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SUMMARY 

In this paper we give a brief survey of the empirical investigations of the distribution of 
stock returns and some detailed discussion of Hungarian and German stock returns as well as 
the DAX using refined methods. As a conclusion the stable law hypothesis for the stock re-
turns is rejected and procedures requiring much weaker distributional assumptions are sug-
gested instead of the more traditional  techniques. 
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inancial researchers have long been interested in studying the empirical distribution 
of stock returns. This interest can be explained by the fact that the return distribution has a 
direct bearing on the descriptive validity of theoretical models in financial economics. 

A still open debate concerns the analysis of the asymmetry of return distributions. 
The issue is relevant for portfolio theory and management, because of the importance of 
the distribution of stock returns  in designing  profitable investment strategies. The im-
portant role of skewness in explaining security returns is demonstrated by Jean 
(1971,1973), and Levy and Sarnat (1972). Several researchers (Samuelson, 1970; Rubin-
stein, 1973) argue that in order to ignore the third and higher moments, at least one of the 
following three conditions must be true: 

(i) The return distribution has negligible variation, therefore any moments beyond the 
first are zero. 

(ii) The derivatives of the applicable utility function are zero for the third and higher 
moments. 

(iii) The asset returns have normal distributions, or the investors’ utility functions are 
quadratic. 

Some researchers support the use of quadratic approximation for utility functions in 
practical problems, assuming that the risk taken by the investor is small compared to his 
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total wealth. Others, however, remain skeptical of its application. Hanoch and Levy 
(1970) point out that the quadratic utility function implies increasing absolute risk aver-
sion (which is contrary to the normal assumption of  decreasing absolute risk aversion). 
As a consequence of these investigations more attention has been directed to the exis-
tence and importance of skewness in portfolio selection. In the case of restricting the in-
vestment decision to a finite time interval, portfolio selection based on the mean-variance 
approximation becomes inadequate and higher moments become more relevant 
(Samuelson 1970). Jean (1971, 1973) derives the risk premium for higher moments simi-
lar to that for the two-moment case, extending portfolio analysis to three or more pa-
rameters. Empirical studies show that the three-moment CAPM fits the return distribu-
tion better than the two-moment model (Kraus and Litzenberger 1976). Markowitz 
(1991) finds that the mean-variance model may approximately maximize expected utility 
for relatively small deviations in rates of return even if distributions are not normal. 

Stable distributions have often been used to explain the stochastic behaviour of stock 
prices because of the following statistical properties: (1) only stable distributions have 
domains of  attraction ( generalized central limit theorem), and (2) stable distributions 
belong to their own domain of attraction (stability). These properties are consistent with 
economic price theory and capable of explaining the observed leptokurtosis and skew-
ness in return distributions.  

The logarithm of the characteristic function ( )ϕ t of any stable random variable X  is: 
( ) [ ] ( ) ( )[ ]2/sgnelogElog 1it απβγδϕ α tantittit X −−=≡ , where ( )δγβα ,,,  are the four parameters 

that characterize each stable distribution.  
In the above formula ( ]2,0 ∈α  is the exponent, ( )∞−∞∈ ,β is the skewness index, 
( )∞∈ ,0 γ is the scale parameter, and ( )∞−∞∈ ,δ  is said to be the location parameter.  
When 2=α , the stable distribution reduces to normal. As α  decreases from 2 to 0, 

the tail areas of the distribution become increasingly ‘fatter’ than that of the normal. 
When  ( )2,1∈α , the stable distribution has a finite mean given by δ , but when ( ]1,0∈α , 
even the mean is infinite. The parameter β  measures the symmetry of the stable distribu-
tion; when 0=β  the distribution is symmetric, and when 0<β  (or 0>β ) the distribution 
is skewed to the left ( or right). When 0=β  and 1=α  we have the Cauchy distribution, 
and when ,0,1,2/1 === δβα  and 1=γ  we have the Bernoulli distribution. 

Detailed description of stable laws can be found in Feller (1971) and DuMouchel 
(1971). Discussions of their applicability in economic analysis are in Mandelbrot (1963), 
Fama (1965) and McCulloch (1978). 

