

COFINITELY ESSENTIAL G-SUPPLEMENTED MODULES

CELIL NEBIYEV AND HASAN HÜSEYIN ÖKTEN

Received 17 January, 2021

Abstract. Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supplemented) module. In this work, some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of a cofinitely eg-supplemented module are cofinitely eg-supplemented. Let M be a cofinitely eg-supplemented module. Then every M-generated R-module is cofinitely eg-supplemented.

2010 Mathematics Subject Classification: 16D10; 16D70

Keywords: cofinite submodules, essential submodules, g-small submodules, g-supplemented modules

1. INTRODUCTION

Throughout this paper all rings are associative with identity and all modules are unital left modules.

Let R be a ring and M be an R-module. We denote a submodule N of M by $N \leq M$. A submodule U of an R-module M is called a *cofinite submodule* of M if M/U is finitely generated. Let M be an R-module and $N \le M$. If L = M for every submodule L of M such that M = N + L, then N is called a *small* (or *superfluous*) submodule of M and denoted by $N \ll M$. A submodule N of an R -module M is called an *essential* submodule, denoted by $N \leq M$, in case $K \cap N \neq 0$ for every submodule $K \neq 0$, or equivalently, $N \cap L = 0$ for $L \leq M$ implies that L = 0. Let M be an *R*-module and *K* be a submodule of *M*. *K* is called a *generalized small* (briefly, g-small) submodule of M if for every essential submodule T of M with the property M = K + T implies that T = M, we denote this by $K \ll_g M$ (in [15], it is called an *e-small submodule* of M and denoted by $K \ll_e M$). Let M be an R-module and $U, V \leq M$. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. M is said to be supplemented if every submodule of M has a supplement in M. *M* is said to be *cofinitely supplemented* if every cofinite submodule of *M* has a supplement in M. M is said to be essential supplemented (briefly, e-supplemented) if every essential submodule of M has a supplement in M. M is said to be *cofinitely*

© 2022 Miskolc University Press

essential supplemented (briefly, cofinitely e-supplemented) if every cofinite essential submodule of M has a supplement in M. Let M be an R-module and $U, V \le M$. If M = U + V and M = U + T with $T \le V$ implies that T = V, or equivalently, M = U + V and $U \cap V \ll_g V$, then V is called a *g*-supplement of U in M. M is said to be *g*-supplemented if every submodule of M has a *g*-supplement in M. M is said to be *essential g*-supplemented if every essential submodule of M has a *g*-supplement in M. M is said to be cofinitely *g*-supplemented if every cofinite submodule of M has a *g*-supplement in M. The intersection of all maximal submodules of an R-module Mis called the *radical* of M and denoted by *RadM*. If M have no maximal submodules, then we denote *RadM* = M. The intersection of all essential maximal submodules of an R-module M is called the *generalized radical* (briefly, *g*-radical) of M and denoted by $Rad_g M$ (in [15], it is denoted by $Rad_e M$). If M have no essential maximal submodules, then we denote $Rad_g M = M$. Let M be an R-module and $K \le V \le M$. We say V lies above K in M if $V/K \ll M/K$.

More details about supplemented modules are in [3, 14]. More informations about cofinitely supplemented modules are in [1]. More details about essential supplemented modules are in [11, 12]. More details about cofinitely essential supplemented modules are in [7, 8]. More informations about g-small submodules and g-supplemented modules are in [5, 6]. The definition of cofinitely g-supplemented modules and more informations about these modules are in [4]. The definition of essential g-supplemented modules and some properties of them are in [9].

Lemma 1. Let *M* be an *R*-module and $K, N \leq M$. Consider the following conditions.

- (1) If $K \leq N$ and N is a generalized small submodule of M, then K is a generalized small submodule of M.
- (2) If K is contained in N and a generalized small submodule of N, then K is a generalized small submodule in submodules of M which contain N.
- (3) If $K \ll_g L$ and $N \ll_g T$ with $L, T \leq M$, then $K + N \ll_g L + T$.
- (4) $\operatorname{Rad}_{g}M = \sum_{L \ll_{g}M} L.$
- (5) Let T be an R-module and $f: M \to T$ be an R-module homomorphism. If $K \ll_g M$, then $f(K) \ll_g T$. Here $f(Rad_g M) \leq Rad_g T$.

Proof. See [6, Lemma 1 and Lemma 3].

2. COFINITELY ESSENTIAL G-SUPPLEMENTED MODULES

Definition 1. Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supplemented) module. (See also [10]).

