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Bernstein-Markov type inequalities and discretization of norms
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Abstract

In this expository paper we will give a survey of some recent results concerning discretization of uniform
and integral norms of polynomials and exponential sums which are based on various new Bernstein-
Markov type inequalities.

AMS Subject classification: 41A17, 41A63.
Key words and phrases: multivariate polynomials, Marcinkiewicz-Zygmund, Bernstein and Schur type inequalities, discretiz-

ation of Lp norm, doubling and Jacobi type weights.

1 Introduction
In the past 15-20 years the problem of discretization of uniform and Lq norms in various finite dimensional spaces has been widely
investigated. In case of Lq, 1≤ q <∞ norms for trigonometric polynomials this problem is usually referred to as the Marcinkiewicz-
Zygmund type problem, on the other hand when uniform norm and algebraic polynomials are considered then the terms norming
sets or optimal meshes are usually used in the literature. Historically the first discretization result was given by S.N. Bernstein [3]
in 1932 who showed that for any trigonometric polynomial tn of degree ≤ n and any 0= x0 < x1 < ...< xN < 2π= xN+1 with
max0≤ j≤N (x j+1 − x j)≤

2
p
τ

n , 0< τ < 2 we have

max
x∈[0,2π]

|tn(x)| ≤ (1+τ) max
0≤ j≤N
|tn(x j)|. (1)

The above estimate essentially shows that the uniform norm of trigonometric polynomials of degree ≤ n can be discretized
with accuracy τ using N ∼ np

τ
properly chosen nodes. A standard substitution x = cos t leads to an extension of (1) for algebraic

polynomials when max0≤ j≤N (arccos x j+1 − arccos x j)≤
2
p
τ

n . (See also [7], p. 91-92 for details.)
The first result on the discretization of the Lq, 1< q <∞ norm is due to Marcinkiewicz and Zygmund [25] who verified in

1937 that for any univariate trigonometric polynomial tn of degree at most n and every 1< q <∞ we have
∫

|tn|q ∼
1
n

2n
∑

s=0

�

�

�

�

tn

�

2πs
2n+ 1

�

�

�

�

�

q

(2)

where the constants involved in the above equivalence relation depend only on q. Above relation provides discretization of the
Lq, 1< q <∞ norm of trigonometric polynomials of degree ≤ n with 2n+ 1 nodes.

Above relations give an effective tool used for the discretization of the Lq norms of univariate trigonometric and algebraic
polynomials which is widely applied in the study of the convergence of Fourier series, Lagrange and Hermite interpolation,
positive quadrature formulas, scattered data interpolation, etc. Various generalizations were given for weighted Lq norms in [26];
multivariate polynomial on sphere and ball and general convex domains [14], [9], [16], [6], [11]; exponential polynomials [10],
[32], [20], [21].

In terms of the methods used for the discretization several general approaches can be mentioned:

1. Functional analytic methods

2. Probabilistic methods

3. Methods based on Bernstein-Markov type inequalities

While above approaches complement each other in different ways and make it possible to cover various cases it should be
mentioned that in contrast to the functional analytic and probabilistic methods the Bernstein-Markov approach always yields
explicit discretization nodes. The main goal of the present paper is to give a survey of some recent discretization results based
on various classic and new Bernstein-Markov type inequalities. The first part of the paper gives an overview of corresponding
Bernstein-Markov type inequalities including some recently established estimates for exponential sums, as well. Then the second
part of the paper shows how these Bernstein-Markov type inequalities yield new discretization results.
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2 Bernstein and Markov type inequalities for derivatives of polynomials and exponential
sums

2.1 Bernstein-Markov type inequalities for univariate polynomials

Let us first recall some classical Markov and Bernstein type inequalities for univariate polynomials.
It is well known that for any algebraic polynomial p of degree ≤ n we have a Markov type inequality

∥p′∥Lq[−1,1] ≤ cqn2∥p∥Lq[−1,1], q > 0 (3)

with the constant cq in the above estimate depending only on q.
On the other hand for trigonometric polynomials t of degree ≤ n the Bernstein type inequality

∥t ′∥Lq[−π,π] ≤ n∥t∥Lq[−π,π], q > 0 (4)

is known to hold. Above sharp upper bound can be found in [1]. In addition, with a constant factor on the right hand side this
inequality can be found in [26] and [13] for the weighted Lq norms with the so called doubling weights.

