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Abstract— A local three-dimensional variational data assimilation (DA) system was 
implemented operationally in AROME/HU (Application of Research to Operations at 
Mesoscale) non-hydrostatic mesoscale model at the Hungarian Meteorological Service 
(OMSZ) in 2013. In the first version, rapid update cycling (RUC) approach was employed 
with 3-hour frequency in local upper-air DA using conventional observations only. Optimal 
interpolation method was adopted for the surface data assimilation later in 2016. This paper 
describes the current developments showing the impact of more conventional and remote-
sensing observations assimilated in this system, which reveals the benefit of additional 
local high-resolution observations. Furthermore, it is shown that an hourly assimilation-
forecast cycle outperforms the 3-hourly updated system in our DA. Besides the upper-air 
assimilation developments, a simplified extended Kalman filter (SEKF) was also tested for 
surface data assimilation, showing promising performance on both the analyses and the 
forecasts of AROME/HU system.  
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1. Introduction 

Accurate estimation of the atmospheric initial state is an essential prerequisite 
for high-quality weather forecasts. Global numerical weather prediction (NWP) 
models use all information available about the Earth system to determine the 
initial condition: different kinds of observations, previous weather forecasts 
(called as background or first guess), and a priori physical information. They are 
combined in a statistically optimal way based on their reliability using data 
assimilation (DA) techniques. In the recent operational practice, three 
algorithms are widely applied in global models: the optimal interpolation (OI) 
minimizes the quadratic difference between the analysis and the truth; the 
variational method is based on minimization of a cost function measuring the 
analysis departures from the observations and the first guess; the Kalman filter 
method takes into account the flow-dependency of background errors. 
Variational methods are mostly utilized for upper-air data assimilation (Fischer 
et al., 2005; Courtier et al., 1994): in the 3-dimensional and 4-dimensional (3D-
Var and 4D-Var) versions, the procedure looks for the best fit to background and 
observations at the analysis time and along a trajectory, respectively. OI is 
employed in surface data assimilation (Mahfouf et al., 2000), as it is the 
simplified extended version of the Kalman filter (SEKF) (de Rosnay et al., 2013; 
Mahfouf, 2009) which allows involving also satellite measurements in exchange 
for its higher computational cost. 

For limited area models (LAMs), dynamical adaptation is a plausible way to 
prepare initial conditions without complex and computationally expensive 
methods. In this simple technique, the coarser-resolution driving model fields are 
interpolated onto the higher resolution target grid in the initial time step. The first 
limited area model of the ALADIN (Aire Limitée Adaptation dynamique 
Développement InterNational) consortium was originally developed without data 
assimilation, and in its earliest version at the Hungarian Meteorological Service 
(OMSZ) the initial conditions were created by dynamical adaptation (Horányi et 
al., 1996), i.e., interpolating the fields of the global NWP model of Météo-France, 
ARPEGE (Action de Recherche Petite Echelle Grande Echelle) to the ALADIN 
grid. Nevertheless, only local and dense observations ensure to have access to 
those small-scale atmospheric features which are crucial for high-resolution 
mesoscale weather forecasts. The incremental 3D-Var algorithm was 
implemented to ALADIN, which looks for the minimum of departure between the 
analysis and the background field assuming that the background is a good 
estimation of the analysis and the linearized version of the observation operator 
can be used during the computation of the minimization. This is the standard or 
regularized linear least squares problem (Fischer, 2007). The method was 
introduced into the operational ALADIN version of OMSZ in 2005 (referred as 
ALADIN/HU; Bölöni, 2006). In the beginning, it assimilated only conventional 
observations (SYNOP, TEMP, temperature, and horizontal wind components 
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measured by aircrafts) 4 times a day at 0, 6, 12, and 18 UTC, and it was gradually 
extended with a variety of satellite data and wind profiler measurements 
(Randriamampianina, 2006). 

The AROME (Application of Research to Operations at Mesoscale) model 
consists of the non-hydrostatic dynamical core of ALADIN, the atmospheric 
physical parameterization of the Meso-NH research model, and the SURFEX 
surface model (Seity et al., 2011). It has been running operationally at OMSZ over 
a domain covering the Carpathian Basin with 2.5 km horizontal resolution and 60 
vertical levels since 2010 (Szintai et al., 2015). The initial and lateral boundary 
conditions (LBCs) were first taken from ALADIN/HU, benefiting from the 
already existing coarser resolution LAM analyses. However, it was proven later 
that the interpolated analysis does not contain reliable physical information on the 
smallest scales resolved by AROME/HU and in addition, more observations can 
be used at higher resolution. Therefore, the implementation of the local AROME 
DA system was started and the upper-air 3D-Var system became operational in 
2013, assimilating conventional data (Mile et al., 2015). 

The 3D-Var approach assumes that all observations inside the assimilation 
window are measured exactly at the analysis time generating increased 
representation error in time. In order to be able to use more observations with 
reduced temporal representation error, experiments have been started with hourly 
analysis updates (i.e., rapid update cycle, RUC) in 2018 (Jávorné Radnóczi et al., 
2020). 

The raw analysis often exhibits some imbalances which primarily originate 
from inconsistencies between the observed mass and wind fields inducing high-
frequency oscillations in the first hours of the forecasts. In ALADIN/HU, a digital 
filter initialization (Lynch et al., 1997) is applied to the analysis, which removes 
the high-frequency waves from the initial condition during a forward and 
backward model integration. This filtering technique is assumed to be detrimental 
for the mesoscale spectrum of AROME model, thus not employed in 
AROME/HU. Instead, a space consistent coupling is used, i.e., the LBC at the 
initial time is provided by the AROME/HU analysis, which efficiently exempts 
from high amplitude oscillating noises (Mile et al., 2015). 

