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Compiling a high-resolution country-level ecosystem map to support 

environmental policy: methodological challenges and solutions from 

Hungary 

High-resolution ecosystem maps increase the efficiency of policy 

implementation. However due to challenges related to both data and methods, 

such maps of appropriate scale and quality are still rarely available for 

nationwide analyses. We present solutions to some typical challenges of national-

scale ecosystem mapping through the new Ecosystem Map of Hungary. It is a 

comprehensive, spatially and thematically detailed map with a hierarchical 

typology. The mapping methodology combined several novel elements from the 

integration of various large-scale databases in a (theoretical) data cube to the use 

of image-based predictive mapping (with a Random Forest classifier, using 

Sentinel 1-2 and environmental data). A participatory method involving local 

experts was used for validation, addressing the lack of suitable reference data as 

well as improving map-maker - map user interaction. Besides the original 

objective of supporting conservation-related decision-making, further uses 

emerged from a variety of fields including spatial planning, education and 

recreation. 

Keywords: ecosystem mapping, national ecosystem assessment, image-based 

predictive mapping, ecosystem map users, participatory validation 

Introduction 

It is now widely recognized and stated in policy documents like the European Green 

Deal (EC 2019) that ecosystems provide essential services to society. However, recent 

reports suggest that the trends of biodiversity decline and ecosystem degradation 

continue with an unprecedented rate (Díaz et al. 2019), highlighting the need for action 

(Ruckelshaus et al. 2020). Halting the loss of biodiversity has been continuously on the 

agenda in the last two decades (EC 2006), yet by now it is clear that the EU is not 

meeting some of its most important environmental objectives for 2020 (EC 2019). 

Effective environmental policymaking is impossible without an up-to-date, detailed and 



reliable spatial data background (Aggestam and Mangalagiu 2020). The EU 

Biodiversity Strategy for 2030 (EC 2020), besides calling for action, emphasized that 

any action must be underpinned by sound science. The Global Assessment Report of the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 

(IPBES 2019) also lists the better documentation of nature among the possible actions 

to achieve transformative change, which is key to achieving sustainability. 

Ecosystem mapping is the spatial delineation of ecosystems (complex of living 

organisms together with their (abiotic) environment and their mutual relations) 

following an agreed ecosystem typology (Erhard et al. 2017). Such maps are 

comprehensive proxies for the spatial location of different biodiversity components and 

related services (Blasi et al. 2017). They are also effective tools in conveying 

information to decision-makers and stakeholders (Burkhard et al. 2018), therefore they 

are widely used in conservation management. The required minimum scale depends on 

the purpose, which can range from the comprehensive study of a single watershed’s 

ecosystem services (ES) (e.g. Czúcz et al. 2018) through regional studies (e.g. Strand et 

al. 2018) to global estimates of the value of certain ES (e.g. Costanza et al. 2014).      

Yet there is usually a cost-related trade-off between the level of (spatial and thematic) 

detail and the spatial extent of the mapping (Fisher et al. 2018).  

The mapping and assessment of ecosystems and their services were one of the 

keystones of the EU Biodiversity Strategy to 2020. Action 5 of Target 2 of the Strategy 

required EU Member States to map and assess the ecosystems in their territory, as well 

as their condition, and the status and economic value of the ecosystem services they 

provide (Maes et al. 2013). Choosing a base map of ecosystem types is usually the first, 

crucial step in these national ecosystem assessments (NEAs) (Grunewald et al. 2020). 

CORINE Land Cover [1] (CLC; Büttner 2014) is the recommended (Erhard et al. 2017), 



and probably the most frequently used database for such tasks in Europe, although the 

CLC-concept is originally driven by other purposes. However, the minimum mapping 

unit size of 25 ha and the limited thematic resolution constrain its use in conservation-

related decision-making. A European ecosystem map of 100 m spatial resolution [2] 

(Weiss and Banko 2018) has also been produced over the past decade, representing the 

second level of the European Nature Information System (EUNIS) habitat classification 

(Davies et al. 2004). It is derived from the CLC and while it focuses more on natural 

habitats, it is also best suited for regional-scale assessments.  

In order to address the requirements of the NEAs a variety of ecosystem maps 

were developed in the last decade in European Member States (e.g. Frélichová et al. 

2014, Grunewald et al. 2016, Blasi et al. 2017, Nedkov et al. 2018, Černecký et al. 

2020, Crouzat et al. 2019). Erhard et al. (2017) suggested a general workflow, where the 

basic geometry and main classes are either derived directly from satellite images or 

from existing land cover/land use maps. These are then refined thematically and 

geometrically in order to provide more policy-relevant information. There are different 

approaches to achieve more detail, but each has its shortcomings. One option is the 

integration of national sectoral databases (Černecký et al. 2020) but the availability and 

quality of such data may vary according to ecosystem type, leaving data gaps. Another 

option is the use of Potential Natural Vegetation (PNV) maps (Erhard et al. 2017, Blasi 

et al. 2017) for the thematic refinement of existing land cover maps. The PNV is the 

vegetation that ‘would persist under the current conditions if it was already there’ 

(Tüxen 1956, Somodi et al. 2012). However, while certain combinations of site 

characteristics make the presence of a particular habitat (and thus an ecosystem) likely, 

it is merely a probability (Somodi et al. 2017). A third option for refinement is the use 

of Earth Observation (EO) data. Such data have been successfully used for 



distinguishing vegetation-based habitat types within major physiognomic types at the 

site level (Burai et al. 2015, Zlinszky et al. 2012, Schuster et al. 2012). Yet their 

application at the national level is challenging, as the best results are achieved with 

datasets of high spatial (e.g. airborne laser) or radiometric (e.g. hyperspectral imagery) 

resolution. While prices tend to decline over time, the cost of such data is still high 

(Corbane et al. 2015). Data processing and acquiring the necessary ground truth data are 

also both resource-intensive. 