Clearly we can see that every essential g-supplemented module is cofinitely egsupplemented. But the converse is not true in general (see Example 1 and Example 2). Every cofinitely essential supplemented module is cofinitely eg-supplemented.

Proposition 1. Let M be a cofinitely eg-supplemented R-module. If every nonzero submodule of M is essential in M, then M is cofinitely supplemented.

Proof. Clear from definitions.

Lemma 2. Let M be a finitely generated R-module. Then M is essential gsupplemented if and only if M is cofinitely eg-supplemented.

Proof. Clear, since every submodule of *M* is cofinite.

Lemma 3. Let M be a cofinitely eg-supplemented module. Then M/Rad_gM have no proper cofinite essential submodules.

Proof. Let U/Rad_gM be a cofinite essential submodule M/Rad_gM . Then $U \leq M$ and since $\frac{M}{U} \cong \frac{M/Rad_gM}{U/Rad_gM}$, U is a cofinite essential submodule of M. Since M is cofinitely eg-supplemented, U has a g-supplement V in M. Here M = U + V and $U \cap V \ll_g V$. Since $U \cap V \ll_g V$, by Lemma 1, $U \cap V \leq Rad_gM$. Then $M/Rad_gM =$ $(U+V)/Rad_gM = U/Rad_gM + (V + Rad_gM)/Rad_gM$ and $U/Rad_gM \cap (V + Rad_gM)/Rad_gM = 0$. Hence $M/Rad_gM =$ $U/Rad_gM \oplus (V + Rad_gM)/Rad_gM$ and since $U/Rad_gM \leq M/Rad_gM$, $U/Rad_gM =$ M/Rad_gM . Thus M/Rad_gM have no proper cofinite essential submodules. \Box

Lemma 4. Let M be an R-module, U be a cofinite essential submodule of M and $N \le M$. If U + N has a g-supplement in M and N is cofinitely eg-supplemented, then U has a g-supplement in M.

Proof. Let X be a g-supplement of U + N in M. Then M = U + N + X and $(U+N) \cap X \ll_g X$. Since $U \leq M$, $U+X \leq M$ and $N \cap (U+X) \leq N$. Since U is a cofinite submodule of M, U+X is a cofinite submodule of M. Hence by $\frac{M}{U+X} = \frac{U+N+X}{U+X} \cong \frac{N}{N \cap (U+X)}$, $N \cap (U+X)$ is a cofinite essential submodule of M. Since N is cofinitely eg-supplemented, $N \cap (U+X)$ has a g-supplement Y in N. Since Y is a g-supplement of $N \cap (U+X)$ in N, $N = N \cap (U+X) + Y$ and $(U+X) \cap Y = N \cap (U+X) \cap Y \ll_g Y$. Then $M = U+N+X = U+N \cap (U+X)+Y+X = U+X+Y$ and, by Lemma 1, $U \cap (X+Y) \leq (U+Y) \cap X + (U+X) \cap Y \leq (U+N) \cap X + (U+X) \cap Y \ll_g X + Y$. Hence X + Y is a g-supplement of U in M. □

Corollary 1. Let M be an R-module, U be a cofinite essential submodule of M and $N_1, N_2, ..., N_k \leq M$. If $U + N_1 + N_2 + ... + N_k$ has a g-supplement in M and N_i is cofinitely eg-supplemented for i = 1, 2, ..., k, then U has a g-supplement in M.

Proof. Clear from Lemma 4.

Lemma 5. Let $M = \sum_{\lambda \in \Lambda} M_{\lambda}$. If M_{λ} is cofinitely eg-supplemented for every $\lambda \in \Lambda$, then M is also cofinitely eg-supplemented.

Proof. Let *U* be a cofinite essential submodule of *M*. Since *U* is a cofinite submodule of *M*, it is easy to see that there exist $\lambda_1, \lambda_2, ..., \lambda_n \in \Lambda$ such that $M = U + M_{\lambda_1} + M_{\lambda_2} + ... + M_{\lambda_n}$. Then $U + M_{\lambda_1} + M_{\lambda_2} + ... + M_{\lambda_n}$ has a trivial g-supplement 0 in *M* and since M_{λ_i} is cofinitely eg-supplemented for every i = 1, 2, ..., n, by Corollary 1, *U* has a g-supplement in *M*. Hence *M* is cofinitely eg-supplemented.

Lemma 6. Let $f : M \longrightarrow N$ be an R-module epimorphism, $U, V \le M$ and $Kef \le U$. If V is a g-supplement of U in M, then f(V) is a g-supplement of f(U) in N.