The following part of this paper is organized as follows. Section 1 summarizes the re-
sults of previous discussions as well as the methods used for investigations. In Section 2 
some more detailed discussion is presented analysing the appropriateness of stable laws 
for German and Hungarian stock returns using refined methods. The last section provides 
concluding remarks. 

1. Methods and results of previous discussions 

Stable laws other than the normal distribution share the features of fat tails and high 
peak at the mean (leptokurtosis) observed in data.  Stability under addition  seems to be a 
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necessary property for daily, weekly etc. data when succesive high frequency price 
changes are assumed to be independent and identically distributed random variables. The 
reasoning outlined in the literature seemed to be so persuasive that researchers accepted 
the stable laws as evidence without the further testing of fit. Teichmoeller (1971) and 
Simkowitz and Beedles (1980) examined stock returns, McFarland, Pettit and Sung 
(1980) and So (1987a) investigated exchange rate changes, Cornew, Town and Crowson 
(1984) and So (1987b) studied futures returns without the testing of fit. 

Some indications for the violation of the stability-under-addition property  expressing 
itself as time dependence of α over daily, weekly etc. data motivated others to query the 
stable law hypothesis (Hsu, Miller and Wichern 1974, Upton and Shannon 1979, Fried-
man and Bandersteel 1982, and Hall, Brorson and Irwin 1989 ).  

Despite the a priori plausibility of stable distributions, several empirical studies have 
found some evidence against the hypothesis that stock returns can be characterized by 
stable distributions (Officer 1972, Blattberg and Gonedes 1974, Hsu, Miller, and 
Wichern 1974). Most of these studies have been restricted to the symmetric case because 
the parameter estimation as well as the economic analysis have been considerably facili-
tated when  0 =β . More recent investigations by Simkowitz and Beedles (1980), Rozelle 
and Fielitz (1980) and Fielitz and Rozelle (1983) have shown, however, that empirical re-
turn distributions are in most cases significantly skewed and only the asymmetric stable 
laws can be used as probability models of stock returns. Peccati and Tibiletti (1993) sug-
gest a possible reading-key to the interpretation of the skewness of stock return distribu-
tions. This key relies on the fact that the asymmetry of a sum of random variables de-
pends not only on that of the random addenda, but also on their dependence structure. 
The conclusion of the empirical investigations on the skewness of stock return distribu-
tion is that the introduction of the asymmetry in the mean-variance framework serves as 
a useful tool for describing the ex-post equilibrium of the financial markets; however, it 
does not seem to be a proper ex-ante tool for selecting profitable portfolio strategies.  

Akgiray and Booth (1988) investigate the stable-law hypothesis for stock returns dis-
cussing the empirical tail shapes instead of testing the overall fit of stable distributions to 
data. This approach is based on the notion that the tails of stable distributions and finite-
variance distributions are distinctly different. (The rate at which the tail probability 

( )nxPr >  converges to 0 as ∞→n  is proportional to kn .) For infinite-variance stable dis-
tributions  2 <<αk  and 2≥k  for finite-variance distributions.  

The analysis of tails relies on the following result of the extremal value theory: con-
sider a stationary sequence of independent and identically distributed random variables 

nXXX ,...,, 21  and define the order statistics 

Mn = max (X1 ,X2 , . . . , Xn ) .                                                            /1/ 

As it can be shown, the limiting distribution of nM  is appropriately scaled and con-
verges to one of the max-stable distributions (for details see Leadbetter et.al., 1983). 

The relevant distribution is fat-tailed without finite endpoint given by the cumulative 
distribution function  

( ) ( )⎪⎩

⎪
⎨
⎧

>−

≤
= − 0

00

xifxexp

xif
xF α                                                           /2/ 
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This means that ( ){ }xbMaPr nnn ≤−  converges (weakly) to ( )xF with normalizing con-
stants na  and nb . The characteristic exponent of a stable distribution coincides with the 
tail index α  of the limiting extremal value distribution ( )xF . Taking into account that the 
tail index is not restricted to the interval (0, 2] but may assume any positive value, the 
characteristic exponent estimated by the fractile method (or other methods) may not co-
incide with the tail index when the underlying  distribution is not a stable one.  