The validation and accuracy assessment of the base maps used for ES 

assessments is of crucial importance (Foody 2015) since land use mapping error affects 

uncertainty in ES mapping (Dong et al. 2015). Yet the validation of national-level 

ecosystem maps poses a great challenge as they are often unique; differences to existing 

maps can simply result from the different methodology, resolution or date of origin. 

Although this issue has been raised, no general solution was suggested so far (Blasi et 

al. 2017, Černecký et al. 2019).  

The Hungarian Mapping and Assessment of Ecosystem Services (MAES-HU) 

program was launched in 2016 within an EU-co-financed project [3] led by the Ministry 

of Agriculture. The first step was to create a new, comprehensive ecosystem map, 

which provides full spatial coverage for the country and is suitable to serve as the basis 

of all further assessments of ES and green infrastructure. Such a map has so far been 

missing.  

In order to address the various needs, we combined all three methodological 

approaches mentioned above. The work was based mainly on already existing, regularly 

updated sectoral databases, whereas data gaps were filled using image-based predictive 

mapping (Fraser et al. 2012) with a Random Forest classifier. We combined EO data (to 

ensure the actuality of the map) and environmental data (for thematic enhancement).   



The aim of this paper is to provide an overview of how the typical challenges of 

national-level ecosystem mapping were addressed when creating the new Ecosystem 

Map of Hungary. The mapping methodology combines a number of novel elements 

from the integration of various large-scale databases in a (theoretical) data cube to the 

use of image-based predictive mapping for filling in data gaps. This combination of 

methods helps to avoid some of the usual pitfalls of the different mapping approaches. 

We also introduce a participatory validation method involving local experts, which, 

besides providing a solution for the usual lack of adequate nationwide reference data, 

also contributes to bridging the gap between map-makers and map-users. Finally we 

share some feedback from the validation experts and prospective users which reveals 

several possible uses of such maps within the scientific and the wider community. 

Material and methods  

Data  

Originally the year 2015 was selected as the reference year, but it was later extended. 

Data from 2016 and 2017 were included as the multitemporal coverage of optical and 

radar imagery required for the analysis has been available countrywide only since 2017. 

An important consideration was to use regularly updated datasets, which would allow 

the map to be continuously updated in the future. Table 1 summarizes the datasets used. 

Mapping method 

The data content of the new Ecosystem Map of Hungary has undergone an iterative 

evolutionary process. First, we had drawn an outline of the hierarchical category system 

based on the categories of the MAES (Maes et al. 2013), EUNIS and the Hungarian Á-

NÉR (General National Habitat Classification System; Bölöni et al. 2011) systems. This 

was then refined repeatedly throughout the classification process according to the 



available data and methods.  

Characteristics describing the Earth's surface can be divided into three main 

thematic groups, according to the international system developed for land monitoring 

(Arnold et al. 2013):  

 Physical Land Cover Component (LCC); 

 Land Use Attributes (LUA); 

 Landscape Characteristics (LCH): other descriptive parameters. 

Managing these components separately may be important when mapping 

different land surface characteristics, but it is not feasible when mapping ecosystems. 

Compressing all the information into a single map layer would result in a complicated 

and too diverse category system. Which components (and to what extent) should be 

involved in the definition of a category depends on the ecosystem type. In general we 

sought to map the current land cover to suit the planned ecosystem condition and 

ecosystem services assessments. Agricultural areas were however treated differently; in 

their case the purpose was to represent some basic types of land use (arable land, 

vineyards, orchards etc.). The precise separation of ecosystem types required using 

specific LCH elements. 

We formed the methodology taking into account the recommendations of the 

EAGLE working group [9]. Repeatability was a very important consideration. We 

combined top-down and bottom-up mapping approaches (Figure 1). A map of the first, 

thematically least detailed hierarchical level (Level 1) was created first. The land cover 

layer of the Hungarian Land Parcel Identification System (LPIS) formed the basis, as it 

provided countrywide coverage with a high thematic and spatial resolution. Additional 

databases with different thematic focuses (Table 1) were used to complement it, with an 



emphasis on using self-processed EO data (Sentinel-1 and -2 images). Vector data were 

rasterized using pixel-centered sampling, except for most linear elements (roads, 

railways and waterways) where all the cells touched by the line were considered part of 

the element. In order to handle the various databases and integrate the results obtained 

with different methods, we used a data cube, which is a recent approach receiving 

increasing attention as a solution to store, manage, and analyse EO data (Giuliani et al. 

2017, Strobl et al. 2017). The data were organized into the (theoretical) cube with 

uniform geometry and projection, then a set of query rules were compiled and 

implemented in Python (e.g. on which data layers to use, their order, threshold values 

etc). The final category of each pixel was automatically determined using this ruleset.  

After creating the map of Level 1, further refinement into subclasses was carried 

out separately for each category with a methodology adjusted to the available databases. 

In the case of many Level 3 categories data gaps were filled by using a Random Forest 

(RF) learning classifier method (Breiman 2001) through iterations, similarly to the 

image-based predictive mapping described by Fraser et al. (2012). The RF classification 

was based on EO data (Sentinel-1 and -2 images), spectral indices, topographic indices 

and soil parameters (see Table 1). The base data set and the training data set were in all 

cases adapted to the specific classification needs of the given group of subcategories. 

