HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2021.3436

SOME PROPERTIES OF COFINITELY WEAK ESSENTIAL SUPPLEMENTED MODULES

BERNA KOŞAR

Received 14 September, 2020

Abstract. Let M be an R—module. If every cofinite essential submodule of M has a weak supplement in M, then M is called a cofinitely weak essential supplemented (or briefly cwe-supplemented) module. In this work, some properties of these modules are investigated. It is proved that any sum of cwe-supplemented modules is cwe-supplemented. It is also proved that every factor module and every homomorphic image of a cwe-supplemented module are cwe-supplemented.

2010 Mathematics Subject Classification: 16D10; 16D70

Keywords: Cofinite Submodules, Essential Submodules, Small Submodules, Supplemented Modules

1. Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R—module. We will denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If L = M for every submodule L of M such that M = N + L, then N is called a *small* (or *superfluous*) submodule of M and denoted by $N \ll M$. A submodule N of an R -module M is called an essential submodule and denoted by $N \subseteq M$ in case $K \cap N \neq 0$ for every submodule $K \neq 0$, or equivalently, $N \cap L = 0$ for $L \leq M$ implies that L = 0. A submodule K of M is called a *cofinite* submodule of M if M/K is finitely generated. Let M be an R-module and $U,V \leq M$. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a *supplement* of U in M. M is called a supplemented module if every submodule of M has a supplement in M. M is called an essential supplemented module if every essential submodule of M has a supplement in M. M is called a cofinitely supplemented module if every cofinite submodule of M has a supplement in M. M is called a cofinitely essential supplemented module if every cofinite essential submodule of M has a supplement in M. Let M be an R-module and $U \leq M$. If for every $V \leq M$ such that M = U + V, U has a supplement V' with $V' \leq V$, we say U has ample supplements in M. If every

© 2021 Miskolc University Press

submodule of M has ample supplements in M, then M is called an amply supplemented module. If every essential submodule of M has ample supplements in M, then M is called an amply essential supplemented module. If every cofinite submodule of M has ample supplements in M, then M is called an amply cofinitely supplemented module. If every cofinite essential submodule of M has ample supplements in M, then M is called an amply cofinitely essential supplemented module. Let M be an R-module and $U, V \leq M$. If M = U + V and $U \cap V \ll M$, then V is called a weak supplement of U in M. M is said to be weakly supplemented if every submodule of M has a weak supplement in M. M is called a weakly essential supplemented module of M has a weak supplement in M. M is called a weakly essential estimates estim

More informations about (amply) supplemented modules are in [4, 12–14]. The definitions of (amply) essential supplemented modules and some properties of them are in [8, 10, 11]. The definitions of (amply) cofinitely supplemented modules and some properties of them are in [1]. The definitions of (amply) cofinitely essential supplemented modules and some details of them are in [6, 7]. Some details about weakly supplemented and cofinitely weak supplemented modules are in [2, 4]. The definition of weakly essential supplemented modules and some properties of these modules are in [9].

2. COFINITELY WEAK ESSENTIAL SUPPLEMENTED MODULES

Definition 1. Let M be an R-module. If every cofinite essential submodule of M has a weak supplement in M, then M is called a cofinitely weak essential supplemented (or briefly cwe-supplemented) module. (See also [5])

Lemma 1. Let M be a finitely generated R-module. Then M is weakly essential supplemented if and only if M is cwe-supplemented.

Proof. Clear from definitions. \Box

Proposition 1. Let M be a cwe-supplemented module. Then M/RadM have no proper cofinite essential submodules.

Proof. Let $\frac{K}{RadM}$ be any cofinite essential submodule of $\frac{M}{RadM}$. By $\frac{M}{K} \cong \frac{M/RadM}{K/RadM}$, K is a cofinite submodule of M. Since $\frac{K}{RadM} \trianglelefteq \frac{M}{RadM}$, then $K \trianglelefteq M$ and since M is cwe-supplemented, K has a weak supplement V in M. Here M = K + V and $K \cap V \ll M$. Since M = K + V, $\frac{M}{RadM} = \frac{K}{RadM} + \frac{V + RadM}{RadM}$. Since $K \cap V \ll M$, by [13, 21.5], $K \cap V \leq RadM$. Then $\frac{K}{RadM} \cap \frac{V + RadM}{RadM} = \frac{K \cap V + RadM}{RadM} = 0$ and $\frac{M}{RadM} = \frac{K}{RadM} \oplus \frac{V + RadM}{RadM}$.