Representation of background error statistics has key importance in 
variational methods, as the background error covariance matrix (the so-called B 
matrix) controls the propagation of the information coming from observations to 
the model grid and variables (Berre, 2000). The B matrix in ALADIN/HU was 
originally estimated with the NMC method (NMC stands for National 
Meteorological Center) that samples the forecast errors from a set of differences 
between two forecasts valid at the same time, but at different ranges (Parish and 
Derber, 1992). Later the ensemble technique was introduced, where the 
background errors are approximated by subtracting the members of an ensemble 
forecast generated with a set of data assimilation cycles (EDA) using perturbed 
observations that induce a spread also among the first guess fields through the 
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cycling (Bölöni et al., 2014). The ensemble was first created by downscaling an 
ensemble of ARPEGE lateral boundary conditions using ALADIN (Bölöni, 
2006), but later it was originating from the ALADIN ensemble prediction system 
(EPS) of OMSZ (Hágel, 2009). EDA method was applied to compute the 
background errors also in the case of AROME/HU: initially with downscaling the 
ensemble of ALADIN LBCs and recently with a 5-member ensemble provided 
by the convection-permitting AROME-EPS system (Jávorné Radnóczi et al., 
2020). 

The initial conditions for the soil scheme in the early version of 
ALADIN/HU were interpolated from the ARPEGE analysis fields. In 2008, the 
CANARI optimal interpolation (Taillefer, 2002; Tóth, 2004) was implemented, 
in which the soil temperature and moisture analyses are calculated based on the 
relationship between soil and near-surface variables. In AROME/HU, the surface 
analysis of ALADIN/HU was interpolated to the 2.5 km resolution grid initially, 
while an improved version of the optimal interpolation was adopted in 2016. At 
the same time, experiments were started with simplified extended Kalman filter 
to exploit the advantage of the new observation techniques (like remote sensing 
data). 

An obvious way to develop a data assimilation system is to involve new 
observations. Hourly analysis update requires to supply the assimilation with 
frequently and reliably available data. The DFS (degrees of freedom for signal) 
diagnostic tool (Cardinali et al., 2004) indicates the relative contribution of given 
observations to the analysis. In a previous study (Mile et al., 2015), DFS scores 
showed the large contribution of wind measurements and suggested the 
importance of humidity-related observations. In the last few years, sensitivity 
studies have been started in ALADIN/HU and more intensively in AROME/HU 
to estimate the impact of atmospheric motion vectors derived from satellite 
images, radial wind measured by meteorological radars, temperature, and wind 
information registered by the radars of air traffic controllers (i.e., Mode-S 
observations); radar reflectivity, zenith total delay (ZTD) observations of GNSS 
(global navigation satellite systems), and humidity observed by aircrafts (Mile et 
al., 2015, 2019; Fischer et al., 2017, 2018). 

This paper aims to provide a comprehensive overview of current DA 
developments. In Section 2, the operational DA system is described. In Section 3, 
the local, experimental DA studies are represented applying conventional and 
non-conventional observations, as additional Mode-S MRAR (Meteorological 
Routine Air Report) data and satellite atmospheric motion vectors. Besides this, 
the surface data assimilation and RUC related developments are also presented in 
this Section. Finally, a summary of the recent results and further potential research 
are provided.  
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2. The operational data assimilation system of AROME/HU model 

The data assimilation system of the operational AROME/HU model consists of 
an incremental 3D-Var and an OI technique for the upper-air and surface analysis, 
respectively. Furthermore, this system composes a three-hourly updated forward 
intermittent cycle called RUC (Benjamin et al., 2004; Mile et al., 2015, Szintai et 
al., 2015). The LBCs are provided by the ECMWF/IFS (European Centre for 
Medium-Range Weather Forecasts / Integrated Forecasting System) model at 
hourly time intervals. The current operational AROME/HU version has been 
based on the cy43t2 model cycle since March 2021, and it has run at 2.5 km 
horizontal resolution, with 60 hybrid pressure terrain-following vertical levels. 
Most of the developments (except for SEKF) shown in this paper were carried out 
with the previous operational model version, cy40t1 (the ‘cy’ refers to the model 
‘cycle’; cycle number 40 is derived from the corresponding IFS cycle, i.e., cy40, 
on which AROME is based; IFS is jointly developed by ECMWF and Météo-
France; and ‘t’ refers to the model release specific to Météo-France, i.e., 
Toulouse; finally 1 refers to the release number). 

The analyses of AROME/HU forecasts are updated three hourly at 0, 3, 6, 9, 
12, 15, 18, and 21 UTC. The AROME/HU 3D-Var system uses only conventional 
observations from ground-based synoptic stations (SYNOP), radiosondes 
(TEMP), zenith total delays (GNSS ZTD), and aircraft data (AMDAR and 
MRAR). The assimilated observations, meteorological parameters, and the date 
of their operational implementations are summarized in Table 1. Most of the 
observations (except for GNSS ZTD) are routinely received and preprocessed in 
OPLACE (Observation Preprocessing system of RC LACE) hosted by the 
Hungarian Meteorological Service (Trojáková et al., 2019). 

 
 
Table 1: Assimilated observation types and parameters in AROME/HU operational system 

Observation type Parameter Date of Operational implementation 

SYNOP u, v, T2M, HU2M, z March 2013 

TEMP u, v, T, q, z March 2013 

AMDAR u, v, T, q March 2013 (u, v, T) November 2016 (q) 

Slovenian / Czech Mode-S MRAR  u, v, T November 2016 / March 2021 

GNSS ZTD September 2018 

 
 

In our local data assimilation system, two kinds of analyses are prepared and 
distinguished based on the length of cut-off time: short cut-off and long cut-off 
(Bölöni, 2006). This is the time interval of observations collection for data 
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assimilation. The aim of using short cut-off analysis is to provide initial conditions 
for operational model prediction as quickly as possible. The long cut-off analysis 
is prepared later for the same network time with longer waiting time for the 
observations, this analysis is used as an initial condition for the next first guess. 
In the recent AROME/HU version, this short cut-off time is set to +/- 90 minutes.  

The operational AROME/HU version runs 8 times a day and provides 
forecasts up to 48 hours for main terms (0, 6, 12, and 18 UTC) and 36 hours for 
additional terms (3, 9, 15, and 21 UTC). 