The final map was compiled from the results of all these separate workflows using 

Python algorithms. The detailed technical (methodological) description of the full 

workflow was published along with the map [10]. Here we shortly summarize the 

refinement methods by Level 1 ecosystem types:  

 In the case of urban areas and artificial surfaces, besides existing spatial 

thematic databases, RF classification played an important role in providing 



additional thematic information for subcategories (e.g. in defining urban green 

areas).  

 The further classification of agricultural areas was based on the LPIS database, 

supplemented with an official vineyard database. 

 The thematic refinement of grasslands and wetlands presented the greatest 

challenge, as there are no comprehensive thematic databases for these types. 

Therefore it was carried out with the RF classifier, using the available fine-scale 

habitat maps as training data. The result of the RF classification was subjected to 

a final refinement based on threshold values defined by experts. 

 Forest sub-classes were created with a set of hierarchical expert rules, using 

descriptive data from the National Forestry Database (NFD). The rulesets for the 

second-level categories were formed first, based on hydrological characteristics. 

Third-level rulesets were mostly established based on the tree species 

composition of the upper canopy layer, but in a few cases further characteristics 

of the site were also taken into account. The RF classifier was used to find 

additional woody pixels (not covered by NFD) and distinguish between 

coniferous and deciduous forest patches within compartments.  

 To classify rivers and lakes, the corresponding categories of the LPIS were used. 

Other open water surfaces found by the RF classifier complemented the results. 

Validation methods 

Firstly, we performed technical verification, a well-automated method, including but not 

limited to checking the spatial coverage, projection, cell size, data gaps and other 

inaccuracies. Next we checked the thematic accuracy (identifying random or systematic 

errors in spatial delineation, identification of thematic classes, coding etc). Choosing the 

right method for this needed some consideration. Firstly, the number of independent 



spatial databases suitable for comparing thematic content was limited as most of these 

had already been used in the creation process as training data for the Random Forest 

classifier. Secondly, differences between the new map and the existing ones in terms of 

definitions, geometrical and thematic resolution made the interpretation of the 

validation results difficult. Thus the thematic validation was carried out in three 

independent assessments (see Figure 2 and Table 2).  

The first pillar of thematic validation was performed for the categories of 

grasslands and other herbaceous vegetation (3) and wetlands (5), where the RF classifier 

played a major role in the refinement. These ecosystem types were checked using the 

Landscape Ecological Vegetation Database & Map of Hungary (MÉTA), completed in 

2006. This database uses the Á-NÉR category system and contains areal proportions of 

habitat types within approx. 35-ha hexagons (Molnár et al. 2007, Horváth et al. 2008). 

In order to make comparison possible, crosswalks were created between the Á-NÉR and 

the categories of the new ecosystem map and then habitat proportions were defined for 

the hexagons based on the new map. The habitat proportions of the original MÉTA 

were then compared in 4056 hexagons to those of the new map using Bray-Curtis 

distances (Bray and Curtis 1957). Despite the efforts to eliminate differences in 

geometric and thematic resolution, these and the significant mismatch in the reference 

years (2004 vs 2015) caused this validation process to be indicative only. 

The second pillar was based on the engagement of local experts from National 

Park Directorates (NPD), familiar with the habitats of their NPD’s operation area. We 

used a project-adapted version of the “Look and Feel” method (Büttner 2012). Each 

expert covered the area belonging to their NPD. Within these, the specific places to be 

checked were selected by the expert, but participants were explicitly asked not to focus 

solely on Natura 2000 or other legally protected areas. 100-150 points per area were 



recorded in a GIS database. The points were examined together with their immediate 

surroundings. Experts also reviewed the mapping quality in general and separately for 

all ecosystem types within their area. Results were used to complete a further 

refinement of the Ecosystem Map. All remarks were considered, the reported 

misclassifications examined and, where possible, corrected. However, local corrections 

of non-systematic misclassifications were carried out only in a limited number. Where 

corrections were not possible (e.g. the error is due to the characteristics of the 

underlying databases), the cause of the errors was described and explanations included 

in the documentation. The conservation experts partaking in the validation process were 

also asked to summarize possibilities of the professional application of the Ecosystem 

Map during their daily work or when addressing special tasks.  

The third pillar and last step of the thematic validation was a systematic 

quantitative accuracy assessment (Congalton 2001), performed on the final version of 

the map using a photo-interpretation method developed for the verification of 

Copernicus land cover mapping. The Laco-Wiki online validation tool (See et al. 2015) 

provided the technical background, and the visual interpretation was supported by 

orthophotos (2015), Google and Bing images and thematic sublayers. The ecosystem 

types were aggregated in 20 categories in order to make them meaningful for visual 

interpretation. 100 points were sampled per aggregated category, but the most extensive 

categories like forests and arable lands had 300-500 samples.   

Feedback from prospective users 

Before downloading the map, prospective users are asked to provide the general 

purpose for which they plan to use the data (both by marking pre-defined broad 

categories and a short description). One person could choose more than one category, 

but multiple downloads from the same user in the same category were counted as one. 



We present feedback covering the 6-month period from the publication of the map in 

November 2019 to mid-May 2020. 