Since $\frac{M}{RadM} = \frac{K}{RadM} \oplus \frac{V + RadM}{RadM}$ and $\frac{K}{RadM} \le \frac{M}{RadM}$, $\frac{K}{RadM} = \frac{M}{RadM}$. Hence $\frac{M}{RadM}$ have no proper cofinite essential submodules.

Proposition 2. Let M be a cwe-supplemented module. If K is a proper cofinite essential submodule of M and $RadM \le K$, then K/RadM is not essential in M/RadM.

Proof. Since $RadM \le K$ and $K \ne M$, $K/RadM \ne M/RadM$. Since M is ewe-supplemented, K has a weak supplement V in M. Here M = K + V and $K \cap V \ll M$. Since M = K + V, $\frac{M}{RadM} = \frac{K}{RadM} + \frac{V + RadM}{RadM}$. By $K \cap V \le RadM$, $\frac{K}{RadM} \cap \frac{V + RadM}{RadM} = \frac{K \cap V + RadM}{RadM} = 0$ and $\frac{M}{RadM} = \frac{K}{RadM} \oplus \frac{V + RadM}{RadM}$. Following these we have $\frac{V + RadM}{RadM} \ne 0$ and since $\frac{K}{RadM} \cap \frac{V + RadM}{RadM} = 0$, K/RadM is not essential in M/RadM. □

Lemma 2. Let M be an R-module, U be a cofinite essential submodule of M and $M_1 \leq M$. If M_1 is cwe-supplemented and $U + M_1$ has a weak supplement in M, then U has a weak supplement in M.

Proof. Let *X* be a weak supplement of $U + M_1$ in *M*. Then $M = U + M_1 + X$ and $X \cap (U + M_1) \ll M$. Since *U* is a cofinite submodule of *M* and $\frac{M/U}{(U + X)/U} \cong \frac{M}{U + X} = \frac{M_1 + U + X}{U + X} \cong \frac{M_1}{M_1 \cap (U + X)}$, $M_1 \cap (U + X)$ is a cofinite submodule of M_1 . Since $U \subseteq M$, $(U + X) \subseteq M$ and $(U + X) \cap M_1 \subseteq M_1$. Then by M_1 being cwe-supplemented, $(U + X) \cap M_1$ has a weak supplement *Y* in M_1 . Here $M_1 = (U + X) \cap M_1 + Y$ and $(U + X) \cap Y = (U + X) \cap M_1 \cap Y \ll M_1 \subseteq M$. Then $M = U + M_1 + X = U + X + (U + X) \cap M_1 + Y = U + X + Y$ and $U \cap (X + Y) \subseteq (U + X) \cap Y + (U + Y) \cap X \subseteq (U + M_1) \cap X + (U + X) \cap Y \ll M$. Hence X + Y is a weak supplement of *U* in *M*. □

Corollary 1. Let U be a cofinite essential submodule of M and $M_i \le M$ for i = 1, 2, ..., n. If M_i is cwe-supplemented for every i = 1, 2, ..., n and $U + M_1 + M_2 + ... + M_n$ has a weak supplement in M, then U has a weak supplement in M.

Proof. Clear from Lemma 2.

Lemma 3. Any sum of cwe-supplemented modules is cwe-supplemented.

Proof. Let U be a cofinite essential submodule of M and $M = \sum_{\lambda \in \Lambda} M_{\lambda}$ for $M_{\lambda} \leq M$ and M_{λ} be cwe-supplemented for every $\lambda \in \Lambda$. Since U is a cofinite submodule of M, then there exist $\lambda_1, \lambda_2, ..., \lambda_n \in \Lambda$ such that $M = U + M_{\lambda_1} + M_{\lambda_2} + ... + M_{\lambda_n}$. Then 0 is a weak supplement of $U + M_{\lambda_1} + M_{\lambda_2} + ... + M_{\lambda_n}$ in M. Since M_{λ_i} is cwe-supplemented for every i = 1, 2, ..., n, by Corollary 1, U has a weak supplement in M. Hence M is cwe-supplemented.

Corollary 2. Let M be a cwe-supplemented R-module. Then $M^{(\Lambda)}$ is cwe-supplemented for every index set Λ .