3. Surface data assimilation developments in AROME/HU model 

3.1. Optimal interpolation 

In the IFS/ARPEGE/ALADIN model family, the optimal interpolation method 
has been used for data assimilation purposes for a long time. Meanwhile, the 
variational assimilation scheme became paramount for upper-air DA allowing the 
use of remote-sensing observations, however, the OI approach is still employed 
for surface analysis by many operational centers. The land surface assimilation 
based on OI consists of the quality control of conventional observations, the 2 m 
analysis of temperature and relative humidity, and the corresponding correction 
of surface parameters using 2 m increments (Giard and Bazile, 2000). For the 2 m 
analysis, the OI method solves the analysis equation for each grid point 
individually assuming that only a limited number of observations influences one 
grid-point. The correction of surface parameters is done differently in ALADIN 
and AROME models because of the applied different surface parametrization 
schemes. In ALADIN model, the so-called ISBA (Interaction Soil Biosphere 
Atmosphere) scheme (Noilhan and Planton, 1989; Noilhan and Mahfouf, 1996) is 
used, while in AROME model, a more advanced, i.e., an externalized surface 
scheme is utilized, which is called SURFEX (Masson et al., 2013). 

The first local DA system in AROME was introduced operationally with 
variational upper-air data assimilation replacing the former downscaled ALADIN 
initial conditions (Bölöni, 2006; Mile et al., 2015). Although the downscaling 
procedure remained for the AROME surface initialization, the use of ALADIN 
surface analyses continued. Such a dependence on the ALADIN system was not 
optimal in an operational AROME system, therefore, the experimentation of 
AROME surface DA using the OI method (OI-main) was started as well. Various 
observing system experiments have been carried out for the summer and winter 
seasons and different weather situations. Verification results revealed that the 
operational configuration with downscaled ALADIN surface has usually wet and 
cold bias in AROME near-surface forecast parameters, while with OI-main, 
AROME shifted towards the dry and warm bias changing slightly the diurnal 
cycle of surface parameters during the first 24 h of the model forecast (not shown). 
Moreover, the verification of precipitation forecasts with AROME OI-main 
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surface analysis showed mostly positive impact in particular case studies (summer 
and winter) and a short summer period as well (Fig.  1). After six months of 
surface spin-up, the AROME surface assimilation with OI-main became 
operational in 2016. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Symmetric extremal dependency index (SEDI) verification skill score for 12 h 
accumulated precipitation forecast comparing AROME operational (COOP) system 
without surface data assimilation and with AROME experiment using OI-main surface data 
assimilation (ARPO). Verification against conventional SYNOP observations (period June 
13 to 20, 2016). 

 

 

3.2. Simplified extended Kalman filter 

The exact initialization of the soil variables is a very crucial point to provide 
precise numerical weather prediction (NWP) forecasts. Inaccurate soil moisture 
content and soil temperature can lead to significant forecast errors of the screen-
level atmospheric variables, 2 m air temperature (T2M), and 2 m relative humidity 
(HU2M) (Hess, 2001). Several methods have been developed to minimize errors 
in soil parameters. In this study, SEKF proposed by Mahfouf et al. (2009) is tested 
using AROME/HU cy43t2. SEKF allows assimilation of both conventional 
(screen-level) and non-conventional (satellite) observations to produce surface 
analysis. ASCAT soil moisture and SPOT/VGT leaf area index (LAI) non-
conventional satellite observations were assimilated by several authors (Barbu et 
al., 2014; Albergel et al., 2017; Rüdiger et al., 2010). These studies demonstrated 
the benefit of joint assimilation of soil moisture and LAI by using the multi-patch 
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version of SURFEX. It was shown, that the assimilation worked effectively, but 
the impact of the assimilation on the vegetation phenology and the water and 
carbon fluxes varied from season to season.  

In EKF, dynamically changing coefficients are used, and the analysis is 
obtained as: 

 
ݔ  = ݔ + ۹	ሺݕ −ℋݔሻ, (1) 
 
 ۹ = ܂۶۰۶)܂۰۶ +  (2)  ,(܀
 

where xa is the analysis (so-called control variables: TG1, TG2, WG1, WG2), xb 
is the result of a previous model run, y is the observation (T2M, HU2M), ℋ is the 
non-linear observation operator, which transforms control variables from model 
space into observation space. H matrix is the linearized observation operator, K 
is the Kalman-gain matrix that represents the relative importance of the error of 
the observation concerning the prior estimate. B and R are the covariance matrices 
of the background errors and the observation errors, respectively. In this study, 
the simplified version of the EKF, namely SEKF is used, meaning the background 
covariance matrix B does not evolve with time. The elements of H (called 
Jacobian matrix), are calculated by finite differences. Perturbing each component 
(xj) of the control vector x, the elements of matrix H are composed for each 
integration i: 
 

 ۶ = డ௬డ௫ೕ . (3) 

 
In this study, SEKF is used as control vectors of the water contents and 

temperatures of two soil layers (superficial (WG1, TG1) and root-zone (WG2, 
TG2)) propagated by SURFEX three-layer soil scheme (superficial 0-1 cm, root 
zone 0-2 m, and deep soil 2-3 m). The observation terms are screen-level T2M 
and HU2M. The Jacobian matrix is the following: 

 

 ۶ = డ்ଶெడ்ீଵ డ்ଶெడ்ீଶ డ்ଶெ	డௐீଵ 			 డ்ଶெడௐீଶడுଶெడ்ீଵ డுଶெడ்ீଶ డுଶெడௐீଵ 			డுଶெడௐீଶ .  (4) 

 
The small perturbations (with magnitude 10-3 or less) lead to a good 

approximation of the linear behavior (Mahfouf, 2009), and the Jacobian 
perturbations are assigned 10-4 for the soil water content and 10-5 for the soil 
temperature in our configurations. The assimilation window is set to 3 hours. In 
the analysis cycle, SURFEX is run several times, firstly to get the reference 
forecast, then the perturbed runs of the control variables.  
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In this study, a test run was performed and validated. The experiment lasted 
from July 9 to 31, 2020 (starting with a 2-week spin up period from June 25, 
2020). Forcing files were required for offline SURFEX runs (i.e., radiation, 
precipitation, wind, humidity, temperature, and pressure), which were coming 
from AROME/HU inline forecasts. The wind, humidity, temperature, and 
pressure values correspond to the lowest model level of AROME/HU, which is 
currently 9 m. 