ARCH processes may obey limit laws characterized by indices greater than 2. De 
Haan et al. (1989) show how the tail index depends on the parameters of ARCH proc-
esses. As an other example, the Student t distribution converges to a limiting extremal 
distribution with tail index identical to the number of degrees of freedom. It means that 
the tail indices for the Student family extend from 1 to infinity. All these alternatives are 
nested in the tail estimation procedure. The relationship between the number of existing 
moments and the tail index also gives some useful information for the analysis. All mo-
ments smaller than the tail index exist, whereas higher moments exhibit do not converge. 

Studies of proposed estimation techniques for the tail index α have favoured the esti-
mator introduced by Hill (1975) as the most effective one. This estimation procedure 
gives a consistent estimate of the inverse of α by calculating : 

( ) ( )[ ]∑
=

−==
n

i
miHH xx

m 1
loglog1/1 αγ ,                                                     /3/ 

where n is the sample size, m is the number of observations located in the tail of the dis-
tribution and the elements of the sample are in descending order:  

( ) ( ) ( ) ( )nm xxxx ≥≥≥≥≥ ......21 .  

It can be shown that the variable ( ) mH γγ − follows asymptotically normal distribu-
tion with zero mean and variance 2γ . This result can be used to test the hypothesis of 
identity of limit laws across stocks as well as the equality of lower and upper tails in the 
same sample. The main problem connected with the application of tail index estimations 
is the decision about an appropriate tail size, i.e. determining the number of observations 
m used in the calculation of αH . The choice of tail size m necessarily involves judgement 
or maintenance of a specific hypothesis on the true α. The higher (lower) α itself is, the 
thinner (fatter) the tails will be and the fewer (more) elements will belong to the tail re-
gion. One can realize that choosing a too large value for m will result in a contamination 
of the tail region with elements of the central parts of the distribution when the true α as-
sumes a relatively high value.  

Tail index estimation has only recently been applied in the financial literature. Ko-
edijk, Schafgans and de Vries (1990) and Kähler (1993) analyse European exchange 
rates quoted against the US dollar. Koedijk et al. cannot reject the hypothesis of a tail in-
dex within the realm of the stable laws while Kähler’s estimates lie within the interval 3-
5 allowing rejection of 2<α . Dewachter and Gielens (1991) point to biases in the esti-
mates of Koedijk et.al. and report upward corrected tail indices. Akgiray, Booth and 
Seifert (1988) and Koedijk, Stork and de Vries analyse Latin-American black market ex-
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change rates. In the study of Akgiray et.al. (1988) a less efficient maximum likelihood 
estimator was used giving values within the interval 0.5 to 7. Koedijk et al. revised the 
results using the Hill estimator for the same data. The revision resulted a narrower inter-
val of α values (about 1.2 to 3.2). Koedijk and Kool (1993) investigate the East European 
exchange rates against the US dollar finding α values within the interval (2, 3). The stud-
ies of US and German stock prices performed by Akgiray and Booth (1988) and Akgiray, 
Booth and Loistl (1989) respectively were based on maximum likelihood estimation. Jen-
sen and de Vries (1991) found the α values in the range of 3.2 and 5.2 considering daily 
returns of 10 US stocks.  

The next section of the paper analyses the appropriateness of stable laws for German 
and Hungarian stock returns. Data used for the analysis cover the period from 1 January, 
1988 to 9 September, 1994 of thirty of the most frequently traded German stocks form-
ing the DAX share price index and the period from 6 January, 1993 to 31 August, 1995 
for the most frequently traded Hungarian stocks (Lux and Varga, 1996). 

2. Analysis of return distributions for major German and Hungarian stocks 

Returns are calculated as differences of the logarithms of daily closing prices. First 
chi-squared tests with 10 and 25 equiprobable cells are applied to test the fit of the esti-
mated distributions. The 25-cell test for the German individual stocks rejects the stable 
Paretian hypothesis in 12 (16) cases at 1 percent (5%) significance level, whilst for the 
DAX index the hypothesis is not rejected.  

(Nearly the same results have been obtained for the Hungarian stock market, but the 
sample is not as large as the German one, therefore the inference may be questionable). 
The 10-cell test even rejects 8 more cases at 1 percent and also rejects the stable distribu-
tion for the DAX at 5 percent level. Some of the rejections of the 10-cell test may be due 
to certain non-robustness against some slight misspecification of the location parameter 
α and therefore the 25-cell variant may be considered more reliable. The interpretation of 
this standard test is ambiguous: partly because for about one third of all cases the stable 
laws are rejected at 1 percent level, and partly because the results also show that many of 
the empirical distributions seem to be described quite well by stable distributions. The 
computational results confirm the picture available from many other previous studies that 
there is at least some overall similarity in the shapes of empirical distributions and that of 
the stable distributions and the estimated characteristic exponents lie in a relatively lim-
ited interval around 1.5. 