Proof. Since V is a g-supplement of U in M, M = U + V and $U \cap V \ll_g V$. Then N = f(M) = f(U+V) = f(U) + f(V). Let $x \in f(U) \cap f(V)$. Then there exist $u \in U$ and $v \in V$ with x = f(u) = f(v). Here f(v-u) = f(v) - f(u) = 0 and $v - u \in Kef \leq U$. Then $v = v - u + u \in U$ and since $v \in V$, $v \in U \cap V$. Hence $x = f(v) \in f(U \cap V)$ and $f(U) \cap f(V) \leq f(U \cap V)$. Here clearly we can see that $f(U \cap V) \leq f(U) \cap f(V)$ and $f(U) \cap f(V) = f(U \cap V)$. Since $U \cap V \ll_g V$, by Lemma 1, $f(U) \cap f(V) = f(U \cap V) \ll_g f(V)$. Hence f(V) is a g-supplement of f(U) in N, as desired.

Lemma 7. Every homomorphic image of a cofinitely eg-supplemented module is cofinitely eg-supplemented.

Proof. Let *M* be an cofinitely eg-supplemented *R*−module and $f: M \longrightarrow N$ be an *R*−module epimorphism. Let *U* be a cofinite essential submodule of *N*. Since $U \leq N$, by [14, 17.3 (3)], $f^{-1}(U) \leq M$. Let $p: N \longrightarrow N/U$ be a canonical epimorphism. Since (pf)(x) = p(f(x)) = f(x) + U = U for every $x \in f^{-1}(U)$, $x \in Ke(pf)$ and $f^{-1}(U) \leq Ke(pf)$. Let $y \in Ke(pf)$. Then U = (pf)(y) = p(f(y)) = f(y) + U and $f(y) \in U$. Hence $y \in f^{-1}(U)$ and $Ke(pf) \leq f^{-1}(U)$. Since $f^{-1}(U) \leq Ke(pf)$, $Ke(pf) = f^{-1}(U)$. Hence $M/f^{-1}(U) \cong N/U$ and $f^{-1}(U)$ is a cofinite submodule of *M*. Moreover, $f^{-1}(U) \leq M$. Since *M* is cofinitely eg-supplemented, $f^{-1}(U)$ has a g-supplement *V* in *M*. Since *Kef* $\leq f^{-1}(U)$, by Lemma 6, f(V) is a g-supplement of $f(f^{-1}(U)) = U$ in *N*. Hence *N* is cofinitely eg-supplemented, as desired. □

Corollary 2. Every factor module of a cofinitely eg-supplemented module is cofinitely eg-supplemented.

Proof. Clear from Lemma 7.

Lemma 8. Let M be a cofinitely eg-supplemented R-module. Then every M-generated R-module is cofinitely eg-supplemented.

Proof. Let N be a M-generated R-module. Then there exist an index set Λ and an R-module epimorphism $f: M^{(\Lambda)} \longrightarrow N$. Since M is cofinitely eg-supplemented,

by Lemma 5, $M^{(\Lambda)}$ is cofinitely eg-supplemented. Then by Lemma 7, N is cofinitely eg-supplemented, as desired.

Proposition 2. Let R be a ring. Then the R-module $_RR$ is essential g-supplemented if and only if every R-module is cofinitely eg-supplemented.

Proof. (\Longrightarrow) Clear from Lemma 8.

(\Leftarrow) Clear from Lemma 2, since _RR is finitely generated.

Definition 2. Let *M* be an *R*-module and $X \le M$. If *X* is a g-supplement of a cofinite essential submodule of *M*, then *X* is called a ceg-supplement submodule in *M*.

Let *M* be an *R*-module. It is defined the relation ' $\beta^{*'}$ on the set of submodules of an *R*-module *M* by $X\beta^*Y$ if and only if Y + K = M for every $K \le M$ such that X + K = M and X + T = M for every $T \le M$ such that Y + T = M (See [2]). It is defined the relation ' β_g^* ' on the set of submodules of an *R*-module *M* by $X\beta_g^*Y$ if and only if Y + K = M for every $K \le M$ such that X + K = M and X + T = M for every $T \le M$ such that Y + T = M (See [13]).

Lemma 9. Let M be an R-module. If every cofinite essential submodule of M is β_g^* equivalent to a ceg-supplement submodule in M, then M is cofinitely egsupplemented.