Pointwise verification was executed for both periods against SYNOP and 
TEMP observations. The verification of 2 m temperature forecasts shows a large 
improvement for the nighttime hours with SEKF, and the large warm bias during 
the nights was reduced considerably (Fig. 2). SEKF was able to improve the 2 m 
temperature analysis throughout the whole period (Fig. 3, left). However, its 
daytime forecasts over Hungary do not differ significantly from the OI-main ones 
(Fig. 3, right).  

 
 
 

0 UTC runs     12 UTC runs 

 

Fig 2. Bias (dashed line) and RMSE (solid line) of 2 m temperature forecasts in the 0 and 
12 UTC runs from July 9 to 31, 2020. Blue: cy43 with SEKF, orange: cy43 with OI-main, 
red: cy40 with OI-main. 

 

 

 

 
Analysis and observation     12-hour forecast and observation 

 

Fig. 3. Evolution of 2 m temperature analysis and 12-hour forecast in the 0 UTC runs and 
observations (green) from July 9 to 31, 2020. Blue: cy43 with SEKF, orange: cy43 with 
OI-main, red: cy40 with OI-main. 
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July 2020 had warm and overall rainy weather in the Carpathian Basin, 
where spatiotemporal distribution of precipitation was extreme. It is a typical 
problem in AROME/HU that the minimum temperature is usually overestimated 
and the maximum temperature is underestimated in the dry and warm anticyclonic 
periods. The case study of July 15, 2020 indicates that the 2 m temperature 
analysis was inaccurate using OI-main (Fig.  4, right). More accurate analysis was 
provided by SEKF, especially in the central part of the country (Fig.  4, middle). 
At the same time, the 12-hour forecast of SEKF resulted in an unrealistic warm 
pattern over the south part of the domain (Fig. 5, middle). 

 
 
 

OI-main               SEKF    SYNOP 

   

Fig. 4. 2 m temperature analysis in AROME/HU cy43 with OI-main and SEKF, 
observations at 0 UTC on July 15, 2020. 
 
 
 

OI-main               SEKF    SYNOP 

 

Fig. 5. 12-hour forecast of 2 m temperature in AROME/HU cy43 with OI-main and SEKF, 
observations at 12 UTC on July 15, 2020. 

 

 

SEKF produced very dry soil in comparison with OI-main (Fig. 6). This 
issue is able to generate the above mentioned 2 m temperature overestimation in 
the south during the day. 
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OI-main        SEKF 

 

Fig. 6. Root-zone soil moisture (WG2) analysis at 0 UTC on 15 July, 2020 for OI-main 
and SEKF. 

 

 

The evolution of WG2 analysis can be seen in Fig. 7 for a given point marked 
with a black circle in Fig. 6. The soil moisture content decreased very rapidly by 
using SEKF, however, OI-main did not change drastically the soil moisture 
values. The main soil texture is sand (73%) in this area, so the soil moisture 
reflects immediately on the variability of the precipitation. 

 
 
 

 

Fig. 7. Evolution of soil moisture (WG2) and precipitation (black) for SEKF (blue) and  
OI-main (red). 
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Fig. 8 shows analysis minus guess (A-G) increments for soil temperature and 
soil moisture in different analysis times summed for the whole period and all grid 
points over the domain. The TG2 increment is bigger for the nighttime and smaller 
for the daytime periods in the case of SEKF. For OI-main the TG2 increments are 
small and consistent. In contrast, the WG2 increments are large for daytime and 
smaller for nighttime for both methods. The WG2 increments are similar and 
comparable with each other. 

 
 
 

 

Fig. 8. Soil temperature (TG2) and soil moisture (WG2) increments for all of the grid points 
over the domain from July 9 to 31, 2020 for SEKF (blue) and OI-main (red). 

 

 

To conclude, SEKF provides a positive impact on the analyses and the short-
range forecasts as well. However, further investigations are still needed to find 
the best possible combination of the assimilation parameters, like observation, 
background errors, and the perturbation size of the Jacobians. 

4. Upper-air data assimilation developments in AROME/HU model 

4.1. Investigation of rapid update cycle 

The main goal of the rapid update cycling (RUC) approach is to employ more 
observations with reduced representation error in time, which would serve as a 
basis for the enhancement of data assimilation by including radar data assimilation 
soon (Mile et al., 2015). This study was carried out with AROME/HU cy40t1 with 
different assimilation window lengths. The cut-off time in the case of RUC was 
reduced to 30 minutes instead of 90 minutes, which is used in the operational 3-
hourly updated DA cycle. 

In this study, two 30-day test periods had been chosen. The first was a winter 
period covering all days between January 8 and February 6, 2017. The second 
period was a spring period from May 4 to June 2, 2019, including numerous 

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

6,00E+06

7,00E+06

8,00E+06

0 3 6 9 12 15 18 21
hour

SUM[ABS(A-G)] TG2 A-G SEKF_mod-CY43
A-G OI-CY43

0,00E+00

1,00E+03

2,00E+03

3,00E+03

4,00E+03

5,00E+03

6,00E+03

7,00E+03

8,00E+03

9,00E+03

0 3 6 9 12 15 18 21

hour

SUM[ABS(A-G)] WG2 A-G SEKF_mod-CY43
A-G OI-CY43



 

533 

convective events inside the model domain. Each model run had started at 0, 6, 
12, and 18 UTC analyses and performed 12-hour forecasts. The assimilation cycle 
was started six days earlier than the first long forecast to provide an appropriate 
first guess field for the beginning of the experiments. Some modifications were 
made in the configuration settings, e.g., the assimilation cycle frequency was set 
to 1 hour and the cut-off time was shrunk to +/-30 minutes accordingly. 
Meanwhile, the surface assimilation cycle frequency was set to be adjustable, i.e., 
in these experiments 1-, 3-, and 6-hourly updated surface data assimilation  
were applied. In the last two experimental setups, (called 
AROME_combo_1hourly_surf3, and AROME_combo_1hourly_surf6 hereafter), 
the asynoptic surface analyses were initialized from previous model forecasts 
without taking into account surface observations. The following four 
configurations were tested for both periods: 

 
• AROME_3hourly represents the original settings of operational 

AROME/HU; 

• AROME_1hourly represents 1-hourly DA cycle for 3D-Var and surface data; 

• AROME_combo_1hourly_surf3 consists of a combination of 1-hourly 
updated upper-air assimilation cycle with 3D-Var and 3-hourly updated 
surface assimilation cycles with surface data; 

• AROME_combo_1hourly_surf6 is the same as AROME_combo_1hourly_-
surf3 but the surface assimilation is updated every 6 hours.  