Results 

The map 

The final typology is hierarchical with three levels; six main categories at the first level 

and 56 at the most detailed third level (Table 3). The main categories (Level 1) 

correspond to the MAES level 2 types with a few adjustments. MAES categories not 

present in the country (e.g. marine ecosystems) or those that occur in very small areas 

(e.g. sparsely vegetated land) were omitted. Shrublands were included with the forests. 

The main categories are as follows:  

 Urban areas (1) are the most modified ecosystems, where the natural surface is 

partly (suburban areas with gardens, urban green areas, parks) or completely 

(transport networks, city centres, industrial and commercial areas) covered with 

artificial surfaces. Degraded areas such as mines, rubbish dumps, landfills and 

construction sites, are also included. 

 Croplands (2) consist of land under agricultural use, including arable lands, 

vineyards, orchards, energy plantations and their complex mosaics (but forests 

are a separate category). No distinction was made based on the type of crop or 

the momentary state (e.g. temporarily bare surface). 

 Grasslands and other herbaceous vegetation (3) cover natural and semi-natural 

grasslands, meadows, pastures and areas covered with other herbaceous 

vegetation. Halophytic habitats are included, but other grasslands temporarily 

affected by water belong to the wetlands.  

 Forests and woodlands (4) contain all the areas registered in the NFD including 

clear-cuts and regenerating areas. Other wooded lands (such as forest strips, 



spontaneously reforested patches, shrublands, etc.) were included as a 

subcategory, „Other ligneous vegetation, woodlands (4600)”. 

 Wetlands (5) include all ecosystems where the groundwater reaches the soil 

surface at least once a year, such as swamp woodlands, the tall-herb vegetation 

of marshes and fens standing in water and most wet grasslands.  

 Water surfaces (6) include lakes (standing water) and rivers. Water surfaces 

covered with floating or shallowly rooted annual aquatic communities may 

occur within the category because their distinction was not possible without field 

survey data. Vegetation rooted in the river- and waterbeds is not included. 

The digital version of the map is freely available for download as a 20 m 

resolution raster, spatially fitted to European databases [11]. The common spatial 

reference system is ETRS1989 LAEA (EPSG: 3035) but it can also be downloaded in 

the Hungarian Unified National projection system (HD72, EPSG: 23700).  

Figure 3 shows examples of some localities, along with corresponding samples 

of CLC 2018 in order to demonstrate the differences in thematic and spatial resolution. 

Requests for additional information were addressed in the form of separate data layers, 

which can be overlaid with the Ecosystem Map for further detail. Three of these 

(height-based tree-shrub distinction, 4th-level forest categories and urban green 

vegetation) were published along with the map. 

Validation results 

The comparison of the grassland and wetland categories of the Ecosystem Map to the 

MÉTA database showed the highest match for the categories salt steppes and meadows 

(3200), and tall-herb vegetation of marshes and fens standing in water (5110), while the 

weakest correspondence was experienced in the case of the two types of open rocky 

grasslands (categories 3310 and 3320). As mentioned before, this validation process is 



considered indicative only. 

As a result of the “Look and Feel” method, feedback from 1678 sampling points 

was sent back by 12 experts. According to the feedback from the validators, ‘the 

classifications are mostly in line with the category definitions’, ‘there are fewer 

classification errors in areas poorer in natural vegetation’, ‘the map is almost completely 

accurate at a 1: 25000 scale’, ‘the country-wide separation of natural grasslands and 

intensively cultivated areas at such a fine scale represents a valuable source of 

information’. However, at a finer scale, imperfections are more apparent. Besides clear 

classification errors, problems like the precision of category boundaries, handling of 

mosaic areas and ecosystem types, and conceptual issues (such as the classification of 

certain saline areas: wetland or halophytic grassland) were mentioned most. In the case 

of forests, a recurring critique was the omission of rare, usually small habitat types due 

to using the NFD units (Figure 4). The classification issues of forest clearings, infertile 

areas, and the under-representation of rocky grasslands were also mentioned in several 

feedbacks. 

The systematic accuracy assessment performed on the finalized Ecosystem Map 

showed that the overall accuracy (calculated using an area weighted formula) for the 

aggregated categories was high, 97.43%. The map also performed well in terms of 

user's accuracy, as the lowest value was 84.6%. 15 categories out of 20 performed 

above 90%, of which 13 categories were above 95%. Producer's accuracy was 

calculated using an area-weighting methodology. Three categories out of 20 performed 

below 80% (swamp woodlands, high buildings and green urban areas with trees), but 12 

categories above 90% of which 8 categories were above 95% (Table 4).   

Feedback on possible applications  

According to the feedback from the experts partaking in the validation, the map can be 



well used in coarse-scale habitat mapping, and it can be further refined using other, 

local databases and expert knowledge. It can be used for preliminary search when trying 

to identify the habitats of certain species. Several experts mentioned that if the map was 

updated at regular intervals, there would be a number of much-needed additional 

applications, such as monitoring the changes of surface cover on a finer scale than CLC 

(e.g. changes in waterlogged areas, the distribution of clearcuts in forest areas or non-

native tree-dominated forests). 

The map has already been used for a variety of purposes within MAES-HU, e.g. 

for mapping ecosystem condition and services as well as for work on green 

infrastructure. As for other (potential) uses, Figure 5 shows the distribution of the 

answers from the downloaders according to the broad categories in the examined 

period. Not considering the miscellaneous Missing/Other category, the 3 most popular 

fields of planned application were nature conservation, research and education. 