As a counter-check the tails of the empirical distributions are considered. To investi-
gate whether upper and lower tails are identical, the Hill-estimator was used to the lowest 
and highest 5 percent of observations. Point estimates denoted by α+ and α- for German 
stocks forming the DAX and the most often traded Hungarian stocks were calculated. 
The test of hypothesis α+ = α- relies on the approximate normality of Hγ/1 . As a conse-
quence, the sum 

( ) ( ) mmQ
22

22
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follows chi-squared distribution with two degrees of freedom, and m is the number of 
observations located in the tail of the distribution as in /3/ ( )m/22 γσγ =  . The results of the 
computations show that in all cases there exists a broad range of hypothetical α values 
for which the hypothesis α+ = α- is not rejected. Simultaneously it is obtained that α+ > 
α- in 25 out of 30 cases for German stocks. This result could raise doubts about the ap-
propriateness of the assumption of identical tail behavior on the left and right tails of the 
distributions. To make this point clear a simple symmetry test can be used. The hypothe-
sis α+ = α- for all stocks implies 

Pr (α+ > α-)=Pr (α+ < α-) = 0.5. 

The number of k observations with α+ > α- under the hypothesis α+ = α- follows a bi-
nomial distribution B(30, 0.5). Only individual stocks are considered because the DAX is 
a linear combination of its constituent elements. The probability of observing  5 ≤k or 

 25 ≤k under −+ =αα:0H  is only 0.003. It tells us that a significant asymmetry be-
tween upper and lower tail indices seems to exist considering the 30 stocks as a whole. 
The ‘mini-crash’ in October 1989 (the Gulf crisis, the Russian putsch) may be responsi-
ble for this asymmetry. Omitting relevant data and recalculating the upper and lower 5 
percent tail indices reduces asymmetry and gives a statistically insignificant result. This 
means that the asymmetry between left and right tails was caused by an extreme event. 
This extreme event affected all stocks in a rather uniform way ( individual stocks fell by 
6 to 25 percent and the DAX declined by 13 percent that day). The conclusion that no 
systematic differences in the extremal behaviour of left and right tails exist can be ac-
cepted. To obtain the point estimates and some insight into variation with sample size, 
the two-sided Hill-estimator was computed for the stocks and the DAX and BUX  at tail 
sizes of 15, 10, 5 and 2.5 percent. The results for the German market are shown in Table 
1. Monte Carlo simulations show  that the 15 percent tail size would be appropriate for 
stable family members with characteristic exponent   21 <<α , whilst the thinner tails 
would apply to Student distributions with 3 to 5 degrees of freedom. The point estimates 
are either rather uniform using different choices of the number of tail observations or tend 
to increase slightly. It can be seen that the point estimates are outside the region characteriz-
ing the stable distribution family in all cases. Even if the point estimates and confidence in-
tervals given in Table 1 form already strong evidence against the Paretian model, it seems 
useful to investigate whether the different tail sizes chosen are all appropriate or not.  

It is interesting to test whether the respective tails really follow an extreme value dis-
tribution of type /2/ with the estimated parameter α. Under distribution /2/ the random 

variable ( )
( )i
i

i x
x

iu 1log +⋅⋅=α follows exponential distribution with origin 0 and parameter 1, 

i.e. Exp(x;0, 1)=1-exp(-x), where ( ) ( ) ( ) ( )xxxx mi KK ≥≥≥ 21  denote the m largest observa-
tions and α is the parameter of the distribution /3/ (see Hill, 1975). The appropriateness 
of the tail size can be tested by performing the goodness-of-fit test for ui. The rejection of 
the exponential distribution for ui implies the rejection of convergence of the original 
sample to the limit law at the tail sizes considered. Standard chi-squared test with 20, 16, 
10 and 8 equiprobable cells has been implemented for this test procedure. Only very few 
cases led to the rejection of the exponential distribution.  
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In most cases cell frequencies are very close to their hypothetical values have been at all 
tail sizes considered, hence good convergence to the extreme value distributions can be 
accepted. To demonstrate the difference in prediction of extremal events, exceeding 
probabilities  per  year  for  certain  threshold values were calculated using the estimated 
stable distributions as well as the semi-parametric tail index estimates. The results for the 
DAX using the estimated stable parameters α = 1.737 and c = 0.651 are summarized in 
Table 2. 

