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ABSTRACT

One form of energy storage in spring is applying a bending moment and converting it into tilt at the
head of the spring as strain energy. The relationship between them is the lateral stiffness of the spring.
The aim is to find a mathematical equation for the lateral stiffness of the spring and the effect of the
length of the spring on the behavior of stiffness.

The mathematical model is created according to Castigliano’s second theorem. A simulated model
of a conical spring is built using a Solid Work program. The theoretical results are compared with the
mathematical model for the same conical spring.

Results of both theoretical and simulated models evinced a linear behavior of lateral, while an
exponential relationship between the length of the spring and the lateral stiffness is indicated. The
difference between theoretical and simulated models is not exceeded 3.2%, which indicates the
acceptability of results.
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1. INTRODUCTION

The spring is a mechanical part commonly used in mechanical devices and systems. An
apparatus is almost not devoid of quality, whose main function is energy charging and
discharging and in many forms depending on the type of strain: compression, tension,
bending, toasting, etc. The relationship of stored energy to strain is very important for any
design, in this the study will develop an equation describing the stored energy as a result of
the lateral bending of a conical spring.

The behavior of conical springs, when exposed to axial load, was studied by creating an
analytical model for this case, where the researchers assumed the existence of two behaviors
when exposed to this type of load, which are linear or non-linear. Emphasis was placed on
creating a mathematical model describing the two cases using an estimated algorithm to give
a mathematical relationship between the load in terms of the length of the spring and the
opposite, the method of integrating the initial deviations along the entire length of the spring
was relied upon. The suitability of using this equation was confirmed by resorting to practical
tests on these springs, as said in this study [1]. The study research develops a computer
program that deals with conical springs for analysis its properties and design, and to use as a
tool for arriving at the best design for conical springs, is designed to compare this tool with
mathematical equations and a practical test by taking a conical spring and performing a
pressure test on it to obtain a relationship that relates the length to the applied load and
comparing the results obtained from this test with mathematical equations, as well as the tool
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used [2]. There is study on helical and conical springs, where
the researcher assumes that they behave like beams, and they
used two methods analyzed for measuring mechanical
properties of the springs, by a two-dimensional model and
finite element [3]. In this research, a mathematical model
was evaluated that describes the effect of the vertical loads of
springs of rectangular, triangular, and circular shapes and
conical-shaped springs and compared them with simula-
tions performed on them with the ANSIS program, as well
as the effect of buckling on those springs and the shape of
the changes occurring on the mathematical models assigned
to them [4]. Here, a detailed study of the helical spring was
conducted, the mathematical relationships that describe the
behavior of the spring were found when bending moment,
torsion, and lateral and vertical forces were applied to it; the
accuracy of these relationships was proven by practical tests
as well as simulation programs, and the results were char-
acterized by a high degree of accuracy [5]. A simple and
uncomplicated mechanical relationship was used to describe
the lateral stiffness resulting from lateral forces applied to
one end of a spiral spring that is deposited in the tip of a
rubber layer, depending on the method of superposition.
The validity and effectiveness of this relationship have been
confirmed by comparing the results obtained with the
practical results, where this relationship can be used in the
design of the springs in the suspension system of trains [6].

2. THE THEORETICAL PART

To find a mathematical equation describing the relationship
between the moment applied to a conical spring and the
angle resulting from this moment, using this equation, the
lateral stiffness of the conical spring can be calculated.
Therefore, the energy technique (strain energy theory) is
used, specifically Castiglione’s second theorem [7–9], which
depends on describing the strain energy in terms of forces
and moment acting to reach the desired equation. The
theory is based on the derivation of the strain energy about
the force or moment, that is, if to extract the amount of
deformation in the place where that force is applied, the
partially derive on strain energy equation for that force is
done, or partially derive the energy equation for the moment
to extract the angle at the location at which that moment
was applied according to Eqs (1) and (2),

di ¼ vU
vPi

; (1)

fi ¼ vU
vMi

; (2)

where U is the strain energy; Pi is the force applied some-
where; di is the distortion occurring in the location where that
force is applied; Mi is the moment applied somewhere; fi is
the angle of tendency at where that moment was applied.