Proof. Clear from Lemma 3.

Lemma 4. Every factor module of a cwe-supplemented module is cwe-supplemented.

Proof. Let M be a cwe-supplemented R-module and $\frac{M}{K}$ be any factor module of M. Let $\frac{U}{K}$ be a cofinite essential submodule of $\frac{M}{K}$. Then U is a cofinite essential submodule of M and since M is cwe-supplemented, U has a weak supplement V in M. Here M = U + V and $U \cap V \ll M$. Following we have $\frac{M}{K} = \frac{U}{K} + \frac{V + K}{K}$ and $\frac{U}{K} \cap \frac{V + K}{K} = \frac{U \cap V + K}{K} \ll \frac{V + K}{K}$. Hence $\frac{V + K}{K}$ is a weak supplement of $\frac{U}{K}$ in $\frac{M}{K}$ and $\frac{M}{K}$ is cwe-supplemented.

Corollary 3. Every homomorphic image of a cwe-supplemented module is cwe-supplemented.

Proof. Clear from Lemma 4.

Lemma 5. Let M be a cwe-supplemented module. Then every M-generated R-module is cwe-supplemented.

Proof. Let N be a M—generated R—module. Then there exist an index set Λ and an R—module epimorphism $f: M^{(\Lambda)} \longrightarrow N$. Since M is cwe-supplemented, by Corollary $M^{(\Lambda)}$ is cwe-supplemented. Then by Corollary $M^{(\Lambda)}$ is cwe-supplemented.

Lemma 6. Let M be an R-module, $K \ll M$ and $\frac{U+K}{K} \leq \frac{M}{K}$ for every $U \leq M$. If M/K is cwe-supplemented, then M is also cwe-supplemented.

Proof. Let *U* be any cofinite essential submodule of *M*. Since *U* is a cofinite submodule of *M*, we clearly see that U+K is a cofinite submodule of *M*. By $\frac{M/K}{(U+K)/K}\cong \frac{M}{U+K}$, (U+K)/K is a cofinite submodule of M/K. By hypothesis, $\frac{U+K}{K} \leq \frac{M}{K}$ and since M/K is cwe-supplemented, $\frac{U+K}{K}$ has a weak supplement V/K in M/K. Here $\frac{M}{K} = \frac{U+K}{K} + \frac{V}{K} = \frac{U+V}{K}$ and $\frac{U\cap V+K}{K} = \frac{U+K}{K} \cap \frac{V}{K} \ll \frac{M}{K}$. Since $\frac{M}{K} = \frac{U+V}{K}$, then M = U+V. Let $U\cap V+T=M$ with $T\leq M$. Then $\frac{U\cap V+K}{K} + \frac{T+K}{K} = \frac{M}{K}$ and since $\frac{U\cap V+K}{K} \ll \frac{M}{K}$, $\frac{T+K}{K} = \frac{M}{K}$ and we have T+K=M. Since $K\ll M$, we have T=M. Hence $U\cap V\ll M$ and V is a weak supplement of U in M. Therefore, M is cwe-supplemented. \square

Corollary 4. Let $f: M \longrightarrow N$ be an R-module epimorphism, $Ker(f) \ll M$ and $f(U) \subseteq N$ for every $U \subseteq M$. If N is cwe-supplemented, then M is also cwe-supplemented.

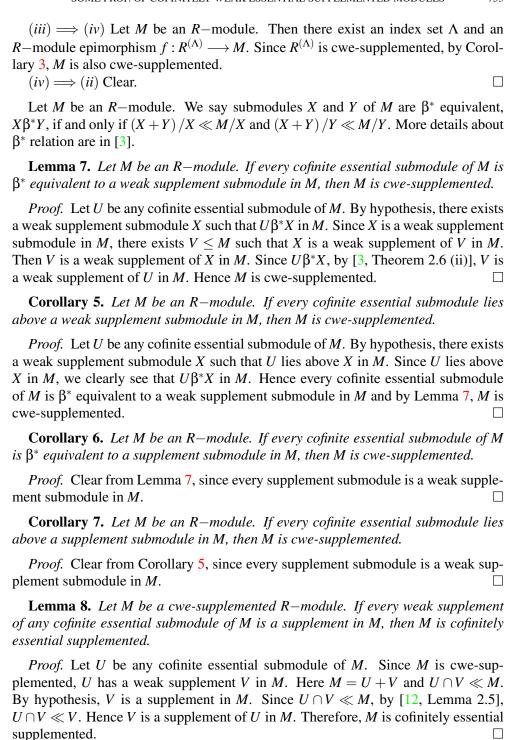
Proof. Clear from Lemma 6.