Concerning the first two, much of the planned use is in some way related to species 

distribution mapping (either in research or in conservation planning). Some interesting 

applications include planning (personal) hike routes, mushroom gathering and a 

smartphone application for fishermen. Many of the non-professional downloaders were 

just interested in looking at their local environment. Feedback came from all levels of 

education, planned uses ranging from demonstration and exercises in primary and 

secondary school (in biology and geography) to use in degree works in higher 

education.  

Discussion 

Classification 

The final, hierarchical classification, which is unique to the map, was based on the 

categories of the MAES, EUNIS and the Hungarian Á-NÉR systems, as a result of an 



iterative process. Several such systems exist already, even at the European level, e.g. the 

already mentioned hierarchical EUNIS, the Classification of habitat types according to 

the Annex I to Directive 92/43/EEC (EC 2013) and the MAES classification proposed 

for the assessment of ecosystem services (Maes et al. 2013), which in practice 

corresponds to the first level of EUNIS. The ideal design of such a system is goal- and 

scale-dependent. The maps on which the ES assessments are based are expected to be 

detailed at least at the level of MAES level 2 categories. An important choice had to be 

made between using an international classification, thus enabling the map to be directly 

connected to other European maps and databases, and between using the local 

classification, which is familiar to prospective users and already embedded in local 

decision-making processes. EUNIS was only later extended to include Eastern-

European habitats, which caused some bias, and the categories were often ambiguous 

(Bölöni et al. 2007) therefore we ruled out its use at the finer levels (Level 2 and 3). The 

typology at these finer levels tried to approximate more that of Á-NÉR. 

Methodological considerations 

Our method firstly relied on adapting and integrating data from spatially detailed 

sectoral databases. It was a major consideration that the method should allow regular 

updates. Sectoral thematic databases like the LPIS on land parcels or the NFD on forests 

are used for everyday management purposes and are thus kept up-to-date and accurate. 

However, as they were created for a different purpose, some of the uncertainties and 

errors of the ecosystem map can be attributed to the basic characteristics (e.g. the size of 

the spatial units – see Fig. 3) of these databases.   

Data gaps, most concerning in the case of grasslands and wetlands, were filled 

with an image-based predictive mapping method (Fraser et al. 2012) integrating EO 

data with site information (soil maps and topographical information derived from a 



Digital Elevation Model, DEM), using a RF classifier. Classifying images in discrete 

classes in itself results in a loss of information in places where the transition of the 

vegetation assemblages is continuous (Rocchini et al. 2013). When using remote 

sensing data for ecosystem mapping, strong inter- and intra-annual variability may also 

affect the result to a great extent (Perennou et al. 2018), especially in the case of 

wetlands (Thamaga et al. 2021). In such cases, the boundaries are usually drawn based 

on data from a longer period using multitemporal satellite imagery (e.g. Reschke and 

Hüttich 2014, Inglada et al. 2017). We chose the new satellite missions of ESA, the 

Sentinels, as the main source of EO data, as they have high spectral and spatial 

resolution as well as short revisit time (Stratoulias et al 2015). The drawback of this 

decision was that the available time series were still short at the time (Table 5, Figure 

6), which may have affected the accuracy of distinguishing certain ecosystem types (e.g. 

wetlands).  

As available data are usually not homogeneously detailed across habitat types, 

different solutions are used to complement these. In Italy the CLC information was 

enhanced by means of compositional, ecological and biogeographical features 

associated with PNV types (Blasi et al. 2017). PNV was also used as a stable core input 

dataset of the European Ecosystem Type map (Weiss and Banko 2018). However, the 

presence of a certain habitat in a particular place is merely a probability, even if the 

combination of local site characteristics makes it likely. Even in a completely natural 

landscape, there is a level of stochasticity in which potentially suitable vegetation type 

will be actually present in a certain location (Somodi et al. 2017). Furthermore, human 

transformation may lead to habitats becoming so degraded that the original vegetation 

type would be unrecognisable. Using PNV to complete the map in such situations may 

lead to a distorted picture. However, for those habitat groups (grasslands, wetlands) 



where the desired thematic resolution could not have been reached otherwise, 

environmental data needed to be included in the RF modelling. Such methods have been 

successfully used in vegetation mapping in recent years (Barrett et al. 2016, Chignell et 

al. 2018). The image-based predictive mapping directly combined the EO data 

representing actuality and the site information representing potential at a fine scale, thus 

improving the accuracy of the RF classification while keeping potentiality to a 

minimum level. 

Lessons from the validation  

 It is not easy to find a good basis for comparison concerning the results of our quality 

assessments – as other similar projects seem also to struggle with validation (Blasi et al. 

2017, Černecký et al. 2020). The validation of large-scale ecosystem maps usually 

consists of designating smaller study areas, which are then mapped by experts and 

accuracy is defined by comparing these field maps to the ecosystem map (e.g. Černecký 

et al. 2020). 

In order to solve the issue of the lack of suitable reference data and get a picture 

on the accuracy of the map we involved local experts directly in the validation process. 

This participatory method provided information on both the reliability of the ecosystem 

map and the possible causes of uncertainty. The map was found to be most precise in 

agricultural areas, due to the very accurate LPIS database. The slightly lower accuracies 

of the other categories could be attributed to several factors:  

  technical and thematic errors and inaccuracies of the input and reference data 

(including data gaps), 

 distortions due to differences of spatial or thematic resolution in the course of 

data integration,  



 differences in the requirements for the thematic resolution of a countrywide, 

sector-specific input dataset and an ecosystem map, 

 uncertainties originating from the predictive mapping, 

 temporal differences between the map and the reference data, 

 recognisability during visual interpretation. 