Table 2 

Annual exceeding probabilities 

|r| α5%=2.964 α2.5%=2.622 Stable d.  
with αS=1.737 

Number  of observations 
 in data 

|r|>0.006 0.5254 0.8734 0.7544 6 
|r|>0.10 0.1101 0.2372 0.4405 1 
|r|>0.15 0.0323 0.0834 0.2329 0 
|r|>0.20 0.0136 0.0396 0.1479 0 

Exceeding probabilities are calculated from Deckers and de Haan’s upper quantile estimation formula /4/, stable law 
probabilities are obtained by interpolation from Du Mouchel’s tabulation using the scale parameter c = 0.651 (obtained for 
DAX), and for comparability α = 0 is assumed. 

For simplicity of comparison α = 0, i.e. the symmetry is assumed. In the case of esti-
mated stable distribution, the probability of at least one extreme return exceeding in ab-
solute value a certain threshold is computed by interpolation using DuMouchel’s tabula-
tion (DuMouchel, 1971). For the semi-parametric estimation procedure the consistent 
estimator of upper quantiles proposed by Decker and de Haan (1989) has been applied. 
This estimator is given by: 

( ) ( ) ( )( ) ( )x k m
p n

x x xp

H
H

n m n m n m=
⋅
⋅

⎛
⎝
⎜

⎞
⎠
⎟ − − +− −

− − −2
1 2

1

2 2

γ
γ

/ / ,                 /5/ 

where xp denotes the p-quantile, k is the number of observations per year (here it is 250, 
the number of trading days per year), n and m are the sample size and the number of ob-
servations in the tail region respectively, and γ H  is the inverse of the tail index estimate 
α H . Given the xp  value, the probability can be obtained by solving equation /5/. Signifi-
cant differences in the valuation of the most extreme events exist. As an example, the 
probability of absolute returns exceed the level of 0.20, is equal to 0.1479 under the sta-
ble law hypothesis (it was not rejected by the goodness-of-fit test). Considering the lower 
one of the tail index estimates, α2.5% =2.622, the corresponding probability is 0.0396, and 
for α5% = 2.964 this probability is 0.0136. If the stable law hypothesis holds, returns of 
this magnitude are expected to occur once within six to seven years, while the Hill tail 
index estimates predict occurence of such large absolute returns only once within twenty-
five or even once within seventy-five years. This example shows that conclusions drawn 
from the stable model concerning large absolute returns are misleading.  

The point estimates of the various stocks for a given tail size lie within a relatively 
limited range. Any inference related to the homogeneity or heterogeneity with respect to 
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the likelihood of extreme returns across stocks is of paramount interest to questions of 
risk management and portfolio selection. In order to answer these questions the identity 
of limit laws has been tested. Formally it means the test of hypothesis 
α α α α1 2 30= = = =... . Using normality of 1/ αH the statistic  

( )∑
=

−=
30

1

2
, 1/

i
iH mQ αα                                                            /6/ 

is approximately chi-squared distributed with 30 degrees of freedom under the null hy-
pothesis of identical α values. The test results show that the hypothesis of identical ex-
treme value distributions cannot be rejected.  

Table 3 

Uniformity test of limit laws across stocks 

Tail size 15 10 5 2.5 

 percent 

Lower bound 2.460 2.629 2.699 2.618 
Upper bound 2.722 3.089 3.364 3.610 

The lower and upper bounds determine the intervals of α-values for which the hypothesis α1 = α2 = . . . = α30  cannot be re-
jected at 1 percent level.  

The analysis of extreme value distributions confirms that there are no stocks with 
more pronounced inclination for extreme changes than the average. This result may sug-
gest that macroeconomic shocks may have similar impacts on the formation of their re-
turns. 