It is remarkable, that the order n2 of derivatives in (3) in algebraic case reduces to n in trigonometric case (4). It should
be noted that this fact makes Bernstein inequalities much more efficient for obtaining discretization nodes of asymptotically
optimal cardinality. Since the standard trigonometric substitution x = cos t transforms algebraic polynomials into trigonometric
polynomials we can rewrite (4) as

∥
p

1− x2p′∥Lq[−1,1] ≤ n∥p∥Lq[−1,1], q > 0 (5)

with p being an algebraic polynomials of degree n. Thus introduction of a weight
p

1− x2 into the derivative norms reduces their
size by a factor of n. This phenomena and its numerous extensions play a significant role in various discretization results. Clearly,
(3) and (5) can be combined into a single inequality

∥(
a
n
+
p

a2 − x2)p′∥Lq[−a,a] ≤ cqn∥p∥Lq[−a,a], q > 0. (6)

It should be mentioned that as verified by Lubinsky [24] for q ≥ 1 inequality (6) also holds for any trigonometric polynomial p(t)
of degree at most n if 0< a < 1

2 .

2.2 Bernstein-Markov type inequalities for multivariate polynomials

Now we turn our attention to the multivariate case and the space Pd
n of real algebraic polynomials of d variables and degree

at most n. Let K ⊂ Rd be a compact star like set with respect to the origin, that is 0 ∈ IntK and for every x ∈ K we have that
[0,x) ⊂ IntK . Furthermore, let

ϕK(x) := inf{α > 0 : x/α ∈ K} (7)

denote the usual Minkowski functional of K .
In case when K ⊂ Rd is a 0-symmetric convex body Sarantopoulos [31] established a complete analogue of the univariate

Bernstein inequality (5) for q =∞ showing that for every x ∈ IntK and each u ∈ Rd normalized by ϕK(u) = 1 we have

|Dup|(x)≤
n
p

1−ϕK(x)2
∥p∥L∞(K), (8)

where Dup stands for the derivative in direction u. Note that the above inequality was also independently verified by Baran [2].
The Lq Bernstein-Markov type inequalities of the previous section also admit an extension to the multivariate case for any

q ≥ 1 and every convex domain, or more generally domains K ⊂ Rd , d > 1 with Lip1 boundary. The quantity
p

a2 − x2 in (6)
which measures the distance to the boundary of the interval in case of a convex body or domain K ⊂ Rd with Lip 1 boundary can
be replaced by the Hausdorff distance to the boundary hK(x) := infy∈BdK |x− y|, with BdK being the boundary of the set. This
leads to the estimate

∥
�

1
n
+
Æ

hK(x)
�

∂ p∥Lq(K) ≤ cn∥p∥Lq(K), p ∈ Pd
n , q ≥ 1, (9)

where ∂ p stands for the gradient of p and c = c(K , d, q), see e.g. [33], [15], q =∞ or [28], [18], 1≤ q <∞.
In addition to the above estimates the boundary properties of derivatives of polynomials play a crucial role in deriving

discretization meshes of asymptotically optimal cardinality. Therefore special attention has to be given to the study of tangential
Bernstein-Markov type inequalities for multivariate polynomials.

Let K ⊂ Rd be a compact star like set with respect to the origin and assume that its Minkowski functional ϕK(x) := inf{α >
0 : x/α ∈ K} is continuously differentiable on Rd \ {0}. For any x ∈ BdK denote by TK(x) the set of all tangent unit vectors of
BdK at x. Then given 1< α≤ 2, we will say that the star like domain K ⊂ Rd is Cα if ∂ ϕK ∈ Lip(α− 1), that is for some M > 0
depending on K we have

|∂ ϕK(x)− ∂ ϕK(x+h)| ≤ M |h|α−1, x ∈ Sd−1, |h| ≤ 1.

Then as shown in [17] whenever K ⊂ Rd is a Cα star like domain with some 1≤ α≤ 2 then for any u ∈ TK(x) we have the
next tangential Bernstein type inequality

∥(1−ϕK(x))
1
α−

1
2 Duq∥L∞(K) ≤ cK n∥q∥L∞(K), q ∈ Pd

n . (10)
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Here cK > 0 depends only on K, and Du stands for the derivative in direction u. If α = 1, i.e. K is a C1 domain then we have
(1−ϕK(x))

1
α−

1
2 =
p

1−ϕK(x) in (10) which up to a constant has the same size as the quantity
p

hK(x) in (9). On the other
hand when α > 1 the quantity (1−ϕK(x))

1
α−

1
2 which measures the distance to the boundary in (10) gives a slower than "square

root" order of decrease to 0 at the boundary. We will see below that this phenomena has a significant effect on decreasing the
cardinality of discretization meshes.

