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ABSTRACT

This paper presents numerical solvers, based on the finite volume method. This scheme solves dam
break problems on the dry bottom in 2D configuration. The difficulty of the simulation of this type of
problem lies in the propagation of shocks on the dry bottom. The equation model used is the shallow
water equations written in conservative form. The scheme used is second order in space and time. The
method is modified to treat dry bottoms. The validity of the method is demonstrated over the dam
break example. A comparison with finite elements shows the weakness and robustness of each method.
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1. INTRODUCTION

Among natural disasters, floods are the most destructive in terms of magnitude and human
impact. Floods often cause considerable damage to properties, demanding huge financial
sums for repair works, the temporary closure of businesses and the uprooting of families
from homes. For example Morocco recorded no less than 35 episodes of floods between 1951
and 2015. there are 391 sites are subject to flood risks in Morocco [1, 2]. For these reasons,
the development of digital resolution models is very necessary, in order to predict floods and
provide for hydraulic structures to reduce material and human damage.

The class of the shallow-water equations, modeling by the equations of Saint-Venant, it is
a very studied subject in hydraulic construction and in applied mathematics. Indeed, the dam
break problem was simulated and compared on dry bed with a second order centered scheme
written in finite element method [3–5] and the determination of the water depth and the
velocities field contributes to the design of the hydraulic structures like bridges, water
transport, dams and the planning of resources in water is also of a fundamental importance,
notably the prediction of the ruptures of the dams [6, 7]. Several numeric method classes are
used in the literature to solve the equations of Saint-Venant, each having its merits and its
weak points. This work uses modified Roe scheme for dry beds treatment in finite volume
version. The finite volume method also solves numerically the shallow water equations. Many
schemes and algorithm has received considerable attention in the past two decades, like for
instance [8–11]. This work presents a finite volume scheme of Roe based on the Riemann
solver [12]. To increase accuracy, the paper uses second order accuracy by using Monotonic
Upstream-centered Scheme for Conservation Laws (MUSCL) technique incorporating lim-
iters. Since the original version of this solver cannot handle problems with dry beds, and it
does not guarantee the entropicity of the scheme, the work presents the modifications, which
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has made to correct the scheme without the use of a threshold
parameter. The Total Variation Diminishing (TVD) Runge-
Kutta scheme was used by [13] to solve the wet bed sluice gate
dam-break and circular dam-break problems.

2. MATHEMATICAL MODEL

The free surface flow in a domain Ω of border G is governed
by Saint-Venant equations, and they are presented in 2D
case under de following form:

vU
vt

þ vF
vx

þ vG
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¼ S (1)
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u and v are the velocity components in the x and y directions
and h is the water height. Sfx and Sfy are the bed friction
terms in the x and y directions.

3. FINITE VOLUME ROE SCHEME

3.1. Discretization

This part presents only mean stages of the scheme. The
integration of Eq. (1) is (without source term) evaluated over
a finite volume Ti, the application of Green formula leads to:

A tið Þ vU
vt

þ
X
j∈EðiÞ

Z
Gij

Fnx þ Gny
� �

dG ¼ 0 (3)

where A (ti) is the area of triangular cell Ti; Gij denotes the
interface between cells Ti and Tj; E(i) is the set of triangles that
have a common edge with triangle Ti, nijðnx; nyÞ is the outward
unit normal to the boundary of cell Ti to Tj. The «cell-centered»
finite volumes formulation was considered, which supposes that
the control volumes coincide with the mesh triangles and that
the unknown are the average states on each of these control
volumes. The problem is to evaluate the convection flux
F U; nð Þ ¼ Fnx þ Gny over the three borders of the cell Ti.
The approximate Riemann solver developed by [12] is based on
characteristic decomposition of the flux differences while
insuring the conservation properties of the scheme:

F Ui; Uj; nij
� � ¼ 1

2
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� ���
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2
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� � (4)

where ~A [14] is a constant matrix at every time level and for
each pair of states Ui and Uj. ~A must verify the following
conditions:

‒ Conservation of the scheme;
‒ The consistency with the original problem;
‒ Property of hyperbolicity.