3. Conclusions 

This paper gives a survey of the empirical studies investigating stock return distribu-
tions and the detailed analysis of the most recent results for the main German stocks and 
some conclusions of the investigations for the Hungarian stock market. It has been found 
that the stable model seems to fit well for most of the stocks when the standard good-
ness-of-fit test was applied. Counterchecking this result with a semi-parametric analysis 
of extreme value distributions led to the rejection of the stable law hypothesis. These 
findings are in accordance with the results reported in the literature indicating that em-
pirical distribution shapes of stock returns are similar to the Pareto-Levy distributions at 
first sight, while refined methods of analysis point out that they are generated by other 
distributions. Stable distributions make theoretical modelling difficult. (Closed form ex-
pressions for the density functions of stable random variables are available for only three 
special cases: the normal, the Cauchy and the Bernoulli distributions.) Standard finance 
theory almost always requires finite second moments of returns, and often finite higher 
moments as well. Stable distributions also have some counterfactual implications. First, 
they imply that simple estimates of the variance and higher moments of returns will tend 
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to increase as the sample size increases, whereas in practice these estimates seem to con-
verge. Secondly, they imply that long-horizon returns will be just as non-normal as short-
horizon returns. (Long-horizon returns are sums of short-horizon returns, and these dis-
tributions are stable under addition). In practice the evidence for non-normality is much 
weaker for long-horizon returns than for short-horizon returns. We suggest that returns 
should be modelled as drawn from a fat-tailed distribution with finite higher moments, 
such as the t distribution, or as drawn from a mixture of distributions. The return might 
be conditionally normal, conditional on a variance parameter which in itself is random. 
Then the unconditional distribution of returns is a mixture of normal distributions, some 
with small conditional variances that concentrate mass around the mean and others with 
large conditional variances that put mass in the tails of the distribution. This yields a fat-
tailed unconditional distribution with a finite variance and finite higher moments. Since 
all moments are finite, and long-horizon returns will tend to be closer to the normal dis-
tribution than short-horizon returns just as the the Central Limit Theorem implies. The 
most convenient and widely acceptable paradigm postulates that returns are normally dis-
tributed which means that asset prices follow lognormal distributions. Both modern port-
folio theory and the Black-Scholes methodology of pricing derivative assets are founded 
on such a paradigm. 

The uncertainty of speculative prices, as measured by the variances and covariances, 
are changing through time. Explicit modelling time variation in second- or higher-order 
moments is also proposed as an alternative to the analysis. One of the most prominent 
tools that has emerged for characterizing variances is the Autoregressive Conditional 
Heteroskedasticity (ARCH) model of Engle (1982) and its various extensions. Since the 
introduction of the ARCH model a lot of research papers applying this model strategy to 
financial time series data have already appeared.  

The randomness of asset price changes hypothesized by the Efficient Market Hy-
pothesis (EMH) naturally leads to questions about the behaviour of the variance of 
such changes. If price changes are induced by changes in information, can shocks in 
fundamental factors affecting the economy explain the price volatility? Or, is the 
variance of price changes due to other factors? The literature of this topic documents 
that prices are too volatile and although this evidence does not imply rejection of the 
EMH, it raises the question of what factors other than fundamental shocks could ex-
plain such evidence of high volatility. A nonlinear deterministic methodology, cha-
otic dynamics, as an alternative to linear stochastic models can clarify the relation be-
tween price variability and speculation as well as explain why the empirical studies 
of the time series properties of asset prices are ambiguous and inconclusive. Baumol 
and Benhabib (1989), and Boldrin and Woodford (1990) used various single variable 
chaotic maps as a metaphor to illustrate the intellectual possibilities of the determi-
nistic approach. 

Another finding of the analysis was that the uniformity of extreme value distributions 
across the sample indicates a high degree of cooperation among the German firms form-
ing the DAX index, and one may conclude the same on some lower level for the stocks 
forming the BUX. This is the reason for reporting only the computational results of the 
German market analysis. It is also likely that the differences in results between previous 
and present investigations are caused by the previously used less efficient methods. (As 
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some examples: Akgiray, Booth and Loistl (1989) found tail indices in the range (3, 13), 
Lux and Varga (1996) reported the interval (2, 4)). 

One may conclude that the uniformity of limit laws may be a more general phenome-
non and it is worth searching for the reason of this behaviour. 
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