene Primers Sequence (5′–3′) Annealing temperature (°C) Amplicon size (bp)

blaOXA-23-like OXA-23-F GATCGGATTGGAGAACCAGA 52 501

OXA-23-R ATTTCTGACCGCATTTCCAT

blaOXA-51-like OXA-51-F TAATGCTTTGATCGGCCTTG 52 353

OXA-51-R TGGATTGCACTTCATCTTGG

blaOXA-143-like OXA-143-F TGGCACTTTCAGCAGTTCCT 52 149

OXA-143-R TAATCTTGAGGGGGCCAACC

Note: PCR: polymerase chain reaction; CHDL: carbapenemase-hydrolyzing class D β-lactamase; F: forward; R: reverse.

Table II. Frequency of CHDL-producing A. baumannii based on phenotypic and genotypic characterization assays

Isolate under
study

Kirby–Bauer method

MHT positivity (%)

Genes of target

Carbapenems
tested Resistance (%) blaOXA-51 (%) blaOXA-23 (%) blaOXA-143 (%)

A. baumannii
(N= 73)

Imipenem 100 100 100 91.78 0

Doripenem 61.64 80 91.66 51.11 0

Meropenem 67.12 78 71.4 34.69 0

Note: MHT: modified Hodge test; CHDL: carbapenemase-hydrolyzing class D β-lactamase.

Figure 1. (a) Electrophoretogram of blaoxa-51 gene run along with 100-bp DNA ladder. (b) Electrophoretogram of blaoxa-23 amplicons run
along with 100-bp DNA ladder

Acta Microbiologica et Immunologica Hungarica – 5167 (2020) 1, 49 55



range of nosocomial infections resulted from the strains,
encompassing meningitis, septicemia, pneumonia, skin, and
wound infections with a major challenge in the patient health
care [20]. In addition, severe and complicated infections of
A. baumannii are treated with the last resort of carbapenems,
such as imipenem, doripenem, meropenem, and ertapenem.
High incidences of carbapenem-resistant strains in both
community- and hospital-acquired infections have been
documented [21]. The present investigation has also
recorded 50.68% (n= 37) as carbapenem-resistant strains
showing resistance against all the three drugs tested under
the study. Hundred percent of the strains showing imipenem
resistance in this study correlate with an earlier study from
South India [22]. Resistance to imipenem in A. baumannii is
reported [23] and in many earlier studies the isolates of
A. baumannii for carbapenemase and MBL production were
categorized based on imipenem susceptibility and resistance
patterns [24]. Higher incidences of imipenem resistance
are also documented in various studies globally [6, 25]. Our
clinical strains had previously recorded 60%–65% of non-
susceptibility against doripenem and meropenem with only
15.06% and 13.69% susceptibility, respectively, against the
same [20] that had correlated with similar observations from
Turkey with 66.6% resistance against meropenem and 49.9%
against doripenem mediated by OXA-type carbapenemases
[21]. Similar correlations were also observed from a study in
the USA that showed 68% and 80% non-susceptibility to
meropenem and doripenem, respectively [26]. On the con-
trary, a study from Punjab, India, has recorded only 6% of the

isolates to exhibit non-susceptibility against doripenem and
meropenem [22]. Among the routine carbapenems, it is
stated that there is no impact in the susceptibility patterns
of imipenem, which aids in the reduced administration of
imipenem and ciprofloxacin [27]. However, this study has its
own limitation where ertapenem is thus omitted under
carbapenem-resistant profile for the test organisms under
the study.

Phenotypic detection of CHDL production was observed
using MHT in this study. Among the tested isolates, with
100% resistance against imipenem and nearly 63% resistance
against doripenem and meropenem, phenotypic confirma-
tion was achieved in all the imipenem-resistant isolates but
only in 36 and 38 isolates of doripenem- and meropenem-
resistant isolates. Among the 73 imipenem-resistant isolates,
all were positive for MHT, which might be due to the
blaoxa-51 intrinsic gene cassettes associated with integrons
[28]. It might also be an additional fact for the 91.78% and
71.4% of the isolates showing MHT-positive A. baumannii,
together with the expression of blaoxa-23, suggesting the role
of blaoxa-51- and blaoxa-23-type CHDL’s in inducing carba-
penem resistance. Isolates with positive MHT but showing
negative genotypic results may be related to the variants
exhibited among class I integron structures, which are
detected frequently among A. baumannii [29, 30]. Compar-
ative analysis between phenotypic and genotypic data ob-
served in the present investigation suggests MHT to be highly
reliable and easy to perform for the preliminary screening of
CHDL production in accordance with earlier reports [31].

Figure 2. (a) The partial sequence chromatogram of blaoxa-51 gene. (b) The partial sequence chromatogram of blaoxa-23 gene
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Molecular detection of the genetic determinants of CHDL
production namely, blaoxa-23, blaoxa-51, and blaoxa-143, was
observed using PCR. All the resistant isolates (n= 73) of A.
baumannii showed blaoxa-143 negativity. In comparison with
the carbapenem-resistant profile (IMP – 100%, Dor –

61.64%, Mero – 67.12%) and MHT-positive isolates, only
23 and 17 showed the presence of blaoxa-23. This variation
might be due to the other non-enzymatic mechanisms, such
as presence of efflux pumps, role of outer membrane pro-
teins, etc., exhibiting the carbapenem-resistance property
among A. baumannii [32], which is the vital fact for the
widespread distribution of CHDL producers among A. bau-
mannii observed worldwide [33, 34].

Among the CHDL genetic determinants, co-occurrences of
the genes are also not uncommon. Studies record the different
patterns of co-occurring CHDL genes from different countries

including India [35]. In view with this, this study also records
the co-occurrence of blaoxa-23 and blaoxa-51, in three isolates.
Comparative analysis between phenotypic and genotypic de-
tection also shows a significant report. The study also records
isolates with MHT+ blaoxa-23 and MHT+ blaoxa-51 positivity,
respectively, with isolates showing MHT+ blaoxa-23+ blaoxa-51
positivity. In an earlier study from Nepal, the coexistence of
blaoxa-23 and blaNDM-1 was detected [36] with the presence of
other class B MBLs, such as blaVIM and blaGIM. These reports
suggest that the variations exhibited by the test isolates in both
phenotypic and genotypic characterizations are mainly due to
the frequency of different genetic determinants prevailing
among the A. baumannii species existing in different
geographical location against the carbapenems.

Complications induced by A. baumannii traits that are
acquired through different patterns of antimicrobial

Figure 3. (a) Multiple sequence alignment of blaoxa-51 gene using plasmid DNA as the template isolated from A. baumannii. (b) Multiple
sequence alignment of blaoxa-23 gene using plasmid DNA as the template isolated from A. baumannii
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resistance transform them as dreadful nosocomial pathogen
posing serious impediments in infection control. Frequency
of CHDLs and the distribution of their genetic determinants
restrict the administration of carbapenems against
A. baumannii. The present investigation thus concludes by
stating the need for the proper and periodical antimicrobial
surveillance programs for the use of carbapenems against
A. baumannii due to the high prevalence of varying resis-
tance pattern in association with the blaoxa-23, blaoxa-51, and
blaoxa-143 in inducing the carbapenemase resistance.
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