With the parameter vector, the formula becomes:
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With the next decomposition of the Jacobian matrix:

jA j ¼ A þ � A − (7)

Then ~A is defined as:

~A Ui;Uj;nij
� � ¼ A ~U

�
Ui; Uj

�
; nijÞ

�
(8)

where A contains all A þ positive and A − negative eigen-
values, the Rankine-Hugoniot condition allows a simplifi-
cation of the numerical flux form in Eq. (9), which can be
written in the following ways:

F Ui; Uj; nij
� � ¼ F Uj; nij

� �� A þ ~U; nijÞ Uj � Ui
� ��

(9)

and

F Ui; Uj; nij
� � ¼ F Uj; nij

� �� A � ~U; nijÞ Uj � Ui
� ��

(10)

The great advantage of these formulations, especially in
the context of the study of transport of multiple con-
taminants in shallow water flows, is the low computa-
tional effort. There as on for this fact is that at most one
eigenvalue of the system has a different sign from all
others. Then one of the two terms A þ or A − contains at
most one eigenvalue, thus becoming very simple to eval-
uate [14].

3.2. Roe scheme second order

The Roe scheme is upwind first order accuracy scheme, to
increase the order of accuracy the MUSCL technique has
been chosen, slope limiters are used to preserve the TVD
properties of scheme. U is approximated by the construction
of linear air interpolation at the interface Gij. This technique
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does not assure the monotonicity of the scheme, to over-
come this difficulty, limitation technique must be used, so it
must to call for MinMod limiter [11]:

Ul
ij ¼ Ui þ 1

2
∇Ui:GiGj ;

Ur
ij ¼ Uj þ 1

2
∇Uj:GiGj;

(11)

where Gi(xi,yi) and Gj(xj,yj) are respectively the barycenter of

cells Ti and Tj.

�
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vx ;
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�
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points of the following quadratic function [11]:
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These values are used in the relation to value Ul
ij and Ur

ij,
the numeric flux is calculated then by the Roe’s scheme

while using ~A Ul
ij; U

r
ij

� 	
.

3.3. Modification of the Roe scheme to handle dry
regions

The Roe average is not defined when the left and right water
levels of the element are equal to zero. Some modifications
have then to be made in order to define the numerical flux.
Here the following flux modifications are used:

– If the left and right water levels of the element are equal to
zero, then:

F
�
Ui; Uj

� ¼ 0; (14)

– If the left water level of the element is equal to zero, and
the right water level of the element is not equal to zero,
then:

F Ui; Uj; nij
� � ¼ 1

2

�
F

�
Uj; nij

��� 1
2

��� ~A Uj; nij
� �	��� Uj

� �
(15)

A formula similar to Eq. (15) is taken, when hi ≠ 0 and hj
5 0. These alterations allow calculations to go ahead to final

iterations. However, an unphysical stationary jump can ap-
pears at the dam location, as the Roe scheme, even modified
to handle dry regions, does not ensure the entropy condi-
tion, see Figs 1 and 2. The solution to this problem can be
achieved by increasing the numerical dissipation where the
numerical viscosity is low (see for instance [15]). Another
approach is [16], which is considered here consists in
introducing a rarefaction wave wherever the Roe scheme
constructs invalid shocks. A correction is required, if the left
and right sonic eigenvalues of same type have different signs,
while representing a rarefaction:

λi<0<λj: (16)

This situation may correspond to a nonphysical shock.
To overcome the problem, the eigenvalues are modified.
Depending on the simplification chosen, one of the
following modifications on the average eigenvalue are
required:

λ* ¼ λj

~λ� λi

λj � λi
; (17)

where ~λ is the average eigenvalue are evaluated by consid-
ering the state variables mean of h, u and v. This equation is
used if Eq. (10) is manipulated,

Fig. 1. 1D cross-section on u along the x-axis at time t 5 0.15 sec

Fig. 2. 1D cross-section on h along the x-axis at time t 5 0.15 sec
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λ
+ ¼ λi

λi � ~λ

λj � λi
: (18)

3.4. Time integration

Since the model is applied to transient flows and flood waves
and in order to obtain formally second order accuracy, the
time integration is performed by means of a second order
accurate and hardly dissipative explicit Runge-Kutta
method. As with all explicit time stepping methods the
theoretical maximum stable time step is specified according
to the Courant-Friedrichs-Lewy (CFL) condition,

Δt ¼ CrMinGij

"
jTij þ

��Tj

��
2
��Gij

��Max
���λpij���

#
: (19)

4. NUMERICAL RESULTS

4.1. Partial dam break

The test case presents tow-dimensional dam break. The
objective here is to verify the capacity of the model to
reproduce the two-dimensional propagation of floods in the
presence of a discontinuous front of the water height and the
velocity on a dry flat bottom. The torrential flow due to
partial and asymmetric dam break are considered [14].