The factors we identified as affecting our classification results correspond to the 

findings of others. Lecours (2017) identified four similar ‘vectors of map variability’ 

that need to be considered when producing habitat maps: methodology, data quality, 

scale, and data selection. 

Map-maker map-user interaction is identified as one of the bottlenecks in ES 

mapping processes (Palomo et al. 2018). Lecours (2017) argues that a lack of 

understanding of uncertainty and errors in habitat mapping can lead decision-makers to 

disqualify such maps. In the case of EO-based ecosystem (or habitat) mapping in 

particular, experts are often sceptical and need to be convinced that classification results 

are suitable for conservation purposes (Lucas et al. 2015). Involving the experts (some 

of them potential future users) in a participatory process in our case worked towards a 

better general understanding of the strengths and limitations of the map.  

Uses of ecosystem type maps 

Although some issues and a series of further possibilities and directions of development 

were identified in the course of the validation process, the map was found suitable to 

serve as a basis for various ecosystem condition and service assessments as well as 

green infrastructure development. At the regional and national level, it provides a new, 

thematically and spatially more detailed alternative for analyses which until now mostly 

relied on the European CLC database. Yet according to the feedback from future users, 



possible applications are far more diverse. Some of the answers reflect potential uses 

related to the recent increase in the number of GIS mobile applications (Nowak et al. 

2020), which usually apply thematic maps as base layers. Although there is little 

feedback yet about how much of these planned uses are actually realized, the available 

data show that the Ecosystem Map has diverse application possibilities across a wide 

audience. 

Conclusions 

As the loss of biodiversity is being recognized as one of the most serious recent 

challenges, the importance of high-quality up-to-date information on ecosystems is 

increasing. In order to provide a sound basis for national-level conservation policy 

decisions, we created a new, spatially and thematically detailed, comprehensive 

ecosystem map for Hungary, based mainly on regularly updated sectoral and EO data.  

Conservation-related policy decisions increasingly depend on appropriate spatial 

information on the ecosystems and their services therefore it is imperative to produce 

detailed and accurate ecosystem maps, which can form the basis of such assessments. 

These should be easily and quickly repeatable in order to enable monitoring, which is 

best ensured through the integration of already existing, regularly updated sectoral or 

other databases. Methods used for filling in data gaps, especially those based on remote 

sensing techniques should ideally be complemented with targeted field data collection 

in order to ensure homogeneous, high quality training and reference data. Introducing a 

certain level of potentiality to the mapping is very hard to avoid, but PNV should be 

used with caution. 

Ecosystem maps compiled from different databases have varying effective 

spatial resolution and accuracy, and consequently varying levels of uncertainty. As 

these are inherited by all further assessments based on these maps, clear communication 



of the strengths and limitations is essential. Relying on local experts in the validation 

process involves some of the potential future users directly in the creation of the map. 

Besides getting around the lack of suitable nationwide reference data and providing 

valuable feedback for further development, it also provides first-hand experience of the 

new database to potential users. Thus the process contributes to bridging the often-

lamented gap between map-makers and users. According to our findings from the 

feedback of downloaders, this is especially important, as such maps can now be 

expected to be used for a wide range of purposes beyond ES-assessments, even in the 

everyday life of the wider society. 
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Tables and figures 

Table 1. The most important datasets used as input for the mapping 

Dataset Details Purpose Reference 

Hungarian Land 

Parcel Identification 

System (LPIS) [4] - 

2015 and 2016 

Land cover 

information and 

thematic layers 

including visibly 

saline surfaces, 

agricultural land 

affected by excess 

water, golf courses 

and airports 

Basis for the mapping Naszádos et al. 

2017  

Csonka et al. 

2011 

VINGIS [5]  Delineation of 

vineyard areas 

 

National Forestry 

Database (NFD) - 

2015 

Tree species, site 

information (climate, 

soil type) 

Delineation and 

classification of forest 

areas 

Tobisch and 

Kottek 2013 

Copernicus High 

Resolution Layer 

(HRL), Water and 

Wetness (WAW) for 

the year 2015 [6] 

 Separation of wetlands 

and grasslands 

Langanke 2016 

Digital, Optimized, 

Soil Related Maps and 

Information in 

Hungary 

(DOSoReMI.hu) [7] 

Electrical 

conductivity (dS/m), 

sand, silt and clay 

fraction (%), pH and 

organic matter 

Input to the RF 

classifier for wetlands 

and grasslands 

Pásztor et al. 

2020 



content (%) of the 

upper 30 cm soil 

layer; soil depth  

nDSM 2015  Input to the RF 

classifier, input to 

post-processing 

(separation of built-up 

areas by height) 

 

DEM 2015  Input to calculating 

topographic indices 

and input to RF 

classifier 

 

Topographic indices 

derived from the DEM 

SAGA Wetness 

Index, Valley depth, 

Multi-resolution 

Ridge Top Flatness 

(MRRTF), Multi-

resolution Valley 

Bottom Flatness 

(MRVBF), Terrain 

Classification Index 

for Lowlands (TCI 

Low) 

Input to the RF 

classifier for wetlands 

and grasslands, input 

to post-processing 

(separation of 

grassland subclasses) 

Böhner J, 

Conrad O. 2001 

Böhner J, Selige 

T. 2006 

Open Street Map 

(OSM) [8] 

Settlement 

boundaries, mines, 

landfills, waste 

dumps, roads and 

railways 

Input to the refinement 

of the urban/artificial 

surfaces 

 

Thematic content of 

other national 

databases 

Settlement 

boundaries, mines, 

landfills, waste 

dumps, roads and 

railways 

Input to the refinement 

of the urban/artificial 

surfaces 

 

Habitat maps from 

National Parks and 

from the Hungarian 

Biodiversity 

Monitoring System 

(NBmR) 

Habitat category Training data for the 

RF classifier 

Török and Fodor 

2006 

Takács and 

Molnár 2009 

Sentinel optical      

satellite images and 

spectral indices (2017) 

Normalized 

Difference 

Vegetation Index, 

(NDVI), Normalized 

Difference Water 

Input to the RF 

classifier (countrywide 

mosaics also used for 

visual inspection) 

 

Rouse et al. 