To describe the spring mathematically, there is needed
an equation describing the shape of spring, for that go to the
description of the wire path line mathematically to be able to

include it in the equation to describe the strain energy. Since
the spring consists of a wire traveling in a circular path, the
radius of this circuit has been decreased as the number of
coils is increased, as it can be seen in Fig. 1, Eq. (3) [10] will
describe the line of the spring wire, and Eq. (4) describes the
length of the spring wire.

R ¼ R2 � R2 � R1

2pN
q; (3)

L ¼ R q; (4)

where R is the radius of the circular path; R1 is the small
radius; R2 is the large radius; N is the number of spring coils;
L is the length of wire; q is the angle of tendency at where
that moment was applied.

In Fig. 2, the mechanical effect on the cross-section of the
spring wire is explained when applying a moment on the
head of spring, where the equation of the strain energy will
be, as it is given in Eq. (5), which consisted of the energy
resulting from the effect of torque and energy resulting from
the moment effect shown in Eqs (6) and (7), respectively.

U ¼ UT þ UM; (5)

UT ¼ 2
GJ

Z L

0
T2dL; (6)

Fig. 1. The effect of the shape of the conical spring on the spring
radius
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UT ¼ 2
EI

Z L

0
M2dL; (7)

where UT is the torsion strain energy; UM is the moment
strain energy; E is Young’s modulus of elasticity; G is the
modulus of rigidity; I is the moment of inertia of wire cross-
sectional area; J is the polar moment of inertia of wire cross-
sectional area; d is the wire diameter.

According to Fig. 2, it has been concluded that the torque
and moment value is expressed in Eqs (8) and (9),

T ¼ MK cos q; (8)

M ¼ MK sin q: (9)

For extraction of the magnitude of the angle of inclination
at the location of the moment applied on the head spring,
Castigliano’s second theorem argument is used in Eqs (6)
and (7) to obtain Eq. (10):

B ¼ vU
vMk

¼ 1
GJ

Z L

0
T

vT
vMK

dl þ 1
EI

Z L

0
M

vM
vMK

dl: (10)

The values of dl, vT
vMK

, and vM
vMK

are obtained from the

partial derivation of Eqs (4), (8), and (6), respectively as it is
shown in Eqs (11), (12), and (13). Equation (10) can be
written after applying the above Eqs (8) and (9), as it is
shown in Eq. (14),

dl ¼ R dq; (11)

vT
vMK

¼ cos q; (12)

vM
vMK

¼ sin q; (13)

B ¼ vU
vMk

¼ 1
GJ

Z L

0
MK cos q cos qR dq

þ 1
EI

Z L

0
MK sin q sin qR dq:

(14)

Using Eq. (3) in Eq. (15) gives

B ¼

¼ 1
GJ

Z2pN

0

MK cos2q

�
R2 � R2 � R1

2pN
q

�
dqþ

þ 1
EI

Z2pN

0

MK sin2q

�
R2 � R2 � R1

2pN
q

�
dq;

(15)

B ¼ MK

Z 2pN

0

�
R2 � R2 � R1

2pN
q

��
cos2q
GJ

þ sin2q
EI

�
dq;

(16)

B ¼ MK

Z 2pN

0

�
R2 � R2 � R1

2pN
q

��
1� sin2q

GJ
þ sin2q

EI

�
dq;

(17)

B ¼ MK

Z 2pN

0

�
R2 � R2 � R1

2pN
q

��
1
GJ

þ sin2q

�
1
GJ

þ 1
EI

��
dq;

(18)

Let
1
GJ

¼ A and
1
GJ

þ 1
EI

¼ B,

B ¼ MK

Z 2pN

0

�
R2 � R2 � R1

2pN
q

��
Aþ Bsin2q

�
dq; (19)