This problem, which was proposed by [13] is widely used
by many researchers to validate their dam break models. The
particular interest is that its solution is characterized by:

– A shock wave which propagates downstream by abruptly
increasing the water height and is modified by a reflection
wave (when it collides with the wall);

– A rarefaction (depression) wave, which moves upstream
by decreasing the water height, often described as a
rarefaction shock.

The study area is a 200m wide basin, 200m long and has
flat bottom, without friction. The water is retained in the left
part of the basin. It is assumed that at t5 0 sec, suddenly the
reservoir of the dam is in partial rupture and is non-sym-
metrical along a length of 75m. The thickness of the dam is
10m on the flow direction. Figure 3 gives a geometric
description of this problem. The domain studied was dis-
cretized in 1,656 nodes and 3,100 triangles (Fig. 3) whose
sizes are regularly fixed at 5m. It should be noted that there
is no analytical solution to this two-dimensional problem. A
ratio of h2=h1 ¼ 0 is initially fixed with h1 5 10m the water
height in the reservoir and h2 ≈ 0 exactly, the water height
downstream of the dam is fixed at h2 ≈ 10−8 m for the finite
element method and at h2 ≈ 10−5 m (means that the bottom
is almost dry, h is close to zero) for the finite volume
method. The water in the basin is assumed to be at rest in
the initial state.

To t 5 0, the dam breaks and a wave of rise appears in
the water level that propagates in the domain. The solution

is calculated by the two schemes. Figures 4, 5 and 6 show the
propagation of the flood wave along the opening of the dam
at times of 1–5 s, a remarkable similarity is noted between

Fig. 3. Geometry and form of the study domain (triangular mesh of
the domain)

Fig. 4. Depth contour, a) Taylor–Galerkin scheme; b) scheme of
modified Roe at t 5 3s
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the two schemes. In order to better show the quality of the two
schemes to reproduce the solution of the rupture of the dam, a
cut is made along the dam at y 5 135m see Fig. 7. There is a
good agreement between the two methods, with a slight
diffusion given by the finite element scheme. Despite the
similarity of the results of the two schemes, it is noted that the
Taylor–Galerkin (TG) finite element scheme generates slight
oscillation at the corners of the dam opening, even adding
some numerical diffusion. This can be justified by the use of
second-order centered schema. It is also estimated that the
finite volume scheme is more accurate, less diffusive but more
consuming in CPU time. However in finite element with this
scheme it is possible to reach dry bed with h 5 10�8m, but in
modified Roe finite volume method, the dry bed cannot exceed
h5 10�5m. This is justified by the use the diffusion term, with
a parameter which is generally difficult to adjust.

5. CONCLUSION

The study of this paper processes the shallow-water problem
governed by Saint-Venant equations in conservatives

variables, known for their hyperbolic characters. The
numeric resolution is done by the method of the finite
volumes coupled to the scheme of modified Roe. The dam

Fig. 5. Depth contour, a) Taylor–Galerkin scheme; b) Scheme of
modified Roe at t 5 4s

Fig. 6. Depth contour, a) Taylor–Galerkin scheme; b) Scheme of
modified Roe at t 5 5s

Fig. 7. Linear depth cut at y5 135m, during t51 s
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break problem was simulated and compared on dry bed with
a second order centered scheme written in finite element
method. Similar results and good agreement are found be-
tween the two approaches for the dry bottom test, as
conclusion, in two-dimensional problem, the two methods
give comparable results, however, the Taylor Galerkin in
finite element scheme is more diffusive and the oscillations
persist in the rupture of the dam. This is due to the prop-
agation of oscillations in infinity of direction of flow.
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