1974 

S.K. McFeeters 

1996 

Gao 1996 



Index (NDWI),  

Normalized 

Difference Moisture 

Index (NDMI), Bare 

Soil Index (BSI), 

Green LAI (GLAI) 

Plant Senescence 

Reflectance index 

(PSRI) 

Diek et al., 2017 

Rikimaru et al., 

2002 

Delegido et al. 

2011 

Merzlyak et al. 

1999 
 

Sentinel radar images 

and descriptors (2017) 

annual mean 

anisotropy, annual 

mean alpha, annual 

standard deviation of 

entropy, annual std 

of Shannon-entropy 

annual mean of l2, 

annual mean of  

sigma0; 

I2 and Shannon 

entropy from one 

spring and one 

autumn image 

Input to the RF 

classifier  

Lee, J.-S., & 

Pottier, E. 2009 

Surek et al. 2016 

The official state 

aerial ortophoto 

database (2015) 

 Orientation and visual 

inspection 

 

 

Table 2. Summary of the validation methods 

Method Tool Focus When 

Comparison with the MÉTA 

database. Statistical accuracy 

assessment, spatial analysis. 

R Grasslands and 

wetlands 

Before map 

finalization 

Look and Feel method: visual 

interpretation involving local 

experts from National Park 

Directorates. 

GIS tool and 

validation 

report 

Natural and semi-

natural ecosystems in 

particular, other types 

were also included but 

with less weight 

Before map 

finalization 

Systematic statistical accuracy 

assessment. Visual interpretation 

using official state orthophoto 

database (2015), Google and Bing 

images and thematic sublayers. 

Laco-Wiki 

online 

validation tool 

All ecosystem types 

(original types 

aggregated in 20 

categories) 

After map 

finalization 

 

http://www.mdpi.com/1424-8220/11/7/7063/htm


Table 3. The categories of the Ecosystem Map 

Level 1 Level 2 Level 3 

1 Urban 

11 Buildings 
1110 Low buildings 

1120 High buildings 

12 Roads and railways 

1210 Paved roads 

1220 Dirt roads 

1230 Railways 

13 

Other paved or 

non-paved artificial 

areas 

1310 Other paved or non-paved artificial areas 

14 Green urban areas 
1410 Green urban areas with trees 

1420 Green urban areas without trees 

2 Croplands 

21 Arable land 2100 Arable land 

22 Permanent crops 

2210 Vineyards 

2220 Fruit and berry, and other plantations 

2230 Energy crops 

23 
Complex 

cultivation pattern 

2310 
Complex cultivation patterns with scattered 

buildings 

2320 
Complex cultivation patterns without 

buildings 

3 

Grasslands 

and other 

herbaceous 

vegetation 

31 Sand steppes 
3110 Open sand steppes 

3120 Closed sand steppes 

32 

Salt steppes and 

meadows 

(grasslands 

affected by 

salinisation 

included) 

3200 
Salt steppes and meadows (grasslands 

affected by salinisation included) 

33 
Open rocky 

grasslands 

3310 Calcareous open rocky grasslands 

3320 Siliceous open rocky grasslands 

34 

Closed grasslands 

in hills and 

mountains or on 

cohesive soil 

3400 
Closed grasslands in hills and mountains or 

on cohesive soil 

35 
Other herbaceous 

vegetation 
3500 Other herbaceous vegetation 

4 
Forests and 

woodlands 
41 

Forests without 

excess water 

4101 Beech forests 

4102 Sessile oak-hornbeam forests 

4103 Turkey oak forests 

4104 Downy oak forests 

4105 Scots pine stands of Western Transdanubia 

4106 
Deciduous stands of Western Transdanubia 

mixed with Scots pine 

4107 Native poplar dominated forests 

4108 
Pioneer forests of hilly and mountainous 

regions 

4109 Pedunculate oak-hornbeam forests 

4110 
Pedunculate oak forests, monospecific or 

mixed with ash 



4111 
Forests dominated by other native tree 

species 

4112 Other mixed deciduous forests 

42 
Natural riverine 

(gallery) forests 

4201 Riverine willow-poplar woodlands 

4202 Riverine hardwood forests 

43 
Other forests with 

excess water 

4301 
Pedunculate oak forests, monospecific or 

mixed with ash 

4302 Alder forests 

4303 
Pedunculate oak-hornbeam forests (with 

excess water) 

4304 Willow woods outside the floodplain 

4305 Poplar woods outside the floodplain 

4306 Birch woodland 

4307 Turkey oak forests with excess water 

4308 
Forests dominated by other native tree 

species (with excess water) 