Proof. Let *X* be a cofinite essential submodule of *M*. By hypothesis, there exists a ceg-supplement submodule *V* in *M* with $X\beta_g^* V$. Let *V* be a g-supplement of a cofinite essential submodule *U* in *M*. Then M = U + V and $U \cap V \ll_g V$. Since *U* is a cofinite essential submodule of *M*, by hypothesis, there exists a ceg-supplement submodule *Y* in *M* with $U\beta_g^*Y$. Let *S* be a cofinite essential submodule of *M* and *Y* be a g-supplement of *S* in *M*. Then M = S + Y and $S \cap Y \ll_g Y$. Since $X\beta_g^* V$ and M = U + V, M = X + U and since $U\beta_g^*Y$ and $X \leq M, M = X + Y$. Assume X + T = Mwith $T \leq Y$. Then $Y = Y \cap M = Y \cap (X + T) = X \cap Y + T$. By using [3, Lemma 1.24], we can see that $M = S + Y = X \cap Y + S + T = Y + X \cap (S + T) = U + X \cap (S + T) =$ $X + U \cap (S + T) = V + U \cap (S + T) = U \cap V + S + T$. Since $U \cap V \ll_g M$ and $S + T \leq$ M, M = S + T and since *Y* is a g-supplement of *S* in *M* and $T \leq Y, T = Y$. Hence *Y* is a g-supplement of *X* in *M*. Thus *M* is cofinitely eg-supplemented.

Corollary 3. Let M be an R-module. If every cofinite essential submodule of M is β^* equivalent to an ceg-supplement submodule in M, then M is cofinitely egsupplemented.

Proof. Clear from Lemma 9.

Corollary 4. Let M be an R-module. If every cofinite essential submodule of M lies above an ceg-supplement submodule in M, then M is cofinitely eg-supplemented.

Proof. Clear from Corollary 3.

Corollary 5. Let M be an R-module. If every cofinite essential submodule of M is a ceg-supplement submodule in M, then M is cofinitely eg-supplemented.

Proof. Clear from Corollary 4.

Lemma 10. Let M be an R-module. If every cofinite submodule of M is β^* equivalent to a ceg-supplement submodule in M, then M is cofinitely g-supplemented.

Proof. Let *X* be a cofinite submodule of *M*. By hypothesis, there exists a cegsupplement submodule *V* in *M* with $X\beta^* V$. Let *V* be a g-supplement of a cofinite essential submodule *U* in *M*. Then M = U + V and $U \cap V \ll_g V$. Since *U* is a cofinite submodule of *M*, by hypothesis, there exists a ceg-supplement submodule *Y* in *M* with $U\beta^*Y$. Let *S* be a cofinite essential submodule of *M* and *Y* be a gsupplement of *S* in *M*. Then M = S + Y and $S \cap Y \ll_g Y$. Since $X\beta^* V$ and M = U + V, M = X + U and since $U\beta^*Y$, M = X + Y. Assume X + T = M with $T \trianglelefteq Y$. Then $Y = Y \cap M = Y \cap (X + T) = X \cap Y + T$. By using [3, Lemma 1.24], we can see that $M = S + Y = X \cap Y + S + T = Y + X \cap (S + T) = U + X \cap (S + T) = X + U \cap (S + T) =$ $V + U \cap (S + T) = U \cap V + S + T$. Since $U \cap V \ll_g M$ and $S + T \trianglelefteq M$, M = S + T and since *Y* is a g-supplement of *S* in *M* and $T \trianglelefteq Y$, T = Y. Hence *Y* is a g-supplement of *X* in *M*. Thus *M* is cofinitely g-supplemented.

Corollary 6. Let M be an R-module. If every cofinite submodule of M lies above a ceg-supplement submodule in M, then M is cofinitely g-supplemented.

Proof. Clear from Lemma 10.

Corollary 7. Let M be an R-module. If every cofinite submodule of M is a cegsupplement submodule in M, then M is cofinitely g-supplemented.

Proof. Clear from Lemma 10.

Example 1. Consider the \mathbb{Z} -module \mathbb{Q} . Since $_{\mathbb{Z}}\mathbb{Q}$ have no proper cofinite essential submodules, $_{\mathbb{Z}}\mathbb{Q}$ is cofinitely eg-supplemented. But, since $_{\mathbb{Z}}\mathbb{Q}$ is not supplemented and every nonzero submodule of $_{\mathbb{Z}}\mathbb{Q}$ is essential in $_{\mathbb{Z}}\mathbb{Q}$, $_{\mathbb{Z}}\mathbb{Q}$ is not essential g-supplemented.