Proposition 3. *Let R be a ring. The following assertions are equivalent.*

- (i) _RR is weakly essential supplemented
- (ii) $_RR$ is cwe-supplemented.
- (iii) $R^{(\Lambda)}$ is cwe-supplemented for every index set Λ .
- (iv) Every R-module is cwe-supplemented.

Proof. (i) \iff (ii) Clear from Lemma 1, since _RR is finitely generated.

 $(ii) \iff (iii)$ Clear from Corollary 2.



Corollary 8. Let M be a finitely generated cwe-supplemented R—module. If every weak supplement submodule in M is a supplement in M, then M is essential supplemented.

Proof. Clear from Lemma 8, since every submodule of M is cofinite.

REFERENCES

- [1] R. Alizade, G. Bilhan, and P. F. Smith, "Modules whose maximal submodules have supplements," *Communications in Algebra*, vol. 29, no. 6, pp. 2389–2405, 2001.
- [2] R. Alizade and E. Büyükaşık, "Cofinitely weak supplemented modules," *Comm. Algebra*, vol. 31, no. 11, pp. 5377–5390, 2003, doi: 10.1081/AGB-120023962. [Online]. Available: https://doi.org/10.1081/AGB-120023962
- [3] G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, "Goldie*-supplemented modules," *Glasg. Math. J.*, vol. 52, no. A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212. [Online]. Available: https://doi.org/10.1017/S0017089510000212
- [4] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting Modules: Supplements and Projectivity in Module Theory (Frontiers in Mathematics)*, 2006th ed. Basel: Birkhäuser, 8 2006.
- [5] B. Koşar, "Cofinitely weak e-supplemented modules," in 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020), 2020.
- [6] B. Koşar and C. Nebiyev, "Cofinitely essential supplemented modules," *Turkish Studies Information Technologies and Applied Sciences*, vol. 13, no. 29, pp. 83–88, 2018.
- [7] B. Koşar and C. Nebiyev, "Amply cofinitely essential supplemented modules," *Archives of Current Research International*, vol. 19, no. 1, pp. 1–4, 2019.
- [8] C. Nebiyev, "E-supplemented modules," in *Antalya Algebra Days*, ser. XVIII, Şirince, İzmir, Tur-key, 2016.
- [9] C. Nebiyev and B. Koşar, "Weakly essential supplemented modules," *Turkish Studies Information Technologies and Applied Sciences*, vol. 13, no. 29, pp. 89–94, 2018.
- [10] C. Nebiyev, H. H. Ökten, and A. Pekin, "Amply essential supplemented modules," *Journal of Scientific Research and Reports*, vol. 24, no. 4, pp. 1–4, 2018.
- [11] C. Nebiyev, H. H. Ökten, and A. Pekin, "Essential supplemented modules," *International Journal of Pure and Applied Mathematics*, vol. 120, no. 2, pp. 253–257, 2018.
- [12] C. Nebiyev and A. Pancar, "On supplement submodules," *Ukrainian Math. J.*, vol. 65, no. 7, pp. 1071–1078, 2013, doi: 10.1007/s11253-013-0842-2. [Online]. Available: https://doi.org/10.1007/s11253-013-0842-2
- [13] R. Wisbauer, *Foundations of module and ring theory*, german ed., ser. Algebra, Logic and Applications. Gordon and Breach Science Publishers, Philadelphia, PA, 1991, vol. 3, a handbook for study and research.
- [14] H. Zöschinger, "Komplementierte Moduln über Dedekindringen," J. Algebra, vol. 29, pp. 42–56, 1974, doi: 10.1016/0021-8693(74)90109-4. [Online]. Available: https://doi.org/10.1016/0021-8693(74)90109-4

Author's address

Berna Koşar

Uskudar University, Department of Health Management, Üsküdar, İstanbul, Turkey *E-mail address:* bernak@omu.edu.tr, berna.kosar@uskudar.edu.tr