To evaluate the results provided by four configurations, two different 
verification approaches were applied. Standard verification methods (RMSE, 
bias) were used for 2 m temperature forecasts (Figs. 9–10), and SAL verification 
method was used for precipitation in the spring case. SAL verification method 
provides an objective quality measure for forecasted precipitation fields compared 
to radar observations as three distinct components are used, namely structure, 
amplitude, and location (Wernli et al., 2008). In order to get a comprehensive 
picture of all three components, the central statistic approach was applied 
(Table 2). Better performing cases are closer to the center, therefore, a given 
percentage of cases (5%, 10%, 20%, and 50%) can be covered by a shorter radius. 

 The results suggest that AROME_1hourly performs better than 
AROME_3hourly in the case of 2 m temperature and dew point temperature. 
Higher accuracy was provided by reduction of surface assimilation cycle 
frequency (AROME_combo_1hourly_surf3, AROME_combo_1hourly_surf6).  

Meanwhile, considering precipitation, there is no significant difference 
between the configurations as SAL verification shows balanced performance for 
each setting (Table 2). 
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Fig. 9. RMSE of 2 m temperature for each configuration in the function of lead-time in the 
winter period. 

 

 

 

 

Fig 10. Bias of 2 m temperature for each configurations in function of lead-time in winter 
period. 
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Table 2: SAL results of each configuration for spring case. Lower radius values indicate 
better performance on precipitation forecasts. Green cells represent the best performance, 
redcells respresent the worst. 

 

 
 
 
 

The biggest difference between the configurations can be seen on January 
29, 2017. AROME_3hourly has more than five degrees Celsius RMSE, but 
AROME_combo_1hourly_surf3 and surf6 have only around one degree Celsius 
RMSE (Fig. 11). On this particular day (Fig.  12), the big difference in the RMSE, 
in favor of AROME_combo_surf3 can be explained by the lack of cloud cover in 
AROME_3hourly and AROME_1hourly (Fig.  13). This usually happens in the 
Carpathian Basin when low-level clouds develop and remain during wintertime. 
In this situation, the NWP models usually are not able to serve accurate forecasts.  

 
 

 

Fig. 11. RMSE of 2 m temperature for 12 UTC runs at 0 time step. 

5% 10% 20% 50% 5% 10% 20% 50%
AROME_3hourly 0.282 0.391 0.570 0.992 0.382 0.475 0.666 1.037
AROME_1hourly 0.276 0.365 0.506 1.075 0.297 0.454 0.666 1.026
AROME_combo_1hourly_surf3 0.274 0.373 0.578 1.117 0.325 0.492 0.652 1.051
AROME_combo_1hourly_surf6 0.261 0.410 0.570 1.128 0.369 0.484 0.655 1.016

5% 10% 20% 50% 5% 10% 20% 50%
AROME-3hourly 0.366 0.447 0.665 1.096 0.357 0.534 0.684 1.157
AROME-1hourly 0.358 0.450 0.625 1.052 0.379 0.514 0.768 1.216
AROME-1hourly_surf3 0.307 0.424 0.648 1.094 0.369 0.484 0.643 1.159
AROME-1hourly_surf6 0.302 0.442 0.647 1.111 0.314 0.446 0.642 1.216

00 UTC 06 UTC

12 UTC 18 UTC
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Fig. 12. Temperature fields provided by different configurations comparing to 
measurements at 12 UTC, on January 29, 2017. 

 

 

 

Fig. 13. Cloud cover fields provided by different configurations comparing to satellite 
observation at 12 UTC, on January 29, 2017. 



 

537 

Further examination was performed with increments of soil temperature 
(TG1, TG2) and soil moisture (WG1, WG2) in order to get a clear picture of the 
unexpected behavior of the model. The increments and soil variables were 
examined from January 18 to 31, 2017. Soil temperature increments looked 
normal, however, soil moisture increments were 0 during the whole period (not 
shown). This means, that the soil moisture was driven by the model only, no actual 
correction by the assimilation was performed, meanwhile, all configurations 
yielded different soil moisture contents. Further investigation is necessary to get 
the final conclusions. 

4.2. Impact of Aircraft Mode-S MRAR data in AROME/HU 

High resolution and high-density aircraft data are important and unmissable to 
improve the data assimilation system. Mode-S MRAR data can be used similarly 
to conventional AMDAR data and have similar quality as well. They are gathered 
through interrogation of suitable aircraft using specific (Mode-S TAR) radars, 
which means that only aircraft equipped with Mode-S transponders is able to 
return meteorological data. Smaller fraction of aircrafts is equipped for MRAR 
data, which contains specific meteorological parameters, like temperature and 
wind, but this relatively small amount of data is extremely valuable for data 
assimilation, as it contains meteorological data of similar quality as that of 
AMDAR data (Strajnar, 2012). 

For the AROME/HU model, Slovenian Mode-S MRAR data was the first 
available for assimilation purposes. These observations are disseminated through 
the common preprocessing platform OPLACE (Trojáková et al., 2019) since 
2015. The first experiments in Hungary have started in the following year. In a 
case study, improved precipitation fields were experienced, and over a longer 
period, results showed mainly neutral impact with some improvement in the bias 
of wind gust and ETS score of precipitation. These data were introduced 
operationally at the end of 2016. Since 2019, Mode-S MRAR data from the Czech 
Republic are also available in OPLACE, which are also ready for assimilation. In 
case of Hungarian measurements, the air traffic control provided raw data, which 
has to be preprocessed in the first step. Fig.  14 shows the area covered by the 
various Mode-S data. 
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Fig. 14. Mode-S data collected by the Czech (red), Hungarian (black), and Slovenian (blue) 
radars over the AROME/HU domain. 