4309 
Other mixed deciduous forests with excess 

water 

44 Plantations 

4401 Conifer-dominated plantations 

4402 Black locust-dominated mixed plantations 

4403 
Plantations dominated by non-native poplar 

and willow species 

4404 Plantations of other non-native tree species 

45 

Non-wooded areas 

registered as forest, 

or areas under 

reforestation 

4501 Clearcut 

4502 Forest stand under regeneration 

46 

Other ligneous 

vegetation, 

woodlands 

4600 Other ligneous vegetation, woodlands 

5 Wetlands 

51 

Herbaceous-

dominated 

wetlands 

5110 
Tall-herb vegetation of marshes and fens 

standing in water 

5120 
Fens and mesotrophic wet meadows, 

grasslands with periodic water effect 

52 

Woodland-

dominated 

wetlands 

5200 Swamp woodlands 

6 
Rivers and 

lakes 

61 Water bodies 6100 Water bodies 

62 Water courses 6200 Water courses 

 

Table 4. The result of the systematic accuracy assessment on the aggregated categories 

of the Ecosystem Map 

Code Name User's accuracy Producer's accuracy 



    Commission 

error 

Accuracy CI Omission 

error 

Accuracy CI 

1110 Low buildings 9.0% 91.0% 5.6% 18.2% 81.8% 7.2% 

1120 High buildings 11.0% 89.0% 6.2% 53.5% 46.5% 10.2% 

1210 Paved roads 12.0% 88.0% 6.4% 7.2% 92.8% 5.2% 

1220 Dirt roads 2.0% 98.0% 2.8% 5.6% 94.4% 4.5% 

1230 Railways 4.0% 96.0% 3.9% 17.2% 82.8% 7.5% 

1310 Other paved or 

non-paved artificial 

areas 

14.0% 86.0% 6.8% 15.8% 84.2% 7.6% 

1410 Green urban areas 

with trees 

15.0% 85.0% 7.0% 20.7% 79.3% 7.9% 

1420 Green urban areas 

without trees 

10.0% 90.0% 4.8% 3.1% 96.9% 2.8% 

2100 Arable land 0.2% 99.8% 0.4% 0.4% 99.6% 0.6% 

2210 Vineyards 2.0% 98.0% 2.8% 6.8% 93.2% 5.0% 

2220 Fruit and berry, 

and other 

plantations 

5.0% 95.0% 4.3% 0.8% 99.2% 1.8% 

2230 Energy crops 2.0% 98.0% 2.8% 10.5% 89.5% 6.1% 

2300 Complex 

cultivation pattern 

0.0% 100.0% 0.0% 0.5% 99.5% 1.4% 

3000 Grasslands and 

other herbaceous 

vegetation 

5.0% 95.0% 3.0% 4.2% 95.8% 2.8% 

4000 Forests and 

woodlands 

1.7% 98.3% 1.5% 1.8% 98.2% 1.5% 

5110 Tall-herb 

vegetation of 

marshes and fens 

standing in water 

15.4% 84.6% 6.2% 0.7% 99.3% 1.6% 

5120 Fens and 

mesotrophic wet 

meadows, 

grasslands with 

periodic water 

effect 

5.0% 95.0% 4.3% 8.6% 91.4% 5.4% 

5200 Swamp woodlands 5.0% 95.0% 4.3% 60.3% 39.7% 9.5% 

6100 Water bodies 0.4% 99.6% 0.7% 15.9% 84.1% 6.9% 

6200 Water courses 2.5% 97.5% 2.4% 2.4% 97.6% 3.1% 

Table 5. The list of dates of the used optical Sentinel images per tile 

Tile Date1 Date2 Date3 Date4 Date5 Date6 Date7 

33TWM 20161212 20170309 20170329 20170401 20170620 20170826 20171015 

33TWN 20170401 20170528 20170801 20170826 20171015     

33TXL 20170329 20170707 20170826 20171219 20171224     

33TXM 20161229 20170329 20170707 20170826       

33TXN 20161229 20170528 20170801 20170826 20171015 20171219   

33TYL 20161206 20170329 20170604 20170719 20170803 20171017 20171101 



33TYM 20170329 20170707 20170826 20171015 20171104 20180408   

33TYN 20170329 20170528 20170826 20171015       

33UXP 20161229 20170528 20170831 20171015 20171104 20171219   

33UYP 20161229 20170329 20170528 20170831       

34TCR 20161206 20170316 20170624 20170803 20171012 20180420   

34TCS 20170624 20170719 20171002 20171226 20180125 20180130 20180420 

34TCT 20161216 20170624 20171002 20171017 20180130     

34TDS 20170704 20170803 20171002 20171012 20180130     

34TDT 20170515 20170704 20170719 20170902 20171002     

34TES 20170303 20170402 20170805 20170830 20171019 20180219   

34TET 20170303 20170402 20170830 20170914       

34TFT 20170303 20170402 20170830 20170929       

34UCU 20161229 20170326 20170831 20171012       

34UEU 20170303 20170402 20170731 20170830       

34UFU 20170402 20170830 20170929         

34UDU 20161216 20170719 20170803 20171012 20180505     

 

  



Figure 1. A graphical summary of the workflow

 



Figure 2. A graphical summary of the validation process 

 

Figure 3. Comparison of CLC 2018 (left) and the Hungarian Ecosystem Map (right) 

 



Figure 4. Comparison of forest compartment boundaries and Annex I habitat patches in 

a forested mountain area 

 



Figure 5. Number of downloads according to broad categories of prospective use 

 

  



Figure 6. The map of optical Sentinel tiles used in the mapping process 

 

 