Example 2. Consider the \mathbb{Z} -module $\mathbb{Q} \oplus \mathbb{Z}_{p^2}$ for a prime *p*. It is easy to check that $Rad_g\mathbb{Z}_{p^2} \neq \mathbb{Z}_{p^2}$. By [6, Lemma 4], $Rad_g(\mathbb{Q} \oplus \mathbb{Z}_{p^2}) = Rad_g\mathbb{Q} \oplus Rad_g\mathbb{Z}_{p^2} \neq \mathbb{Q} \oplus \mathbb{Z}_{p^2}$. Since \mathbb{Q} and \mathbb{Z}_{p^2} are cofinitely eg-supplemented, by Lemma 5, $\mathbb{Q} \oplus \mathbb{Z}_{p^2}$ is cofinitely eg-supplemented. But $\mathbb{Q} \oplus \mathbb{Z}_{p^2}$ is not essential g-supplemented.

REFERENCES

- R. Alizade, G. Bilhan, and P. F. Smith, "Modules whose maximal submodules have supplements," *Comm. Algebra*, vol. 29, no. 6, pp. 2389–2405, 2001, doi: 10.1081/AGB-100002396.
- [2] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, "Goldie*supplemented modules," *Glasgow Mathematical Journal*, vol. 52A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212.

386

- [3] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting Modules: Supplements and Projectivity in Module Theory (Frontiers in Mathematics)*, 2006th ed. Basel: Birkhäuser, 8 2006.
- [4] B. Koşar, "Cofinitely g-supplemented modules," British Journal of Mathematics & Computer Science, vol. 17, no. 4, pp. 1–6, 2016, doi: 10.9734/BJMCS/2016/26697.
- [5] B. Koşar, C. Nebiyev, and N. Sökmez, "G-supplemented modules," Ukrainian Mathematical Journal, vol. 67, no. 6, pp. 861–864, 2015, doi: 10.1007/s11253-015-1127-8.
- [6] B. Koşar, C. Nebiyev, and A. Pekin, "A generalization of g-supplemented modules," *Miskolc Math. Notes*, vol. 20, no. 1, pp. 345–352, 2019, doi: 10.18514/MMN.2019.2586.
- [7] B. Koşar and C. Nebiyev, "Cofinitely essential supplemented modules," *Turkish Studies Informa*tion Technologies and Applied Sciences, vol. 13, no. 29, pp. 83–88, 2018.
- [8] B. Koşar and C. Nebiyev, "Amply cofinitely essential supplemented modules," Archives of Current Research International, vol. 19, no. 1, pp. 1–4, 2019, doi: 10.9734/acri/2019/v19i130146.
- [9] C. Nebiyev and H. H. Ökten, "Essential g-supplemented modules," *Turkish Studies Information Technologies and Applied Sciences*, vol. 14, no. 1, pp. 83–89, 2019.
- [10] C. Nebiyev and H. H. Ökten, "Cofinitely eg-supplemented modules," in 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020), 2020.
- [11] C. Nebiyev, H. H. Ökten, and A. Pekin, "Amply essential supplemented modules," *Journal of Scientific Research and Reports*, vol. 24, no. 4, pp. 1–4, 2018, doi: 10.9734/JSRR/2018/45651.
- [12] C. Nebiyev, H. H. Ökten, and A. Pekin, "Essential supplemented modules," *International Journal of Pure and Applied Mathematics*, vol. 120, no. 2, pp. 253–257, 2018.
- [13] C. Nebiyev and N. Sökmez, "Beta g-star relation on modules," *Eur. J. Pure Appl. Math.*, vol. 11, no. 1, pp. 238–243, 2018, doi: 10.29020/nybg.ejpam.v11i1.2741.
- [14] R. Wisbauer, *Foundations of module and ring theory*, german ed., ser. Algebra, Logic and Applications. Gordon and Breach Science Publishers, Philadelphia, PA, 1991, vol. 3, a handbook for study and research.
- [15] D. X. Zhou and X. R. Zhang, "Small-Essential Submodules and Morita Duality," *Southeast Asian Bulletin of Mathematics*, vol. 35, pp. 1051–1062, 2011.

Authors' addresses

Hasan Hüseyin Ökten

Celil Nebiyev

Ondokuz Mayıs University, Department of Mathematics, Atakum, Samsun, Turkey *E-mail address:* cnebiyev@omu.edu.tr

(Corresponding author) Amasya University, Technical Sciences Vocational School, Amasya, Tur-

key

E-mail address: hokten@gmail.com