 

 

4.2.1. Impact of Czech Mode-S data in AROME/HU 

Two experiments were carried out to investigate the impact of Czech Mode-S 
MRAR data assimilation on the quality of the forecast. The first experiment 
covered a winter period (December 1 to 19, 2019), while the second one covered 
a summer period (June 1 to 30, 2020). Both experiments were based on the 
operational AROME/HU and the only difference was the inclusion of Czech 
Mode-S data, obtained from the OPLACE server. The two experiments differ 
from each other in regards to the forecast length (24 and 36 hours for the winter 
and summer periods, respectively) and the run hours (0, 6, 12, and 18 UTC runs 
in the winter experiment, and 0, 9, and 12 UTC runs in the summer experiment). 

Observation monitoring shows that only a small fraction of the total number 
of Czech Mode-S data is active in the experiments (Fig.  15), which is likely due 
to the horizontal thinning. In the case of the winter experiment, the number of 
active Czech Mode-S data is very similar to the number of AMDAR data, which 
makes a reasonable comparison of their impact. In the case of the summer 
experiment, however, the number of Czech Mode-S observations is extremely low 
(Fig.  15), including several days with zero observations. This probably indicates 
the severe effect of the COVID-19 pandemic on the number of flights, and makes 
it much more difficult to evaluate the summer experiment. 

It can be concluded that the assimilation of Czech Mode-S data improves 
slightly the forecast skill of AROME/HU. Fig.  15 shows that the impact of the 
Mode-S dataset was quite substantial for specific days, at least for the summer 
period, but the difference is usually much smaller. 
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Fig. 15. Number of Czech Mode-S MRAR data over the AROME/HU domain for the 
summer (left) and the winter (right) experiment. Green and red columns represent the active 
and rejected observations, respectively. 

 

 

Pointwise verification was performed for both periods against SYNOP and 
TEMP observations. The verification results show small improvement for the 
winter period, when scores are usually very close to the operational ones, although 
a slight improvement can be detected in most of the cases. A remarkable, albeit 
small positive impact can be seen in precipitation forecasts (Fig.  16). 

 

 

Fig. 16. ETS score of 12-hour accumulated precipitation in the 18 UTC runs from 
December 1 to 19, 2019. Red line: experiment with Czech Mode-S data, black line: 
experiment with Hungarian Mode-S data, green line: reference experiment without any 
Mode-S data. 
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For the summer period, the results are more varied, and show greater 
differences compared to the ones seen in the winter period. This can be attributed 
to the fact that there was a much greater amount of precipitation in the summer 
period. A case study of a convective event also shows that in specific cases, the 
inclusion of Mode-S data can significantly improve the precipitation forecast, 
especially regarding the spatial distribution of the amount of precipitation 
(Fig. 17). Verification scores are overall neutral, but in some cases, a significant 
improvement was obtained, especially for precipitation (Fig. 18). Other surface 
variables, however, show little or no improvement (not shown), therefore, the 
results are quite similar to the ones seen in the winter experiment. 

 
 

 

Fig. 17. 3-hour precipitation forecast of the experiment using Mode-S data (left), reference 
run (middle), and the observed precipitation (right) at 12 UTC, on June 21, 2020. 

 

 

Fig. 18. ETS score of 12-hour accumulated precipitation in the 9 UTC runs from June 1 to 
30, 2020. Red line: experiment with Czech Mode-S data, black line: reference run. 

 
 
Regarding the upper-air variables, verification results are similarly varied. 

The inclusion of Mode-S MRAR data improves the forecast of some upper-air 
variables considerably, such as wind speed on different atmospheric levels 
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(Fig. 19), but in most cases, the improvement is smaller. Other variables, such as 
upper-air temperature or relative humidity show similar improvement, but in some 
cases, the verification results for these variables are worse than those yielded by 
the reference run. 

 
 

 

Fig. 19. Bias (solid line) and RMSE (dashed line) of 500 hPa wind speed in the 12 UTC 
runs from June 1 to 30, 2020. Black and red lines represent the reference run and the 
experiment using Mode-S data, respectively. 

 

 

 

In conclusion, the assimilation of Czech Mode-S MRAR data has a small, 
but in most cases positive (or neutral) impact on AROME/HU forecasts. In the 
case of the summer experiment, the small differences can be attributed to the low 
number of active observations. The impact is greater at the upper atmospheric 
levels (for both experiments), while smaller on the surface. The assimilation of 
the Czech Mode-S MRAR data has been introduced operationally in AROME/HU 
from March 2021. 

4.2.2. Impact of the Hungarian Mode-S MRAR dataset in AROME/HU 

As a result of the positive experience with the Czech MRAR dataset, the 
Hungarian MRAR observations have also been investigated. Since the collection 
of Hungarian Mode-S data was started in November 2019, a proper preprocessing 
was needed on the raw dataset before their assimilation trial. Our first test period 
covered by the Hungarian MRAR data was between November 25, 2019 and 
March 31, 2020. First, a format conversion of the dataset was necessary to share 
the same format as other MRAR data distributed by the OPLACE system. Then a 
statistical quality filtering was applied, i.e., whitelisting procedure using an 
adopted criteria system through a passive assimilation cycle (Table 3). We only 
modified the minimum number of the measured data according to the flight 
numbers in the Hungarian flight area (Table 4). 
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Table 3. The applied whitelisting criteria. 

 Temperature Wind speed Wind direction 

Mean 1 K 1 m/s 10° 

Standard deviation 2 K 5 m/s 100° 

Minimum number 
of observations 

1000 1000 1000 

 
 
 

Table 4: Changes in the number of measurements and flights due to the whitelisting. Test 
period: November 25, 2019 to March 31, 2020. 