The above tangential Bernstein type inequality relies on certain smoothness property of the domain. Now we will present
another important tangential Bernstein type inequality which holds for any convex body in K ⊂ R2. Denote by DT p(x) the maximal
tangential derivative of p at x ∈ BdK . Then as shown in [19] for any convex body K ⊂ R2 we have

∥DT p∥L1(BdK) ≤ cK n∥p∥L∞(K), p ∈ P2
n . (11)

It should be noted that the size of the tangential derivative of p ∈ P2
n in (11) is measured in the L1 norm along the boundary of

the convex body while on the right hand side of (11) we have the L∞(K) norm of p. This means that the L1(BdK)→ L∞(K)
norm of the tangential derivative operator has norm ∼ n. The above estimate is a considerable improvement compared with the
L∞(BdK)→ L∞(K) norm of the same operator which is known to be of order ∼ n2, in general. As shown below this decrease of
the magnitude of the norm of derivative operator will result in discretization meshes of optimal cardinality.

2.3 Bernstein-Markov type inequalities for exponential sums

In this section we will present some new Bernstein- Markov type inequalities for general exponential sums. Our starting point is
an elegant estimate given in [5], p. 293, E.4.d according to which for any q(t) =

∑

0≤ j≤n c j e
µ j t , c j ∈ R with arbitrary µ j ∈ R we

have
∥(1− x2)q′∥L∞[−1,1] ≤ (4n− 2)∥q∥L∞[−1,1]. (12)

The surprising feature of the above Bernstein type inequality consists in the fact that it is independent of the choice of exponents
µ j ∈ R and their degree

µ∗n := max
0≤ j≤n
|µn|. (13)

It is crucial on the other hand that the norm of the derivative is measured with the weight 1− x2 which is smaller compared top
1− x2 used in the classical case (5).

The Bernstein type estimate (12) was used in [20] in order to verify the following Markov type bounds for general exponential
sums:

For any [α,β] ⊂ R, 0 < δ ≤ 1 and every exponential sum g(t) =
∑

1≤ j≤n c j e
µ j t , c j ∈ R with µ j ∈ R, 0 ≤ j ≤ n satisfying

µ j+1 −µ j ≥
δ
β−α we have with some absolute constant c > 0

∥g ′∥L∞[α,β] ≤
cnµ∗n
δ
∥g∥L∞[α,β], (14)

where µ∗n is the degree of the exponential sums given by (13).

In addition, as shown in [20] the last upper bound can be used to derive the next general Markov type estimate for the
derivatives of multivariate exponential sums on arbitrary convex bodies in Rd :

Consider an arbitrary convex body K ⊂ Rd , d ≥ 1 with rK being the radius of its largest inscribed ball. Then for every exponential
sum

g(w) =
∑

1≤ j≤n

c j e
〈µ j , w〉, w ∈ Rd

with exponents µ j ∈ Rd such that |µk −µ j | ≥
δ
rK

, j ̸= k with a given 0< δ ≤ 1 we have

∥∂ g∥L∞(K) ≤
cd3n3µ∗n
δ
∥g∥L∞(K), (15)

where µ∗n is the degree of the exponential sums given by (13) and c > 0 is an absolute constant.

Again similarly to the univariate case the above estimate for the derivatives of multivariate exponential sum g(w) =
∑

1≤ j≤n c j e
〈µ j , w〉 is essentially independent of the exponents µ j ∈ Rd with only their degree µ∗n, dimension n and the separation

parameter δ effecting the upper bound. This important fact will lead to exponent independent discretization results presented
below.

Estimates (12) and (15) provide the needed L∞ Bernstein- Markov type inequalities for exponential sums which can be
applied to derive corresponding results for the discretization of their uniform norm.
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Next we present some Lq Bernstein- Markov type inequalities for univariate exponential sums. First we recall the following
Lq, 1 ≤ q <∞ Bernstein type inequality for derivatives of univariate exponential sums fn(x) =

∑

1≤ j≤n c j e
λ j x given in [12],

Theorem 3.4

∥ f ′n∥Lq[−1+δ,1−δ] ≤
2n− 1
δ
∥ fn∥Lq[−1,1], 0< δ < 1. (16)

This elegant result provides exponent independent upper bounds for Lq norms of derivatives of exponential sums inside the
interval. The drawback of the above estimate is the appearance of the term 1

δ in the upper estimate which leads to larger than
required discretization sets in Lq Marcinkiewicz-Zygmund type inequalities. The next estimate which is verified in [21], Lemma 1
shows that introducing a weight 1− x2 into the Lq norms of derivatives of exponential sums allows to replace 1

δ by a substantially
smaller term ln 2

δ . This improvement can be subsequently used in order to verify near optimal discretization meshes.

