
Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 24. (1997) pp. 3–9

A characterization of the identity function

BUI MINH PHONG⋆

Abstract. We prove that if a multiplicative function f satisfies the equation

f(n2+m2+3)=f(n2+1)+f(m2+2) for all positive integers n and m, then either f(n) is

the identity function or f(n2+m2+3)=f(n2+1)=f(m2+2)=0 for all positive integers.

Throughout this paper N denotes the set of positive integers and let M
be the set of complex valued multiplicative functions f such that f(1) = 1.

In 1992, C. Spiro [3] showed that if f ∈ M is a function such that
f(p + q) = f(p) + f(q) for all primes p and q, then f(n) = n for all n ∈ N.
Recently, in the paper [2] written jointly with J. M. de Koninck and I. Kátai
we proved that if f ∈ M, f(p+n2) = f(p)+f(n2) holds for all primes p and
n ∈ N, then f(n) is the identity function. It follows from results of [1] that
a completely multiplicative function f satisfies the equation f(n2 + m2) =
f(n2) + f(m2) for all n,m ∈ N if and only if f(2) = 2, f(p) = p for all
primes p ≡ 1 (mod 4) and f(q) = q or f(q) = −q for all primes p ≡ 3
(mod 4).

The purpose of this note is to prove the following

Theorem. Assume that f ∈ M satisfies the condition

(1) f
(

n2 + m2 + 3
)

= f(n2 + 1) + f(m2 + 2)

for all n,m ∈ N. Then either

(2) f(n2 + 1) = f(m2 + 2) = f(n2 + m2 + 3) = 0 for all n,m ∈ N,

or f(n) = n for all n ∈ N.

Corollary. If f ∈ M satisfies the condition (1) and f(n2
0 + 1) 6= 0 for

some n0 ∈ N, then f(n) is the identity function.

First we prove the following lemma.

Lemma. Assume that the conditions of Theorem 1 are satisfied. Then
either (2) is satisfied for all n ∈ N or the conditions

(3)
f(n2 + 1) = n2 + 1, f(m2 + 2) = m2 + 2 and

f(n2 + m2 + 3) = n2 + m2 + 3
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simultaneously hold for all n,m ∈ N.

Proof. From (1), we have

f(n2 + 1) + f(m2 + 2) = f(m2 + 1) + f(n2 + 2)

for all n,m ∈ N, and so

(4) f(n2 + 2) − f(n2 + 1) = f(3) − f(2) := D for all n ∈ N.

Thus, the last relation together with (1) implies that

(5) f(n2 + m2 + 3) = f(n2 + 1) + f(m2 + 1) + D

holds for all n,m ∈ N. Let Sj := f(j2 + 1). It follows from (5) that if k, l, u

and v ∈ N satisfy the condition

k2 + l2 = u2 + v2,

then
f(k2 + 1) + f(l2 + 1) + D = f(u2 + 1) + f(v2 + 1) + D,

which shows that

(6) k2 + l2 = u2 + v2 implies Sk + Sl = Su + Sv.

We shall prove that

(7) Sn+12 = Sn+9 + Sn+8 + Sn+7 − Sn+5 − Sn+4 − Sn+3 + Sn

holds for all n ∈ N.
Since

(2j + 1)2 + (j − 2)2 = (2j − 1)2 + (j + 2)2

and
(2j + 1)2 + (j − 7)2 = (2j − 5)2 + (j + 5)2,

we get from (6) that

(8) S2j+1 + Sj−2 = S2j−1 + Sj+2

and
S2j+1 + Sj−7 = S2j−5 + Sj+5.
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These with (8) imply that

Sj+5 − Sj+2 + Sj−2 − Sj−7 = S2j−1 − S2j−5

= Sj+1 − Sj−3 + S2j−3 − S2j−5 = Sj+1 − Sj−3 + Sj − Sj−4,

which proves (7) with n = j − 7.

By (8), we have

S7 = S2·3+1 = 2S5 − S1,

S9 = S2·4+1 = S7 + S6 − S2 = S6 + 2S5 − S2 − S1

and

S11 = S2·5+1 = S9 + S7 − S3 = S6 + 4S5 − S3 − S2 − 2S1.

Finally, by using (6) and the facts

82 + 12 = 72 + 42, 102 + 52 = 112 + 22 and 122 + 12 = 92 + 82,

we have

S8 = S7 + S4 − S1 = 2S5 + S4 − 2S1,

S10 = S11 + S2 − S5 = S6 + 3S5 − S3 − 2S1

and

S12 = S9 + S8 − S1 = S6 + 4S5 + S4 − S2 − 4S1.

Thus, to complete the proof of the lemma , by using (1), (4), (5) and (7),
it is enough to prove that either S1 = S2 = S3 = S4 = S5 = S6 = 0 or

(9) Sj = j2 + 1 for j = 1, 2, 3, 4, 5, 6.

Repeated use of (1), using the multiplicativity of f , gives S1 = f(12 + 1) =
f(2),

(10) S2 = f(22 + 1) = f(5) = f(12 + 12 + 3) = f(2) + f(3),

(11) S3 = f(32 + 1) = f(10) = f(2)f(5) = f(2)2 + f(2)f(3).

and thus

f(11) = f(22 + 22 + 3) = f(5) + f(6) = f(2) + f(3) + f(2)f(3).
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On the other hand, it follows from (4) that

f(11) = f(32 + 2) = f(10) + D = f(2)f(5) + D

= f(2)2 + f(2)f(3) + f(3) − f(2),

which, together with the last relation, implies

(12) f(2)2 = 2f(2),

and

f(13) = f(12 + 32 + 3) = f(2) + f(11) = 2f(2) + f(2)f(3) + f(3).