1
KL

¼ vB

vMK
¼ 1

16pN
ð8p2N2ð2Aþ BÞðR2 þ R1Þþ

þBðcos ð4pNÞ � 1ÞðR2 � R1Þ � Bsin ð4pNÞ4pNR1Þ;
(20)

where KL is the lateral stiffness of conical spring.
Some mechanical applications require variable lateral

stiffness values for conical springs. The variable lateral
stiffness property is difficult to apply when changing the
type of spring material or the diameter of the wire made
from it. Instead of that the resorting to reducing the length
of the spring (shortening its length by pressure), leads to
reducing the number of active coils. To explain this effect
theoretically, an equation was used to describe the rela-
tionship between the lengths with the lateral stiffness, as
shown in Eq. (21). This equation was obtained by con-
verting the signification of the lateral stiffness equation
from length (Ls) to the number of active coils [10, 11].
Since the dimension (diameter of the wire, pitch of coil,
and coils radius) and properties of the material (Young’s
modulus and modulus of rigidity) of conical spring do not
affect the general behavior of the relationship, based on
that the chosen the ground end type conical spring has a
constant diameter of the wire is 4mm also the pitch
amount (P) of the spring is 29.48mm, and variable in coils
radius from R2 5 25.5mm to R1 5 7.06mm. Eqs (20) and
(21) were applied on the springs made of high carbon steel
wire [12]. High carbon steel mechanical properties include
yield stress of 535MPa, ultimate stress of 810MPa, Young’s
modulus of 200 GPa, and modulus of rigidity 78.7 GPa
[13, 14],

Fig. 2. The mechanical effect on the cross-section of the spring wire
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N ¼ Ls � 2d
P

: (21)

3. SIMULATION PART

Finding out the accuracy of the previous theoretical
equation using analytic simulation, the spring was drawn
by SolidWorks program after that a simulation of a conical
spring by using the same program to avoid error is per-
formed applying. The information used on simulation
requirements was similar to that used in the theoretical
part (spring design characteristics, wire material, and
boundary conditions). The spring design characteristics
are coil diameter, step amount, number of active coils, and
free length of spring. The boundary conditions applied
include: The spring is fixed in the small end, the centerline
of the spring’s large end diameter is fixed with a pin
method that allows rotation only around this line, and The
moment is applied on the head of a large end as shown in
Fig. 3 where the green arrows represent the consolidation
areas, and the purple arrows represent the applied
moment. The material mechanical properties used in
SolidWorks were the same properties adopted in the
mathematical equations, as mentioned previously. The
created mesh is the next step and applied on spring by
curvature-based mesh method with dimensions (4.71–
0.94mm) consisting of 68,650 elements and 126,403
nodes, which gives appropriate results due to the high
degrees of freedom it provides. To apply the case of
reducing length spring and that affects lateral stiffness use
reduction technique in the amount of the pitch for the first
and then the second as consecutive until the appropriate
length is reached as shown in Fig. 4.

4. THE RESULTS

After applying the proposed theoretical equations to
describe the lateral stiffness of the conical spring on the
metal and the aforementioned dimensions, the results
elucidated the relationship between the amount of applied
moment measured by Nm and the amount of inclination
measured by radian, as shown in Fig. 5. As for the results
obtained from the simulation process, they were the amount
of deformation at the tip of the disk fixed on the head of the
large diameter of the conical spring, so the deformation
must convert to an angle value in units of radian depending
on the amount of distance of that point from the center of
rotation, as shown in Fig. 6 to obtain the relationship be-
tween moment and angle as in Fig. 4. The results depicted
that the theoretical lateral stiffness was 3.26 Nm/rad, but by
simulation, it was 3.365 Nm/rad. The effect of changing the
length in both the theoretical and simulated cases was an

Fig. 3. The boundary condition of simulation conical spring

Fig. 4. The length reduction of spring

Fig. 5. The relation of moment applied with an inclination
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exponential relationship, as shown in Fig. 7, which describes
the relationship between the length and the amount of
lateral stiffness.

5. CONCLUSION
1. The mathematical model gives an acceptable result in

compression with the numerical model during which the
difference between this model is not exceeding 3.3%;

2. The relationship obtained between the length of the
spring and the lateral stiffness is indicated an exponential
behavior;

3. Results indicated that the increase in the lateral stiffness
is less than the length of the conical spring.
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Fig. 6. The deformation at the tip of the disk of the conical spring

Fig. 7. The relationship between spring length and lateral stiffness
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