Let 1 ≤ q <∞, 0 < δ < 1, n ∈ N. Then for any distinct real numbers λ1, ...,λn ∈ R and any exponential sum fn(x) =
∑

1≤ j≤n c j e
λ j x ,∀c j ∈ R we have

∥(1− x2) f ′n(x)∥Lq[−1+δ,1−δ] ≤ 9n ln
1
q

2
δ
∥ fn∥Lq[−1,1]. (17)

Finally, we would like to point out that for exponential sums g(x) =
∑

1≤ j≤n a j e
λ j x , x ∈ R having nonnegative coefficients

a j ≥ 0 a stronger Bernstein type upper bound independent of n and λ j-s was verified in [21], Lemma 5.

For any distinct real numbers λ j ∈ R, 1≤ j ≤ n and arbitrary exponential sum g(x) =
∑

1≤ j≤n a j e
λ j x , a j ≥ 0 with nonnegative

coefficients we have
∥(1− x2)g ′∥Lq[−1,1] ≤ 4∥g∥Lq[−1,1], ∀q, n ∈ N. (18)

Note that the last upper bound for exponential sums with nonnegative coefficients for Lq norms with integer q ∈ N is much
stronger that upper bound (12) in the sense that it provides even dimension independent estimate of the derivatives. This in turn
will be shown to result in much stronger discretization results for exponential sums with nonnegative coefficients.

3 Discretization of the uniform norm of polynomials and exponential sums
In this section we will discuss application of Bernstein-Markov type inequalities in discretization of uniform norm of polynomials
and exponential sums.

3.1 Discretization of uniform norms of polynomials

We consider the problem of finding norming sets YN ⊂ K of cardinality CardYN = N in a compact set K ⊂ Rd for which there exists
cK > 0 depending only on the domain so that

||p||L∞(K) ≤ cK ||p||L∞(YN ), ∀p ∈ Pd
n . (19)

The main goal here is to find discrete sets of possibly smallest cardinality N . Since dim Pd
n =
�n+d

n

�

we clearly must have
N >
�n+d

n

�

∼ nd in order for (19) to be possible. This naturally leads to the notion of optimal meshes which are defined as discrete
sets of CardYN ∼ nd satisfying (19).

Finding exact geometric properties characterizing sets which possess optimal meshes appears to be a rather difficult problem.
It was shown in [16] using multivariate Bernstein-Markov type inequalities that any C2 star like domains and arbitrary convex
polytopes in Rd possess optimal meshes. (In [29] a similar statement is proved with somewhat broader interpretation of the
C2 property.) It was also conjectured in [16] that any convex body in Rd possess an optimal mesh. It turned out that tangential
Bernstein type inequalities are especially useful in the study of optimal meshes. In particular as shown in [17], the tangential
Bernstein type inequality (10) can be used to verify the existence of optimal meshes in Cα star like domains with 2− 2

d < α < 2.
This is a substantial decrease in required smoothness of the star like domain in comparison to the C2 property, especially in case of
low dimensions d. Moreover, using the tangential Bernstein type inequality (11) the existence of optimal meshes in any convex body
on the plane R2 was verified in [19]. It should be noted that in a recent paper Prymak [30] gave a different proof of the existence
of optimal meshes on convex sets in the 2-dimensional plane. The proof in [30] is based on a promising approach initiated by
Bos and Vianello [6] which relates the existence of optimal meshes to asymptotic properties of the Christoffel functions.

Finally let us also mention that it was proved in [4] that any compact set K ⊂ Rd possesses a near optimal norming set YN ⊂ K
of cardinality N = O((n log n)d) satisfying (19). However, contrary to previous results the proof of existence of near optimal
meshes given in [4] is nonconstructive, it is based on Fekete points which in general cannot be found explicitly.
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3.2 Discretization of uniform norm of exponential sums

Now we turn our attention to some new results on discretization of the uniform norms of exponential sums

g(w) =
∑

1≤ j≤n

c j e
〈µ j ,w〉, µ j ,w ∈ Rd . (20)

In contrast with the trigonometric exponential sums when the exponents µ j ∈ Rd in (20) are arbitrary the basis functions e〈µ j ,w〉

are in general not pair wise orthogonal, and hence this crucial Fourier analytic tool is not available here. Instead we will rely
again on Bernstein-Markov type inequalities of Section 2.3.