Finally, the relation (10) together with the fact

f(8) = f(12 + 22 + 3) = f(2) + f(6) = f(5) + f(3)

show that

(13) f(2)f(3) = 2f(3).

Moreover

(14) S5 = f(52 + 1) = f(26) = f(2)f(13) = 4f(2) + 6f(3),

(15)
S6 = f(62 + 1) = f(37) = f(32 + 52 + 3)

= f(11) + f(26) = 5f(2) + 9f(3),

(16) 2f(17) = f(42 + 42 + 3) − D = f(35) − D = f(5)f(7) − D,

and

(17) f(3)f(7) = f(21) = f(32 + 32 + 3) = 2f(10) + D = 3f(2) + 5f(3).

The equation (12) shows that either f(2) = 0 or f(2) = 2. Assume
that f(2) = 0. Then (13) implies that f(3) = 0 and so, by using (10)–(17)
we have

S1 = S2 = S3 = S4 = S5 = S6 = 0,

from which follows that (2) is true.
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Assume now that f(2) = 2. In this case we have f(5) = 2 + f(3),
f(8) = 2 + 2f(3). We shall prove that f(3) = 3. It follows from (15) and
using the fact

f(37) = f(12 + 62 + 3) − f(3) = f(5)f(8) − f(3) = 2f(3)2 + 5f(3) + 4

that

(17) 2f(3)2 − 4f(3) − 6 = 0.

On the other hand, from (4) we infer that

f(6)f(11) − f(3)f(13) = f(66) − f(65) = f(3) − f(2),

consequently

3f(3)2 − 7f(3) − 6 = 0.

This together with (17) proves that f(3) = 3, and so (10)–(17) imply that

Sj = j2 + 1 (j = 1, 2, 3, 4, 5, 6).

This completes the proof of (9) and so the lemma is proved.

Proof of the theorem

In the proof of the theorem, using the lemma, we can assume that (3)
is satisfied, that is

(18)
f(n2 + 1) = n2 + 1, f(m2 + 2) = m2 + 2 and

f(n2 + m2 + 3) = n2 + m2 + 3.

It is clear from (18) that f(n) = n for all n ≤ 7.
Assume that f(n) = n for all n < T , where T > 7. We shall prove that

f(T ) = T . It is clear that T must be a prime power, that is T = qα with
α ∈ N and some prime q .

It is easily seen that if α = 1, then q > 7 and there are positive integers
n,m ≤ q−1

2 such that n2 + m2 + 3 = qN , (q,N) = 1 and N < q. Thus, we
have f(q) = q.

Assume now that α ≥ 2 and q > 3. We consider the congruence

n2 + m2 + 3 ≡ 0 (mod qα).

Let

Aq(3) :=

{

1 ≤ m ≤ q − 1 :

(

−m2 − 3

q

)

= 1

}

.
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Then we have

♯Aq(3) =

q−1
∑

m=1
(m2+3,q)=1

1

2

(

1 +

(

−m2 − 3

q

))

=

q−1
∑

m=0

1

2

(

1 +

(

−m2 − 3

q

))

−

q−1
∑

m=0
q|m2+3

1

2

(

1 +

(

−m2 − 3

q

))

−
1

2

(

1 +

(

−3

q

))

=
1

2

(

q −

(

−1

q

)

− 2 − 2

(

−3

q

))

.

By our assumption, the last relation implies that ♯Aq(3) ≥ 1. Thus, there
are integers m ∈ {1, . . . , q − 1}, 1 ≤ n1 ≤ qα − 1, (n1, q) = 1 and 1 ≤
n2 := qα − n1 ≤ qα − 1 such that

n2
i + m2 + 3 = qαNi (i = 1, 2).

It follows from the above relations that

qα(N2 − N1) = (qα − n1)
2 − n2

1 = q2α − 2qαn1,

that is
N2 − N1 = qα − 2n1.

Since (n1, q) = 1, we obtain that at least one of N1 or N2 is coprime to
q. Let n ∈ {n1, n2} and N ∈ {N1, N2} such that n2 + m2 + 3 = qαN ,
(N, q) = 1. Then α ≥ 2 implies that

N ≤
1

qα

[

(qα − 1)
2

+ (q − 1)2 + 3
]

< qα.

Thus,

Nf(qα) = f(N)f(qα) = f(Nqα) = f(n2 + m2 + 3) = n2 + m2 + 3 = Nqα,

which shows that f(qα) = qα as we wanted to establish.
To complete the proof of the theorem, it remains to consider the cases

q = 2 and q = 3. Let q = 2 and T = 2α, where α ≥ 3.
Since −7 ≡ 1 (mod 8), we have −7 is a quadratic residue modulo 2α

and therefore there exists nα ∈ [0, 2α−1−1] such that n2
α+7 = n2

α+22+3 ≡ 0
(mod 2α), and consequently, [nα + 2α−1]2 + 7 ≡ 0 (mod 2α). Define N1,
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and N2 by n2
α + 7 = 2αN1 and [nα + 2α−1]2 + 7 = 2αN2. We easily deduce

from these two equation and the fact 7 < T = 2α that

N1 < 2α, N2 < 2α and N2 − N1 = nα + 2α−2.

It follows from the last relation and the fact 2 does not divide nα that one
of N1 or N2 is odd, and so f(2α) = 2α.

Finally, let q = 3 and T = 3α, where α > 1. We consider the congruence

n2 + 2 ≡ 0 (mod 3α).

Similarly as above, one can deduce that there are positive integers n,N ∈ N

such that n2 + 2 = 3αN , (N, 3) = 1 and N < 3α. Thus these together with
(18) implies that f(3α) = 3α.

The theorem is proved.
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