 Temperature 
Number of 

flights 
Wind 

(speed and direction) 
Number of 

flights 

Total number 799452 238 798904 238 

After statistical 
check 

741480 (92.7%) 114 740962 (92.7%) 114 

After quality check 577700 (72.3%) 75 507576 (63.5%) 61 

 
 

The test forecasts with the quality-controlled MRAR dataset were running 
between December 1 and 18, 2019. Significant part of the Hungarian MRAR data 
has been rejected in the assimilation, only a few hundreds of them remained.  

Only small differences have been detected in comparison with the reference 
upper air wind forecasts, which are more apparent in the 12 UTC runs, when there 
are more flights (Fig. 20). The use of Hungarian Mode-S MRAR data has a 
positive impact on the 2 m temperature and relative humidity analyses leading to 
small improvements in precipitation, relative humidity, total cloud cover, and 
wind gust forecasts. For other forecast variables, the impact is rather neutral.  

 

 

Fig. 20. RMSE (dashed line) and bias (solid line) of wind speed forecasts (left: 925 hPa, 
right: 500 hPa) at the 12 UTC runs with assimilated Hungarian Mode-S measurements (red) 
and reference forecast (black) for December 1-18, 2019. 
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To introduce the Hungarian Mode-S MRAR data into the operational 
assimilation, a further experiment is necessary on a period not (or less) affected 
by the pandemic.  

4.3. Impact of AMDAR-humidity in AROME/HU 

In 2015 and 2016, nine Lufthansa aircrafts were equipped with WVSS-II humidity 
sensors (WMO, 2019), and the measured data became part of the standard 
AMDAR report. As upper-air humidity observations in the assimilation system of 
AROME/HU are currently limited to radiosondes and GNSS ZTD, AMDAR-
humidity data is important, especially, during the ascending or descending phases 
when the vertical humidity structure of the atmosphere is measured by the aircraft. 
The first experiments with AMDAR-humidity at OMSZ began in early 2016, and 
it was included in the operational assimilation system of AROME/HU in autumn 
2016.  

The impact of AMDAR-humidity on AROME forecasts was tested on a 
summer and winter period of one month each and on selected case studies. 
Verification scores show a generally neutral impact. Some small improvements 
can be observed for cloud cover in the first forecast hours and for upper-air 
humidity, especially for forecasts starting at 9 and 15 UTC, when no radiosonde 
observations are available on the AROME/HU domain (not shown).  

Radiosonde and aircraft humidity data were compared when both 
observation types were available. Visual check of vertical profiles shows a good 
agreement between the two measurements (not shown). When a single specific 
humidity profile from AMDAR report was assimilated, the vertical profiles of the 
first guess and the analysis indicated that the humidity profile is closer to the 
observations, but without these measurements this is not the case (Fig. 21). 
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Fig. 21. Vertical profiles of specific humidity of AMDAR (green), first guess (red), 
analysis without AMDAR-q (black), and analysis with AMDAR-q (blue) at 18UTC, on 
March 25, 2016 over Budapest. 

 

 

For case studies involving convection, impact of AMDAR-humidity can be 
more pronounced. Fig. 22 shows AROME/HU forecasts for a day with intense 
summer convection. It can be noted that AMDAR-humidity improves the forecast 
of convective precipitation in the first forecast hours: convective cells missing in 
the control run over the southern part of Hungary are well forecasted in the run 
using AMDAR-humidity. 

 
 

 

Fig. 22. Hourly precipitation sums at 17 UTC, on June 13, 2016. Right: Radar observation; 
left: AROME/HU run without AMDAR-humidity; middle: AROME/HU run with 
AMDAR-humidity (both forecasts started at 15 UTC on the same day). 
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Due to the COVID-19 pandemic in 2020, the air traffic has changed 
dramatically, which has affected the density of AMDAR data, as well as the 
quality of the forecasts (Ingleby et al., 2020). As Fig. 23 shows, a few 
measurements arrived over the AROME/HU domain during the European 
springtime lockdown, and although the number of observations began to increase 
during the summer, it has been gradually decreasing since autumn. Only a few 
aircraft are equipped with humidity sensors, so in the current situation, 
unfortunately, AMDAR humidity observations can be assimilated very rarely in 
the model. 

 
 

 

Fig. 23. Temperature (upper left), wind (upper right), and humidity (bottom) measurements 
over AROME/HU domain based on AMDAR reports from January to December, 2020. 

 

 

4.4. Impact of atmospheric motion vectors 

Atmospheric motion vectors (AMV) are retrieved from consecutive satellite 
images tracking coherent features thus estimating atmospheric wind at certain 
levels. AMVs have been used in data assimilation since the 1990s (Schmetz et al., 
1993). The European Organization for the Exploitation of Meteorological 
Satellites (EUMETSAT) provides hourly AMV products (geowind from now on) 
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using Meteosat Second Generation (MSG) visible, water-vapor, and infrared 
channel data (Borde et al., 2014). These data are routinely received and 
preprocessed for OPLACE at the Hungarian Meteorological Service (OMSZ).  

The Satellite Application Facility on Nowcasting and Short-Range 
Forecasting (NWCSAF) provides a software package to calculate products 
supporting nowcasting locally. One of these products is the high resolution wind 
(HRW) (Garcia-Perada, 2018) which is generated at OMSZ. HRW (from now 
on hrwind) is calculated using MSG visible, water-vapor, and infrared channel 
data. 

AMVs are successfully used in both global and regional NWP models 
(Forsythe et al., 2014). OMSZ has been operationally assimilating geowind in 
ALADIN-HU for many years (Randriamampianina, 2006). Experimental 
assimilation of both geowind and hrwind data were made in AROME/HU for 
different periods using the same settings described in Mile et al., (2015). During 
the spring and summer experiments, we observed a very small, mostly neutral 
impact of the AMV data for the surface parameters (temperature, humidity, wind, 
pressure – not shown). In the convective period, a small, rather positive effect can 
be seen for the surface wind gust (Fig. 24).  

 
 
 

 

Fig. 24. Bias (solid line) and RMSE (dashed line) of wind gust forecasts in the 0 UTC runs 
from July 5 to August 7, 2019 as a function of lead time. Red and black lines: AROME/HU 
with and without AMVs, respectively. 