For a given n ∈ N,δ, M > 0 let us introduce the following set of n term exponential sums in Rd with exponents separated by δ
and bounded by M

Ωd(n,δ, M) := {
∑

1≤ j≤n

c j e
〈µ j ,w〉, c j ∈ R, µ j ,w ∈ Rd , |µ j+1 −µ j | ≥ δ, |µ j | ≤ M}.

It is important to note that Ωd(n,δ, M) is not a linear subspace. First let us present the next discretization result for univariate
exponential sums verified in [20].

Given any n ∈ N, 0< δ,τ≤ 1, M > 1 there exist discrete points sets YN ⊂ [α,β] ⊂ R of cardinality

N ≤
cn
p
τ

ln
M
δ
p
τ

(21)

with an absolute constant c > 0, so that for every exponential sum g ∈ Ω1(n,δ, M) we have

∥g∥L∞[α,β] ≤ (1+τ)∥g∥L∞(YN ).

The upper bound for the cardinality of the discrete meshes turns out to be near optimal in the sense that (21) is sharp with
respect to both dimension n and accuracy τ up to the logarithmic term. The degree M and separation parameter δ of the
exponential sums appearing only in the logarithmic term has a limited effect on the bound. Furthermore, an explicit construction
of nodes used for the discretization is given in [20]. It is based on equidistribution with respect to the measure

µ1(E) :=

∫

E

d x
1− x2

, E ⊂ (−1,1) (22)

appearing in the Bernstein type inequality (12). In addition, the discrete set is universal in the sense that it depends only on
dimension n, degree M and separation parameter δ of the exponential sums.

The sharpness of the np
τ

term in the upper bound (21) for cardinality follows from the following general statement which can
be found in [22].

Let K ⊂ Rd be any compact set and assume that it possesses a discrete subset YN ⊂ K of cardinality N so that

||p||L∞(K) ≤ (1+τ)||p||L∞(YN ), ∀p ∈ Pd
n .

Then we have with some cK > 0 depending only on the domain K

N ≥ cK

�

n
p
τ

�d

.

Clearly, in particular case when d = 1 and exponents of the univariate exponential sums are chosen to be integers µ j := j, 0≤
j ≤ n the last lower bound shows the sharpness of the np

τ
term in (21).

The above discretization result was also extended in [20] to convex polytopes in Rd , d ≥ 2.

For any convex polytope K ⊂ Rd , d ≥ 2 we can explicitly give discrete points sets YN ⊂ K of cardinality

N ≤ c(K , d)
�

n
p
τ

ln
M
δτ

�d

such that for every exponential sum g ∈ Ωd(n,δ, M) we have

∥g∥L∞(K) ≤ (1+τ)∥g∥L∞(YN ).
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4 Discretization of the integral norm of polynomials and exponential sums
We start this section with a refinement of the classical Marcinkiewicz-Zygmund result given in [22] which is similar to Bernstein’s
estimate (1).

For any −π= x0 < x1 < ...< xm = π with

max
0≤ j≤m−1

(x j+1 − x j)<
p
τ

qn
,

and for every tn ∈ Tn we have

(1−τ)
m−1
∑

j=0

x j+1 − x j−1

2
|tn(x j)|q ≤
∫ π

−π
|tn(x)|qd x ≤ (1+τ)

m−1
∑

j=0

x j+1 − x j−1

2
|tn(x j)|q, q ≥ 2. (23)

This is a Marcinkiewicz-Zygmund type estimate of precision τ similar to Bernstein’s uniform bound (1). In particular, choosing
equidistant nodes x j := 2π( j−1)

m+1 , 1≤ j ≤ m+ 1 with m=
�

2πqnp
τ

�

+ 2 we obtain

1−τ
m

m
∑

j=1

|tn(x j)|q ≤
1

2π

∫ 2π

0

|tn(x)|qd x ≤
1+τ

m

m
∑

j=1

|tn(x j)|q.

It should be noted that the spacing needed above can be achieved with discrete meshes of cardinality m∼ np
τ
. This upper

bound for cardinality turned out to be sharp with respect to τ, as well. Furthermore, let us mention that in the forthcoming paper
[23] an extension of (23) for every 1 ≤ q <∞ is given. In addition certain new Marcinkiewicz-Zygmund results are proved
therein for 0< q < 1.

Various generalizations of the Marcinkiewicz-Zygmund type results to the multivariate setting can be found in the literature.
For instance, in [27] the Marcinkiewicz-Zygmund type problem based on scattered data on the unit sphere is studied. Feng Dai
[9] gave some analogues of Marcinkiewicz-Zygmund type inequalities for multivariate algebraic polynomials on the sphere and
ball in Rd . In a recent paper [11] using Bernstein-Markov, Schur and Videnskii type polynomial inequalities various extensions of
the Marcinkiewicz-Zygmund type bounds for multivariate polynomials on more general multivariate domains, which in particular
include polytopes, cones, spherical sectors, toruses were verified.

We will present now a new discretization result for the integral norms of general exponential sums, see [21] for details.

Let 1≤ q <∞, 0< δ ≤ 1, n ∈ N, M > 1. Then we can explicitly give discrete sets YN = {x j}Nj=1 ⊂ (a, b) of cardinality

N ≤ cqn ln
1
q +1 M
δ

so that for each exponential sum g ∈ Ω1(n,δ, M) we have

∥g∥qLq[a,b] ∼
∑

1≤ j≤N−1

(x j+1 − x j)|g(x j)|q, (24)

where all the constants involved are absolute.

Again the estimate of the cardinality of discrete mesh is "almost" independent of the exponents µ j since their degree M and
separation parameter δ effect only the logarithmic term. Moreover, the discrete nodes constructed explicitly are equidistributed
with respect to the measure (22).

The above discretization result admits a generalization to the unit cube I d := [0,1]d in Rd , see [21]. This requires some
work because the separation condition |µ j+1 − µ j | ≥ δ, 1 ≤ j ≤ n − 1 for the exponents µ j ∈ Rd of the exponential sums
g(w) =
∑

0≤ j≤n c j e
〈µ j ,w〉, µ j ,w ∈ Rd does not necessarily extend to projections to coordinate axises, so dimension reduction will

work only with proper choice of directions.

Let 1≤ q <∞, d, n ∈ N, 0< δ < 1, M > 1. Then there exist positive weights a1, ..., aN and discrete point sets YN = {w1, ...,wN} ⊂
I d of cardinality

N ≤ c(d, q)nd ln
d
q +d M
δ

,

so that for every exponential sum g ∈ Ωd(n,δ, M) we have

∥g∥q
Lq(Id )
∼
∑

1≤i≤N

ai |g(wi)|q, (25)

where all the constants involved depend only on d and q.
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5 Discretization of integral norms of exponential sums with nonnegative coefficients
Degree and exponent independent Bernstein-Markov type inequality (18) for exponential sums

g(x) =
∑

1≤ j≤n

a j e
λ j x , a j ≥ 0

with nonnegative coefficients leads to much stronger Marcinkiewicz-Zygmund type result in this case.
Denote

Ωd
+(n, M) := {
∑

1≤ j≤n

c j e
〈µ j ,w〉, c j ≥ 0, µ j ,w ∈ Rd , |µ j | ≤ M}.

This is the set of n term exponential sums with nonnegative coefficients and exponents bounded by M . Note that separation of
exponents now is not required. Then the next result holds, see [21].

Let q ∈ N, M > 1. Then we can give discrete points sets YN = {x1, ..., xN} ⊂ [0,1] of cardinality N ≤ cq ln M so that for every
exponential sum f ∈ Ω1

+(n, M) we have
∫ 1

0

f q(x)d x ∼
∑

1≤ j≤N

(x j+1 − x j) f
q(x j). (26)

This provides an "almost" degree independent Lq Marcinkiewicz-Zygmund type inequality for exponential sums with nonneg-
ative coefficients in case when q ∈ N is an integer. A slight modification leads to a similar result in case of any q ≥ 1.

Moreover the above discretization result can be extended for convex polytopes in Rd [21].

Let d, q ∈ N, M > 1. Consider any convex polytope K ⊂ Rd . Then we can give discrete points sets YN = {x1, ...,xN} ⊂ K of
cardinality N = O(lnd M) and positive weights a1, ..., aN so that for every exponential sum f ∈ Ωd

+(n, M) we have

∥g∥qLq(K) ∼
∑

1≤i≤N

ai g(xi)
q.
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