 

 

 

In the precipitation, larger differences could be observed with and without 
AMVs. Fig. 25 shows the SEDI parameter of 24-hour precipitation amount. For 
days with very small and large precipitation amounts, a positive impact can be 
seen, while for moderate precipitation amounts, the reference model run 
performed better.  
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Fig. 25. SEDI of 24-hour precipitation forecasts in the 0 and 12 UTC runs from July 5 to 
August 7, 2019 as a function of precipitation amount at 24 (red), 36 (green), and 48 (blue) 
time steps. Dashed and solid lines: AROME/HU with and without AMVs, respectively. 

 

 

 

In Fig. 26 an example is shown, where cells with small precipitation were 
better formed when AMVs were assimilated. In this case, both the reference and 
the test version struggled to forecast the right location of the precipitation. 

 
 

 

Fig. 26. 2-hour forecast of hourly precipitation without (left) and with (right) AMVs at  
2 UTC, on July 27, 2019. Hourly precipitation sum based on radar data at 2 UTC, on July 
27, 2019 (middle). 

 

 

 

For the winter period, the impact of the used AMVs was mostly neutral for 
the surface pressure, wind speed, and wind gust. For the 2 m temperature and dew 
point, we observed a slightly negative effect (Fig. 27). Verification for the vertical 
levels was also done, where we could see a positive impact on wind speed 
(Fig. 27). However, since only a small number of radiosonde measurements are 
available besides 0 and 12 UTC over AROME/HU, the significance level of those 
results is not very high. 
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Fig. 27. Bias (solid line) and RMSE (dashed line) of 2 m temperature (upper left), dew 
point (upper right), and wind speed at 500 hPa (bottom) forecasts in the 0 UTC runs from 
December 1 to 18, 2019 as a function of lead time. Black and red lines: AROME/HU 
without and with AMVs, respectively. 

 

 

For all experiments, the used blacklisting settings (Mile et al., 2015) caused 
a relatively low number of active AMVs (Fig. 28). Additional experiments were 
configured and run to increase the number of active AMVs, and to check their 
distribution and characteristics. One experiment (called AMV8 hereafter) was for 
the activation of mid-tropospheric AMVs, which data were blacklisted a long time 
ago assuming their height assignment is less accurate, and another experiment 
(called AMVA hereafter) was carried out to allow even more previously 
blacklisted data into the assimilation system. Table 5 describes the different 
settings and blacklisting details.  

 
 

 

Fig. 28. Number of AMV observations over the AROME/HU domain from December 1 to 
18, 2019. The numbers of blacklisted, rejected, and active observations are shown with 
blue, red, and green color. 
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Table 5: Blacklisting settings. 

Setting  Reference AMV8 AMVA 

Quality index < 85 %  inactive inactive inactive 

Data where p>700 hPa over land  inactive inactive active 

Data where p<700 hPa for VIS  inactive inactive active 

Data between 300 and 850 hPa  inactive active active 

Data where p>400 hPa for WV  inactive inactive active 

 
 
 
 

Fig. 29 shows that both AMVA and AMV8 runs activated more AMVs than 
the reference. AMVA uses more observation at lower levels, which may result in 
discrepancies due to orography. Observation minus background (O-B) statistics 
show no suspicious feature between 800 and 350 hPa (Fig. 30), so proceeding 
with AMV8 settings seems to be a better choice in the future.  

 
 
 
 

 

Fig. 29. Number of active AMV observations over the AROME/HU domain from July 5 
to August 7, 2019 for the initial experiment (top), for experiment AMVA (middle), and for 
experiment AMV8 (bottom). 
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Fig. 30. The vertical distribution of the active observations for the initial experiment (left), 
for experiment AMV8 (middle), and for experiment AMVA (right) over the AROME/HU 
domain from July 5 to August 7, 2019. 

5. Summary and conclusions 

The latest developments of the AROME/HU data assimilation system were shown 
in this paper. First of all, the current operational DA system was described with a 
focus on the locally assimilated observations and special interest in the 
preparation mechanism of the analysis and forecast.  

Then surface data assimilation developments were described. It was shown, 
that both the OI-main and the SEKF provided a positive impact on the screen-
level parameters compared to the dynamical adaptation of AROME/HU, 
especially for nighttime periods. Very promising results were demonstrated by 
applying a 1-hour RUC configuration compared to the 3-hour ones. The reliability 
of the analyses and short-range forecasts were improved by employing more 
observations in the DA system. However, higher accuracy was provided by 
reduction of surface assimilation cycle frequency, the best results were found 
using a 3-hourly surface assimilation interval. Thereafter, upper-air DA impact 
studies were carried out using different kinds of observations to improve the 
analyses and forecasts. The impact of Czech and Hungarian Mode-S MRAR data 
assimilations was slightly positive or neutral regarding the analyses and the 
forecasts of surface parameters. The effect of AMDAR-humidity in AROME/HU 
forecasts was also tested, and generally, neutral impact was obtained. However, it 
can be noted that AMDAR-humidity improves the convective precipitation 
forecast in the first hours and helps to extend slightly the humidity related 
observations in the assimilation system. In addition to the assimilation of 
conventional data, non-conventional AMV data has been tested in AROME/HU 
DA system. Due to the outdated AMV blacklisting settings, an experiment was 
performed by the activation of mid-tropospheric AMVs to allow more data into 
the assimilation system. The upper-level innovation of this new experiment has 
shown promising results for further studies. 

This paper indicated, that applying new methods, as SEKF, more frequent 
RUC, or increasing the number of new assimilated observations, like additional 
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aircraft or AMV observations, are future perspectives and powerful tools to 
improve the mesoscale analyses and forecasts. The AMDAR-humidity and the 
Czech Mode-S MRAR data are already part of the AROME 3D-Var operational 
system. The implementation of new, high resolution observations in the DA 
system, such as radar observations or satellite data, are becoming highly 
important, as the horizontal and vertical resolution of the meteorological model is 
continuously growing. In addition, we have to pay attention to modeling of the 
background error covariance matrix for the higher resolution model version, 
which is based on AROME ensemble DA method. 
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